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Currently, there is no definitive and uniform description for the similarity of time series, which results in difficulties for relevant
research on this topic. In this paper, we propose a generalized framework tomeasure the similarity of time series. In this generalized
framework, whether the time series is univariable or multivariable, and linear transformed or nonlinear transformed, the similarity
of time series is uniformly defined using norms of vectors or matrices.The definitions of the similarity of time series in the original
space and the transformed space are proved to be equivalent. Furthermore, we also extend the theory on similarity of univariable
time series to multivariable time series. We present some experimental results on published time series datasets tested with the
proposed similarity measure function of time series. Through the proofs and experiments, it can be claimed that the similarity
measure functions of linear multivariable time series based on the norm distance of covariance matrix and nonlinear multivariable
time series based on kernel function are reasonable and practical.

1. Introduction

A complex system typically needs to be described with
multiple state variables. These state variables can be obtained
by experimental observations and instrumental measures.
With these state variables, a set of discrete multivariate time
series (MTS) can be constructed. Mathematically, MTS is
expressed in matrix form X = (𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑚
). Its samples

are 𝑥
𝑖
(𝑡), 𝑥

𝑖
(𝑖 = 1, 2, . . . , 𝑚; 𝑡 = 1, 2, . . . , 𝑛), where 𝑚

and 𝑛 denote the number of observation variables and the
number of observation samples of each observation variable,
respectively. Obviously, X is a 𝑛 × 𝑚 matrix. If 𝑚 ≥ 2,
the matrix X represents MTS. Otherwise, if 𝑚 = 1, X is
simplified to a univariate time series (UTS), which is a special
case of MTS and can be denoted as a 𝑛-dimensional vector
𝑥(𝑛). Time series theory is widely applied in various fields
such as electricity, finance,medical,multimedia,meteorology
and hydrology, scientific research, and industrial control.
Discovery of the hidden information and operating regularity
in a time series is a research hotpot in data mining and

knowledge discovery. The research on time series includes
clustering, classification, similarity search, feature extraction,
trend forecasting, and decision support. Similarity measures
a fundamental research topic on time series theory.

Most of the existing research on the similarity measure
of time series is focused on UTS. The common measure
functions are 𝐿

𝑝
-norms (𝑝 = 1, 2,∞) [1, 2], DTW [3–

5], longest common subsequence (LCSS) [6], edit distance
on real sequence (EDR) [7], edit distance with real penalty
(ERP) [8], spatial assemble distance (SpADe) [9], DISSIM
[10], swale [11], and TQuEST [12]. With further research on
UTS, we can expect more new methods will be proposed in
the future. However, few researches focus on the similarity
measure of MTS. Yang and Shahabi [13, 14] calculated
the similarity of MTS with the extended Frobenius norm.
Xu et al. [15, 16] measured the MTS similarity based on
information theoretic learning framework.

The contributions in the research on framework for
similarity measure of time series are also less. Liu and Jiang
[17] proposed a concept of similarity of time series through
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analyzing the geometric relation of Euclidean distance of
time series in high-dimensional space, which describes the
similarity relation between two UTS using both similarity
function and transform constraint function to establish an
exact concept for similarity of time series.

From existing UTS and MTS literatures, the similarity
measure methods of time series are undefined and nonstan-
dardized which makes the research very difficult. Thus, it
is very necessary to establish a general concept for uniform
similarity of time series. In this paper, we give the definition
of similarity measure function of UTS with vector norm
and proved that the similarity functions defined in the form
of norms are equivalent in original UTS space and linear
transformed space. Moreover, we also extend the definitions
of similarity of time series and present a uniform theory of
similarity measure based on set theory, metric space theory,
operator theory, matrix theory, and kernel method. The
uniform theory based on distance of vector/matrix norm can
be used for measuring the similarity of time series in both
original and transformed spaces, whether the time series are
univariable or multivariable and the linear transform or the
nonlinear transform. The theory analysis and experimental
results show that the definition of distance of vector/matrix
norm is equivalent in original and transformed spaces.

The rest of this paper is organized as follows. In Section 2,
it is proved that the vector norm based definitions of sim-
ilarity functions are equivalent in UTS original and linear
transformed spaces. In Section 3, the theory that matrix
norm is used for defining the similarity function of linear
MTS is discussed. Then, the theory that kernel function
is used for defining the similarity function of nonlinear
MTS is discussed in Section 4. In Section 5, all similarity
functions proposed in this paper are discussed and analyzed.
It is proved that the norm based definition of similarity
functions for measuring the similarity of UTS is equivalent
in time domain and Fourier transform or wavelet transform
domain. Also, the similarity function of linear MTS defined
based on covariance matrix norm distance and the similarity
function of nonlinear MTS defined based on kernel function
are analyzed in this section. The experimental results are
shown in Section 6. Finally, we conclude this paper in
Section 7.

