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Reasonable prediction makes significant practical sense to stochastic and unstable time series analysis with small or limited
sample size. Motivated by the rolling idea in grey theory and the practical relevance of very short-term forecasting or 1-step-ahead
prediction, a novel autoregressive (AR) prediction approach with rollingmechanism is proposed. In themodeling procedure, a new
developed AR equation, which can be used to model nonstationary time series, is constructed in each prediction step. Meanwhile,
the data window, for the next step ahead forecasting, rolls on by adding the most recent derived prediction result while deleting
the first value of the former used sample data set. This rolling mechanism is an efficient technique for its advantages of improved
forecasting accuracy, applicability in the case of limited and unstable data situations, and requirement of little computational effort.
The general performance, influence of sample size, nonlinearity dynamic mechanism, and significance of the observed trends, as
well as innovation variance, are illustrated and verified with Monte Carlo simulations. The proposed methodology is then applied
to several practical data sets, including multiple building settlement sequences and two economic series.

1. Introduction

Many planning activities require prediction of the behavior
of variables, such as economic, financial, traffic, and physical
ones [1, 2]. Makridakis et al. [3] concluded that predictions
supported the strategic decisions of organizations, which in
turn sustained a practical interest in forecasting methods.
To obtain a reasonable prediction, certain laws governing
the phenomena must be discovered based on either natural
principles or real observations [4]. However, seeking avail-
able natural principles, in the real world, is extremely difficult
either in the physical system or in the generalized system.
Thus, forecasting the future system development directly
from the past and current datum becomes a feasible means
[5]. Pinson [6] further pointed out that statistical models
based on historicalmeasurements only, though taking advan-
tage of physical expertise at hand, should be preferred for
short lead time ahead forecasts. Since time series method can
be used to forecast the future based on historical observations
[3], it has been widely utilized to model forecasting systems
when there is not much information about the generation

process of the underlying variable and when other variables
provide no clear explanation about the studied variable [7].

In the literature, considerable efforts have been made
for time series prediction, and special attention should be
given to time series approaches [8, 9], regression models
[10, 11], artificial intelligence method [12], and grey theory
[13]. Time series methods mainly involve the basic models
of autoregressive (AR), moving average (MA), autoregressive
moving average (ARMA), autoregressive integrated mov-
ing average (ARIMA), and Box-Jenkins. Most analyses are
based on the assumption that the probabilistic properties
of the underlying system are time-invariant; that is, the
focused process is steady. Although this assumption is very
useful to construct simple models, it does not seem to be
the best strategy in practice. The reason is that systems
with time-varying probabilistic properties are common in
practical engineering. Although we can construct regression
model with a few data points, accurate prediction cannot
be achieved from the simplicity of linear model. Therefore,
linear methodology is sometimes inadequate for situations
where the relationships between the samples are not linear
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with time, and then artificial intelligence techniques, such as
expert system and neural network, have been developed [14].
However, abundant prediction rule and practical experience
from specific experts and large historical data banks are
requisite for precise forecasting. Meanwhile, grey theory
constructs a grey differential equation to predict with as
few as four data points by accumulated generating operation
technique. Though the grey prediction model has been
successfully applied in various fields and has demonstrated
satisfactory results, its prediction performance still could be
improved, because the grey forecasting model is constructed
of exponential function. Consequently, it may derive worse
prediction precise when more random data sets exist.

Furthermore, recent developments in Bayesian time
series analysis have been facilitated by computational meth-
ods such as Markov chain Monte Carlo. Huerta and West
[15, 16] developed a Markov chain Monte Carlo scheme
based on the characteristic root structure of AR processes.
McCoy and Stephens [17] extended this methodology by
allowing for ARMA components and adopting a frequency
domain approach. The fruitfully developed applications of
predictability methods to physiological time series are also
worth noticing. The K-nearest neighbor approach is con-
ceptually simple to pattern recognition problems, where an
unknown pattern is classified according to themajority of the
class memberships of its K-nearest neighbors in the training
set [18, 19]. Moreover, local prediction, proposed by Farmer
and Sidorowich [4], derives forecasting based on a suitable
statistic of the next values assigned L previous samples. Porta
et al. [20] further established an improved method to allow
one to construct a reliable prediction of short biological
series. The method is especially suitable when applied to
signals that are stationary only during short periods (around
300 samples) or to historical series the length of which cannot
be enlarged.

We place ourselves in a parametric probabilistic forecast-
ing framework under small sample size, for which simple
linear models are recommended, such as AR model and grey
prediction model, because these simple linear models are
frequently found to produce smaller prediction errors than
techniques with complicated model forms due to their par-
simonious form [21]. However, two issues should be noticed.
On one hand, linear approaches may output unsatisfactory
forecasting accuracy when the focused system illustrates a
nonlinear trend. This new arising problem indicates that
model structure is instable. According to Clements and
Hendry [22], this structural instability has become a key issue,
which dominates the forecasting performance. Mass work
on model structural change has been conducted [23, 24]. To
settle this problem, similar with the basic idea of K-nearest
neighbor and local prediction approaches, many scholars
have recommended using only recent data to increase future
forecasting accuracy if chaotic data exist. Based on this point
of view, grey model GM(1,1) rolling model, called rolling
check, was proposed by Wen [25]. In this approach, the
GM(1,1) model is always built on the latest measurements.
That is, on the basis of 𝑥

(0)
(𝑘),𝑥(0)(𝑘 + 1),𝑥(0)(𝑘 + 2), and

𝑥
(0)

(𝑘 + 3), the next data point 𝑥
(0)

(𝑘 + 4) can be forecasted.

Thefirst datum is always shifted to the second in the following
prediction step; that is, 𝑥(0)(𝑘 + 1), 𝑥(0)(𝑘 + 2), 𝑥(0)(𝑘 + 3), and
𝑥
(0)

(𝑘 + 4) are used to predict 𝑥(0)(𝑘 + 5). The same technique
called grey prediction with rolling mechanism (GPRM) is
established for industrial electricity consumption forecasted
by Akay and Atak [26]. However, this rolling grey model
can only be utilized in one-step prediction. That is, the one-
step-ahead value is always obtained by the observed data.
On the other hand, an AR model can only be established
for time series that satisfies the stationarity condition; that is,
a stationary solution to the corresponding AR characteristic
equation exists if and only if all roots exceed unity in absolute
value (modulus) [27]. Consequently, AR models cannot be
established for modeling nonstationary time series.

In addition, we should also notice that very short-
term forecasting or 1-step-ahead prediction is of significant
importance in various applications. This is clear in economy.
Now we take wind power forecasting and heart period given
systolic arterial pressure variations prediction as two further
examples to elucidate the practical relevance of very short-
term forecasting or 1-step-ahead prediction in different fields
of science. Since transmission system operators require to
operate reserves optimally for the continuous balance of
the power system, very short-term predictions of the power
fluctuations at typical time steps of 1, 10, and 30min are
recognized as a current challenge [28]. More specifically for
the case of Denmark, 10-min lead time has been defined as
most important, because power fluctuations at this timescale
are those that most seriously affect the balance in the power
system [29]. The characterization of the relation between
spontaneous heart period (HP) and systolic arterial pressure
(SAP) variabilities provides important information about
one of the short-term neural reflexes essentially contributing
to cardiovascular homeostasis, namely, baroreflex [30]. The
difficulty in predicting HP given SAP variations depends
on the forecasting