2. Similarity Measure of Linear Univariable
Time Series

For the original data of linear univariable time series, whether
they are recoded manually or sampled automatically, it is
assumed that they all satisfy Shannon theoremof information
theory without any distortion and without considering the
data dimension.The linear univariable time series is denoted
as set A. Considering two UTS samples 𝑥, 𝑦 ∈ A, wherein 𝑥
is the time series to be observed (observed time series) and
𝑦 is the time series to be referenced (referenced time series).
They are represented in vector form X = (𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑚
),

Y = (𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑚
), 𝑚 ≥ 𝑛. To measure the similarity of

𝑥 and 𝑦, the subseries with the same dimension as 𝑦 needs
to be extracted from 𝑥. All 𝑛-dimension successive subseries

of 𝑥 compose a set B, B = (𝑋
𝑖
, 𝑋
𝑖+1
, . . . , 𝑋

𝑖+𝑛−1
| 𝑖 =

1, 2, . . . , 𝑚 − 𝑛 + 1), in which each element represents a 𝑛-
dimension successive time series. The 𝑖th element in set B is
denoted as 𝑥(𝑏)

𝑖
, 𝑥(𝑏)
𝑖

= (𝑋
𝑖
, 𝑋
𝑖+1
, . . . , 𝑋

𝑖+𝑛−1
), which is a 𝑛-

dimension vector.
The similarity measure between observed time series

𝑥 and referenced time series 𝑦 is that the subseries of
𝑥, 𝑥

(𝑏)

𝑖
, ∀𝑥

(𝑏)

𝑖
∈ B, and the given referenced series 𝑦 are

measured in the similaritymeasure function Sim = 𝑓(𝑥

(𝑏)

𝑖
, 𝑦)

with the threshold 𝜀 > 0.

Definition 1. If the similarity function of time series Sim =

𝑓(𝑥

(𝑏)

𝑖
, 𝑦) ≤ 𝜀, the observed subseries 𝑥(𝑏)

𝑖
and referenced

series 𝑦 are similar.

According to the literatures [1, 2], there are two cases of
time series similarities, which are as follows: (1) if𝑚 = 𝑛 and
Sim = 𝑓(𝑥

(𝑏)

𝑖
, 𝑦) ≤ 𝜀, 𝑥 and 𝑦 are exactly matching; (2) if𝑚 >

𝑛, ∃𝑥(𝑏)
𝑖
∈ B, and Sim = 𝑓(𝑥

(𝑏)

𝑖
, 𝑦) ≤ 𝜀, the subseries 𝑥(𝑏)

𝑖
and

𝑦 are subseries matching. Obviously, exactly matching is a
special case of subseriesmatching. In this paper, subseries𝑥(𝑏)

𝑖

and similarity measure function Sim = 𝑓(𝑥

(𝑏)

𝑖
, 𝑦) are defined

for unifying the above two cases of similarity matching of
time series and measuring the similarity of 𝑥(𝑏)

𝑖
and 𝑦 in the

same dimension conveniently. The following definitions on
similarity of UTS are all based on the unified similarity.

2.1. Common Similarity Measure Functions. In current
research, the distance function of time series 𝑥(𝑏)

𝑖
and 𝑦,

𝑑(𝑥

(𝑏)

𝑖
, 𝑦), is commonly used as the similarity measure func-

tion Sim = 𝑓(𝑥

(𝑏)

𝑖
, 𝑦). The common distance metrics are as

follows [17].
(1) Euclidean distance:

Sim = 𝑓 (𝑥

(𝑏)

𝑖
, 𝑦) = 𝑑 (𝑥

(𝑏)

𝑖
, 𝑦) = [

𝑛

∑

𝑘=1

(𝑥

(𝑏)

𝑖𝑘
− 𝑦
𝑘
)

2

]

1/2

. (1)

(2) City-block distance:

Sim = 𝑓 (𝑥

(𝑏)

𝑖
, 𝑦) = 𝑑 (𝑥

(𝑏)

𝑖
, 𝑦) =

𝑛

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨

𝑥

(𝑏)

𝑖𝑘
− 𝑦
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

. (2)

(3) Chebyshev distance:

Sim = 𝑓 (𝑥

(𝑏)

𝑖
, 𝑦) = 𝑑 (𝑥

(𝑏)

𝑖
, 𝑦) = ∑

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

𝑥

(𝑏)

𝑖𝑘
− 𝑦
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

. (3)

(4)Minkowski distance:

Sim = 𝑓 (𝑥

(𝑏)

𝑖
, 𝑦) = 𝑑 (𝑥

(𝑏)

𝑖
, 𝑦) = [

𝑛

∑

𝑘=1

(𝑥

(𝑏)

𝑖𝑘
− 𝑦
𝑘
)

𝑝

]

1/𝑝

.

(4)
(5) Cosine distance:

Sim = 𝑓 (𝑥

(𝑏)

𝑖
, 𝑦) = 𝑑 (𝑥

(𝑏)

𝑖
, 𝑦)

= 1 −

∑

𝑛

𝑘=1
(𝑥

(𝑏)

𝑖𝑘
− 𝑦
𝑘
)

√
∑

𝑛

𝑘=1
(𝑥

(𝑏)

𝑖𝑘
)

2

∑

𝑛

𝑘=1
(𝑦
𝑘
)

2

.

(5)
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(6) Correlation distance:
Sim

= 𝑓 (𝑥

(𝑏)

𝑖
, 𝑦) = 𝑑 (𝑥

(𝑏)

𝑖
, 𝑦)

= 1 − ((

𝑛

∑

𝑘=1

[(𝑥

(𝑏)

𝑖𝑘
−

1

𝑛

𝑛

∑

𝑘=1

𝑥

(𝑏)

𝑖𝑘
)(𝑦

(𝑏)

𝑖𝑘
−

1

𝑛

𝑛

∑

𝑘=1

𝑦

(𝑏)

𝑖𝑘
)])

×(√

𝑛

∑

𝑘=1

(𝑥

(𝑏)

𝑖𝑘
−

1

𝑛

𝑛

∑

𝑘=1

𝑥

(𝑏)

𝑖𝑘
)

2
𝑛

∑

𝑘=1

(𝑦

(𝑏)

𝑖𝑘
−

1

𝑛

𝑛

∑

𝑘=1

𝑦

(𝑏)

𝑖𝑘
)

2

)

−1

) .

(6)

(7)Mahalanobis distance

Sim = 𝑓 (𝑥

(𝑏)

𝑖
, 𝑦) = 𝑑 (𝑥

(𝑏)

𝑖
, 𝑦)

= [(𝑥

(𝑏)

𝑘
− 𝑦)𝑉

−1
(𝑥

(𝑏)

𝑘
− 𝑦)

𝑇

]

1/2

.

(7)

In formula (7), matrix 𝑉 is the covariance matrix of 𝑥(𝑏)
𝑖

and
𝑦. Mathematically, it can be proved that the distance formulas
(1)–(3) are special cases of formula (4) with 𝑝 = 2, 1,∞. In
these distance functions, the Euclidean distance is frequently
used in practice. Obviously, given the same dimension, the
more the similarity between two vectors, the smaller the
values of similarity measure functions (1)–(7), and vice versa.

2.2. Relevant Concepts of Time Series Transform. Since time
series 𝑥(𝑏)

𝑖
and 𝑦 are high-dimension data, 𝑥(𝑏)

𝑖
, 𝑦 ∈ X ⊂ R𝑛,

straightforward analysis and processing of similarity of time
series need huge computation burden which is unacceptable
on both time and space complexities. Although measuring
the similarity of two time series is intuitively straightforward,
the result may be not very accurate. Thus, the time series
𝑥

(𝑏)

𝑖
and 𝑦 need to be properly transformed.The transformed

time series are denoted as 𝑥(𝑏)
𝑖

and 𝑦󸀠, and X󸀠 denotes the
transformed space, 𝑥(𝑏)

󸀠

𝑖
, 𝑦

󸀠
∈ X󸀠 ⊂ R𝑛, and their transform

factor is T. The transform should be lossless or lossy within
a very small margin so that no or less accuracy loss of data is
introduced by the transform. Through the space transform,
the dimension of data is greatly reduced so that the data
can be processed with lower complexity. Accordingly, it is
very important to select a proper transform for solving this
problem. For notational convenience the relevant definition
is given as follows.

Definition 2. Let (X, 𝜌) and (X󸀠, 𝜌󸀠) be two measure spaces.
If there exists a mapping T from X to X󸀠, and ∀𝑥, 𝑦 ∈ X,
𝜌

󸀠
(T𝑥,T𝑦) = 𝜌(𝑥, 𝑦), then it can be said that X and X󸀠 are

isometric, and T is the isometric mapping from X to X󸀠.

Definition 3. Let T be an operator (mapping) of the normed
linear space from X to X󸀠. If the following hold:

(1) additive T(𝑥 + 𝑦) = T𝑥 + T𝑦 (𝑥, 𝑦 ∈ 𝑋),
(2) homogeneity T(𝛼𝑥) = 𝛼T𝑥,

then it can be said that T is a linear operator from X to X󸀠.

Definition 4. 𝑆(X,X󸀠) represents the all bounded linear oper-
ators of the normed linear space from X to X󸀠. Let T,T

1
∈

𝑆(X,X󸀠) and let 𝛼 be arbitrary number. If ∀𝑥 ∈ X and the
following hold:

(1) additive (T
1
+ T)𝑥 = T

1
𝑥 + T𝑥,

(2) homogeneity (𝛼T)𝑥 = 𝛼(T𝑥),

then it can be said that 𝑆(X,X󸀠) is a linear space.

Definition 5. Let X and X󸀠 be two normed linear spaces and
let T ∈ 𝑆(X,X󸀠) be the linear operator from X to X󸀠. If
‖𝑥‖ = ‖T𝑥‖󸀠 and ∀𝑥 ∈ X, then it can be said thatX andX󸀠 are
isometric and T is the norm preserving isomorphic mapping
from X to X󸀠.

2.3. Definition of Similarity Relation in Set Theory

Definition 6. Let 𝑅 be a relation in set A. If ∀𝑥 ∈ A and
(𝑥, 𝑥) ∈ 𝑅, then it can be said that relation 𝑅 is reflexive. If
∀𝑥, 𝑦 ∈ A, (𝑥, 𝑦) ∈ 𝑅, and (𝑦, 𝑥) ∈ 𝑅, then it can be said
that relation 𝑅 is symmetrical. If ∀𝑥, 𝑦, 𝑧 ∈ A, (𝑥, 𝑦) ∈ 𝑅,
(𝑦, 𝑧) ∈ 𝑅, and there is (𝑥, 𝑧) ∈ 𝑅, then it is said that relation𝑅
is transitive. If a relation 𝑅 is both reflexive and symmetrical,
it is a similarity relation.

It should be noted that the similarity relation does not
have the transitive property. For example, father and son
are similar, and mother and son are also similar, but father
and mother are very possible to be dissimilar. According to
the above analysis of similarity of time series, the similarity
measure functions are proposed based on the similarity
relation of set theory.

2.4. Extended Similarity Definition of Time Series. According
to the above discussion, the similarity measure function
of time series not only satisfies the similarity relation in
set theory, but also should be uniformed in the original
space X and the transformed space X󸀠. Objectively, the
straightforward similarity measure of two time series is
more accurate than nonstraightforward similarity measure
in which the geometric triangle inequality is used for the
similarity measure through the third-party time series. Thus,
Definition 1 is extended as follows.

Definition 7. Given a linear operator 𝑇 from X to X󸀠 and
𝑥

(𝑏)

𝑖
, 𝑦, 𝑧 ∈ X ⊂ R𝑛, 𝑥(𝑏)

󸀠

𝑖
, 𝑦

󸀠
, 𝑧

󸀠
∈ X󸀠 ⊂ R𝑛 are the transforms

of 𝑥(𝑏)
𝑖
, 𝑦, 𝑧 by the operator 𝑇. When the similarity measure

function Sim = 𝑓(∗, ∗) ≤ 𝜀 (𝜀 > 0 is a given threshold of
similarity), the time series𝑥(𝑏)

𝑖
, 𝑦 are similar in the constraints

of 𝜀. Meanwhile, the similarity function Sim = 𝑓(∗, ∗) should
satisfy the following.

(1) Reflexive symmetrical positive definiteness, that is,
Sim = 𝑓(𝑥

(𝑏)

𝑖
, 𝑦) = 𝑓(𝑦, 𝑥

(𝑏)

𝑖
) = 𝑓(𝑥

(𝑏
󸀠
)

𝑖
, 𝑦

󸀠
) =

𝑓(𝑦

󸀠
, 𝑥

(𝑏)
󸀠

𝑖
) ≥ 0, if and only if 𝑥(𝑏)

𝑖
= 𝑦, 𝑥(𝑏

󸀠
)

𝑖
= 𝑦

󸀠,
and the equation Sim = 0 holds.
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(2) Geometric triangle inequality:

𝑓 (𝑥

(𝑏)

𝑖
, 𝑧) ≤ 𝑓 (𝑥

(𝑏)

𝑖
, 𝑦) + 𝑓 (𝑦, 𝑧),

𝑓(𝑥

(𝑏)
󸀠

𝑖
, 𝑧

󸀠
) ≤ 𝑓(𝑥

(𝑏)
󸀠

𝑖
, 𝑦

󸀠
) + 𝑓(𝑦

󸀠
, 𝑧

󸀠
).

The generalized similarity definition in different spaces
is given by Definition 7. The key problem is how to find the
proper operator T and similarity measure function Sim =

𝑓(∗, ∗).

Lemma 8. Any two norms of finite-dimension linear space are
equivalent.

Proof. Let ‖𝑥‖1 and ‖𝑥‖2
be two norms of linear space X

and let {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
} be a linear basis of X. If ∀𝑥 ∈ X and

𝑥 = ∑

𝑛

𝑘=1
𝑎
𝑘
𝑒
𝑘
, then there are positive integers 𝐴

1
, 𝐴
2
, 𝐵
1
, 𝐵
2
,

which satisfy 𝐴
1 ‖
𝑥‖1

≤ {∑

𝑛

𝑘=1

󵄨
󵄨
󵄨
󵄨

𝑎
𝑘

󵄨
󵄨
󵄨
󵄨

2

}

1/2

≤ 𝐵
1 ‖
𝑥‖1

and

𝐴
2 ‖
𝑥‖2

≤ {∑

𝑛

𝑘=1

󵄨
󵄨
󵄨
󵄨

𝑎
𝑘

󵄨
󵄨
󵄨
󵄨

2

}

1/2

≤ 𝐵
2 ‖
𝑥‖2

. Thus, 𝐴
1 ‖
𝑥‖1

≤

𝐵
2 ‖
𝑥‖2

≤ (𝐵
1
𝐵
2
/𝐴
2
) ‖𝑥‖1

; that is, (𝐴
1
/𝐵
2
) ‖𝑥‖1

≤ ‖𝑥‖2
≤

(𝐵
1
/𝐴
2
) ‖𝑥‖1

. Finally, it can be proved that ‖𝑥‖1 and ‖𝑥‖2 are
equivalent.

Theorem9. LetT be the normpreserving isomorphicmapping
fromX toX󸀠. The time series 𝑥(𝑏)

𝑖
, 𝑦 ∈ X ⊂ R𝑛 are transformed

as 𝑥(𝑏)
󸀠

𝑖
, 𝑦

󸀠
∈ X󸀠 ⊂ R𝑛 by T. X has the usual definition of the

norm ‖ ⋅ ‖, with which the distance (X, 𝜌) can be derived by the
norm. Similarly, the distance (X󸀠, 𝜌󸀠) also can be derived by the
norm ‖⋅‖. Then, consider the following.

(1) In spaceX, formulae (1), (2), (3), and (4) represent that
the similarity measure function Sim = 𝑓(𝑥

(𝑏)

𝑖
, 𝑦) is

equivalent.
(2) In spaces X and X󸀠, the similarity measure func-

tions 𝑆𝑖𝑚 = 𝑓(∗, ∗) represented by 󵄩󵄩󵄩
󵄩
󵄩

𝑥

(𝑏)

𝑖
− 𝑦

󵄩
󵄩
󵄩
󵄩
󵄩

and
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑥

(𝑏)
󸀠

𝑖
− 𝑦

󸀠
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

are equivalent.

Proof. (1) Since formulae (1), (2), (3), and (4) are 2-norm,
1-norm, ∞-norm, and 𝑝-norm of the vector difference,
respectively, according to Lemma 8, formulae (1), (2), (3), and
(4) can be easily proved by norm axioms that they satisfy
Definition 7. Thereby it is proved.

(2) It may be known from Definitions 3 and 5 that
󵄩
󵄩
󵄩
󵄩
󵄩

𝑥

(𝑏)

𝑖
− 𝑦

󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩

(𝑥

(𝑏)

𝑖
− 𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩

T𝑥(𝑏)
𝑖
− T𝑦󵄩󵄩󵄩

󵄩
󵄩

󸀠

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑥

(𝑏)
󸀠

𝑖
− 𝑦

󸀠
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

,
and then it is easily proved by norm axioms that they satisfy
Definition 7.

3. Similarity Measure of Linear Multivariable
Time Series

In previous sections, we mentioned the definitions of sim-
ilarity of univariable time series. The signal variable time
series is represented in vector formmathematically.Themore
similar the two vectors, the shorter the distance between
them. The distance of two identical vectors should be zero.
Thus, the similarity function of univariable time series should
be defined based on vector norm. Multivariable time series

is represented in matrix mathematically. So, the similarity
function of multivariable time series should be defined based
on matrix norm.

Definition 10. Matrix norms: if the real function 𝑓(A) = ‖A‖,
where A is any matrix A ∈ R𝑚×𝑛, satisfies the following:

(1) positive definiteness: ‖A‖ ≥ 0 and ‖A‖ = 0, if and only
if A = 0,

(2) homogeneity: for any real number 𝛼, ‖𝛼A‖ = |𝛼| ‖A‖,
(3) triangle inequality: for ∀A ∈ R𝑚×𝑛, ‖A + B‖ ≤ ‖A‖ +

‖B‖,
(4) compatibility: for ∀A ∈ R𝑚×𝑛, ‖AB‖ ≤ ‖A‖ ⋅ ‖B‖,

then it is said that ‖A‖ is a matrix norm in R𝑚×𝑛, that is, the
norm of matrix A.

3.1. Commonly Used Matrix Norm. The commonly used
matrix norms are given as follows:

(1) ‖A‖1 = max
1≤𝑗≤𝑛

∑

𝑚

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨

𝑎
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

, the maximum sum of
absolute element of each column of matrix A, and
‖A‖
1
is also called the column norm of A;

(2) ‖A‖∞ = max
1≤𝑖≤𝑚

∑

𝑛

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨

𝑎
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

, the maximum sum of
absolute element of each row of matrix A, and ‖A‖

∞

is also called the row norm of A;

(3) ‖A‖2 = √𝜆max(A𝑇A), wherein A𝑇 denotes matrix
transpose of A and 𝜆max(A𝑇A) is the maximum of
absolute eigenvalue of A𝑇A, and ‖A‖2 is also called
the 2-norm of A, or spectral norm;

(4) ‖A‖𝐹 = (∑

𝑚

𝑖=1
∑

𝑛

𝑗=1
𝑎

2

𝑖𝑗
)

1/2

= [tr(A𝐻A)]1/2, wherein
A𝐻 is conjugate transpose of A. ‖A‖𝐹 is called the
Frobenius norm (𝐹-norm), which is similar to 2-
norm in the form of vector, and also is compatible
with the vector norm ‖𝑥‖2

. Its advantage in the norm
invariance after 𝐹-norm is multiplied by unitary
matrix, that is, the following theorem.

Theorem 11. Let A ∈ R𝑛×𝑚 and U,V be 𝑚-rank and 𝑛-rank
unitary matrices, respectively, and then ‖UA‖2

𝐹
= ‖A‖2

𝐹
=

‖AV‖2
𝐹
.

Proof. ‖UA‖2
𝐹

= 𝑡
𝑟
[(UA)𝐻(UA)] = 𝑡

𝑟
[A𝐻U𝐻UA] =

𝑡
𝑟
[A𝐻A] = ‖A‖2

𝐹
. According to definition, we know that

‖A‖𝐹 =
󵄩
󵄩
󵄩
󵄩
󵄩

A𝐻󵄩󵄩󵄩
󵄩
󵄩𝐹
. With the above results, we have ‖AV‖2

𝐹
=

󵄩
󵄩
󵄩
󵄩
󵄩

AV𝐻󵄩󵄩󵄩
󵄩
󵄩

2

𝐹
=

󵄩
󵄩
󵄩
󵄩
󵄩

V𝐻A𝐻󵄩󵄩󵄩
󵄩
󵄩

2

𝐹
=

󵄩
󵄩
󵄩
󵄩
󵄩

A𝐻󵄩󵄩󵄩
󵄩
󵄩

2

𝐹
= ‖A‖2

𝐹
.

Same as vector norm, the equivalence of matrix norms
has the following similar conclusions. For ∀A ∈ R𝑛×𝑚,
any matrix norms of A are equivalent. Mathematically, in
the above four kinds of norms, ‖A‖1 and ‖A‖∞ can be
easily computed, and ‖A‖2 and ‖A‖1 have better properties
and are widely applied. However, ‖A‖2 is more complicated
in engineering application and sensitive to the variation of
matrix elements. ‖A‖𝐹 can be computed more easily and thus
is widely applied.
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3.2. Definition of Similarity Functions of Multiple Variable
Time Series. It is assumed that X = (𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑚
) and

Y = (𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑚
) are MTS, their samples are denoted as

𝑥
𝑖
(𝑡), 𝑦
𝑖
(𝑡), (𝑖 = 1, 2, . . . , 𝑚; 𝑡 = 1, 2, . . . , 𝑛), 𝑚 is the number

of observations, and 𝑛 is the size of observations. Obviously,
they are 𝑛 × 𝑚matrices, which are denoted as A(𝑛 × 𝑚) and
B(𝑛 ×𝑚). Their definition of similarity function is as follows:

Sim = 𝑓 (X,Y) = ‖A − B‖ . (8)

4. Similarity Measure of Nonlinear Time Series

We are inspired by support vector machines (SVMs), where
a classifier can convert the difficult nonlinear classification
problem in input space X ⊂ R𝑚 into simple linear classifi-
cation problem in feature spaceH

𝑘
using kernel method.The

essence is that the difficult classification of unclear similarity
of the same class of samples and small difference of different
classes of samples are converted from the input space into the
feature space H

𝑘
in which the similarity of the same class of

samples is enhanced and the difference of different classes of
samples is enlarged. Thus, in this paper, the kernel method is
introduced for the research of the similarity of nonlinear time
series.

In input space X ⊂ R𝑚, the researching time series
X = (x

1
, x
2
, . . . , x

𝑚
) is a 𝑚-dimension multivariable with 𝑛

samples, and same as the researching series, the reference
time series Y = (y

1
, y
2
, . . . , y

𝑚
) is a 𝑚-dimension multivari-

able with 𝑛 samples. In the feature space H
𝑘
, the nonlinear

mapping of X and Y is denoted as Φ(X) = (Φ(x
1
), Φ(x

2
),

. . . , Φ(x
𝑚
)) andΦ(Y) = (Φ(y

1
), Φ(y

2
), . . . , Φ(y

𝑚
)).

Definition 12. In the feature spaceH
𝑘
, the inner product and

norm are defined as follows:

⟨Φ (X) , Φ (Y)⟩ =
𝑛

∑

𝑖=1

Φ(x
𝑖
)Φ (y

𝑖
) , (9)

‖Φ (X)‖2 = ⟨Φ (X) , Φ (Y)⟩
1/2

= [

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨

Φ (x
𝑖
)

󵄨
󵄨
󵄨
󵄨

2

]

1/2

.
(10)

Definition 13. The similarity function of the researching
series X = (x

1
, x
2
, . . . , x

𝑚
) and the reference time series Y =

(y
1
, y
2
, . . . , y

𝑚
) are defined as follows:

Sim = 𝑓 (X,Y) = ‖Φ (X) − Φ (Y)‖2 . (11)

5. Discussion and Analysis

5.1. Analysis on the Similarity of Linear Transformed Univari-
able Time Series. According to operator theory, both Fourier
transform and wavelet transform are linear operators. Thus,
the relevant conclusions on the similarity of time series based
on Fourier transform and wavelet transform are obtained as
follows.

Lemma 14. Let 𝑓, 𝑔 ∈ 𝐿2(R𝑛), and then Fourier transforms of
𝑓 and 𝑔, ̂𝑓(𝜔), 𝑔(𝜔) ∈ 𝐿2(R𝑛), have the following properties:

(1) invariant inner product ( ̂𝑓, 𝑔) = (𝑓, 𝑔),
(2) norm preserving 󵄩󵄩󵄩

󵄩
󵄩

̂
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩

𝑓

󵄩
󵄩
󵄩
󵄩

.

Proof. Consider the following.
(1)

(𝑓, 𝑔) = ∫

∞

−∞

𝑓

∗
(𝑡) 𝑔 (𝑡) 𝑑𝑡

= ∫

∞

−∞

𝑓

∗
(𝑡) [∫

∞

−∞

̂
𝑔(𝜔) exp (𝑗𝜔𝑡) 𝑑𝜔] 𝑑𝑡

= ∫

∞

−∞

̂
𝑔(𝜔) [𝑓

∗
(𝑡) exp (𝑗𝜔𝑡) 𝑑𝑡] 𝑑𝜔

= ∫

∞

−∞

̂
𝑔(𝜔) [𝑓 (𝑡) exp (−𝑗𝜔𝑡) 𝑑𝑡]∗ 𝑑𝜔

= ∫

∞

−∞

̂
𝑔(𝜔)

̂
𝑓(𝜔)

∗

𝑑𝜔 = (
̂
𝑓, 𝑔) .

(12)

(2) For the above equation, let 𝑓 = 𝑔, and then there is
󵄩
󵄩
󵄩
󵄩
󵄩

̂
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩

=
√
(
̂
𝑓,

̂
𝑓) = √(𝑓, 𝑓) =

󵄩
󵄩
󵄩
󵄩

𝑓

󵄩
󵄩
󵄩
󵄩

.

Inference 1. Time series 𝑥(𝑏)
𝑖
, 𝑦 ∈ X ⊂ R𝑛 are transformed

as 𝑥(𝑏)
󸀠

𝑖
, 𝑦

󸀠
∈ X󸀠 by discrete Fourier transform (DFT). The

similarity functions Sim = 𝑓(∗, ∗) is represented by norms
󵄩
󵄩
󵄩
󵄩
󵄩

𝑥

(𝑏)

𝑖
− 𝑦

󵄩
󵄩
󵄩
󵄩
󵄩

and
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑥

(𝑏)
󸀠

𝑖
− 𝑦

󸀠
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

are equivalent.

Proof. According toTheorem 9 and Lemma 14, the results are
directly deduced.

Analogously, the following conclusions are also obtained.
Due to the limited space, the proof is not presented here.

Inference 2. Time series 𝑥(𝑏)
𝑖
, 𝑦 ∈ X ⊂ R𝑛 are transformed

as 𝑥(𝑏)
󸀠

𝑖
, 𝑦

󸀠
∈ X󸀠 by discrete wavelet transform (DWT). The

similarity function Sim = 𝑓(∗, ∗) represented by norms
󵄩
󵄩
󵄩
󵄩
󵄩

𝑥

(𝑏)

𝑖
− 𝑦

󵄩
󵄩
󵄩
󵄩
󵄩

and
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑥

(𝑏)
󸀠

𝑖
− 𝑦

󸀠
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

is equivalent.

5.2. Practice Computing Method of Similarity of Linear Multi-
variable Time Series. Let matrices A

𝑛×𝑚
and B

𝑛×𝑚
represent

MTSX = (x
1
, x
2
, . . . , x

𝑚
) and Y = (y

1
, y
2
, . . . , y

𝑚
), and let the

covariance matrices between the columns in A
𝑛×𝑚

and B
𝑛×𝑚

be COV(A)
𝑚×𝑚

and COV(B)
𝑚×𝑚

. All eigenvalues of covari-
ance matrices COV(A)

𝑚×𝑚
are arranged in descending order

𝜆
𝛼1
, 𝜆
𝛼2
, . . . , 𝜆

𝛼𝑚
and their corresponding standard orthogo-

nal eigenvectors are 𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑚
. Similarly, all eigenvalues

of covariance matrices COV(B)
𝑚×𝑚

are arranged in descend-
ing order 𝜆

𝛽1
, 𝜆
𝛽2
, . . . , 𝜆

𝛽𝑚
, and the corresponding standard

orthogonal eigenvectors are 𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑚
. Thus, the eigen-

vectors of covariancematrices COV(A)
𝑚×𝑚

and COV(B)
𝑚×𝑚

are𝛼 = [𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑚
] and𝛽 = [𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑚
], respectively,

and then their extended similarity function is defined as
follows:

Sim = 𝑓 (X,Y) = 󵄩󵄩󵄩
󵄩

𝛼 − 𝛽
󵄩
󵄩
󵄩
󵄩

. (13)

According to principle component analysis, physical
meaning of formula (13) is equivalent to that the distance
(similarity) between the linear orthogonal transforms of
A
𝑛×𝑚

and B
𝑛×𝑚

can be measured using the norms in
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the transformed space. Yang and Shahabi [13, 14] use the
extended Frobenius norm to compute the similarity of MTS
which is a special case of formula (13). Formula (13) can
be understood by referring to the definition of similarity
function of univariable time series transformed by linear
operator.

5.3. Practical Computation of Similarity of Nonlinear Mul-
tivariable Time Series. Mathematically, it is not difficult
to prove that the norm of formula (10) derived by the
inner product of formula (9) satisfies the Parallelogram
formula: ‖Φ (X) + Φ (Y)‖2+‖Φ (X) − Φ (Y)‖2 = 2(‖Φ (X)‖2+
‖Φ (Y)‖2). Since ‖Φ (X) − Φ (Y)‖2

2
= ⟨Φ(X), Φ(X)⟩ −

2 ⟨Φ(X), Φ(Y)⟩ + ⟨Φ(Y), Φ(Y)⟩, it does not need to know
the mapping function explicitly. Instead, the kernel function
𝐾(x, y) is used to compute the similarity function defined in
formula (11); that is,

Sim = 𝑓 (X,Y) = √𝐾 (x, x) − 2𝐾 (x, y) + 𝐾 (y, y). (14)

Formula (14) shows that the nonlinear similarity measure
of nonlinear time series in input space can be linearly
measured in feature space through kernel method. Currently,
commonly used kernel functions are as follows:

(1) linear kernel function:

𝐾(x, y) = xy, (15)

(2) 𝑝-order polynomial kernel function:

𝐾(x, y) = (xy + 1)𝑝 , (16)

(3) Gaussian radial basis RBF kernel function:

𝐾(x, y) = exp(−
󵄩
󵄩
󵄩
󵄩

x − y󵄩󵄩󵄩
󵄩

2

2𝜎

2
) , (17)

(4) neural network kernel function:

𝐾(x, y) = tanh (V (xy) + 𝑐) . (18)

6. Experimental Results

In our experiments, we take the nonlinear multivariate time
series as a typical example without loss of generality for show-
ing the accuracy of the proposed similarity measurement
method. The similarity measurement function of formula (1)
is used in the input space, and the similarity measurement
function of formula (14) is used in the feature space. The
Gaussian radial basis RBF kernel function of formula (17) is
used for mapping the nonlinear samples to high-dimension
space, which is low complexity compared with polynomial
kernel function, especially the high rank kernel function.
All samples in the original test and training sets are well
mixed. The samples are randomly selected to construct
the new test and training sets. Because the KNN classifier
can decide a sample belong to the class in which more

of 𝑘 nearest samples are contains. Based on the proposed
similarity measure function to verify the equivalence of time
series in different spaces, KNN and kernel KNN classifiers
are employed to classify the samples in the new sets in
input space and feature space, respectively. Each random
experiment is carried out 20 times. Then the classification
accuracies in the experiments are analyzed and compared.
Moreover, the parameter 𝜎 of Gaussian radial basis of RBF
kernel is optimized in the experiments. The 𝜎 is initialized
as a small value first. Subsequently, each random experiment
for determining each value of 𝜎 is repeatedly carried out 20
times.The 𝜎 is increasingly adjusted according to the average
classification accuracy of each experiment until the optimal
value of 𝜎 is obtained. In our experiments, five published
datasets, Cylinder-Bell-Funnel (CBF), Fish, Face (four) [18],
Iris, and Wine [19], are tested.

Presently, there were already some researching work on
the classification of time series. One of the most common
benchmark datasets is CBF [20] which was used by [21–23].
CBF dataset consists of three time series, Cylinder 𝑐(𝑡), Bell
𝑏(𝑡), and Funnel 𝑓(𝑡), which are generated by the following
equations:

𝑐 (𝑡) = (6 + 𝜂)𝑋
[𝑎,𝑏]

(𝑡) + 𝜀 (𝑡) ,

𝑏 (𝑡) =

(6 + 𝜂)𝑋
[𝑎,𝑏]

(𝑡) (𝑡 − 𝑎)

(𝑏 − 𝑎)

+ 𝜀 (𝑡) ,

𝑓 (𝑡) =

(6 + 𝜂)𝑋
[𝑎,𝑏]

(𝑡) (𝑏 − 𝑎)

(𝑏 − 𝑡)

+ 𝜀 (𝑡) ,

𝑋
[𝑎,𝑏]

= {1, if 𝑎 ≤ 𝑡 ≤ 𝑏, else 0} ,

(19)

where 𝜂 and 𝜀(𝑡) are drawn from a standard normal distribu-
tion𝑁(0, 1), 𝑎 is an integer drawn uniformly from the range
[16, 32], and (𝑏 − 𝑎) is an integer drawn uniformly from the
range [32, 96]. The three typical curves, Cylinder, Bell, and
Funnel, are shown in Figures 1(a)–1(c), respectively.The curve
of classification accuracy relative to 𝜎 is shown in Figure 1(d)
and the classification accuracy rates of KNN and kernel KNN
classifiers are also shown in Figure 1(e). It can be seen from
these experimental results that the similarity of time series in
original and feature spaces, which aremeasured with the pro-
posed generalized similarity function defined by the distance
of vector or matrix norm, is equivalent regardless of whether
the time series are linearly or nonlinearly transformed. The
same conclusion is obtained from the experimental results
in Figures 2, 3, 4, and 5. Moreover, the average classification
accuracies of each experiment repeatedly tested 20 times for
five datasets are listed in Table 1, which also confirm our
conclusion.

7. Conclusion

Based on set theory, metric space theory, operator theory,
matrix theory, and kernel method, the definition of similarity
of time series is extended andunified theoretically to establish
a generalized framework for the similarity measure of time
series. In the generalized framework, the similarity of time
series is defined as the distance of unified vector/matrix
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Figure 1: Test results of dataset CBF.
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Figure 2: Test results of dataset Face (four).
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Figure 3: Test results of dataset Fish.
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Figure 5: Test results of dataset Wine.

norm, which is suitable for both time series of univariable
and multiple variables in any linear transformed space or
nonlinear transformed space. The proposed similarity def-
inition has been proven to be equivalent in original space

and transformed space. The experimental results on some
published time series datasets confirm that the theoretical
deduction on the generality of similarity measure of time
series defined in this paper is right.
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Table 1: Discriminant accuracy comparison.

Datasets Average accurate rate
KNN Kernel KNN

CBF 0.862 0.862
Fish 0.793 0.792
Iris 0.953 0.953
Wine 0.728 0.724
Face (four) 0.893 0.893
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linear component analysis based on correntropy,” in Proceedings
of the International Joint Conference onNeural Networks (IJCNN
’06), pp. 1851–1855, Vancouver, Canada, July 2006.

[17] S. Liu and H. Jiang, “Study of the conception of the similarity
in time series,” Journal of Huazhong University of Science and
Technology, vol. 32, no. 7, pp. 75–79, 2004 (Chinese).

[18] The UCR Time Series Data Mining Archive, http://www.cs.ucr
.edu/∼eamonn/time series data/dataset.zip.

[19] UCI Machine Learning Repository, http://archive.ics.uci.edu/
ml/.

[20] N. Saito, “Local feature extraction and its application us ing
a library of bases,” in Topics in Analysis and Its Applications:
Selected Theses, pp. 265–451, 2000.

[21] S. Manganaris, Supervised classiffication with temporal data
[Ph.D. thesis], Computer Science Department, School of Engi-
neering, Vanderbilt University, 1997.

[22] M. W. Kadous, “Learning comprehensible descriptions of mul-
tivariate time series,” in Proceedings of the 16th International
Machine Learning Conference, pp. 454–463,MorganKaufmann,
1999.

[23] J. J. R. Diez and C. A. Gonzalez, “Applying boosting to similarity
literals for time series classiffication,” in Proceedings of the 1st
International Workshop on Multiple Classifier Systems, pp. 210–
219, 2000.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


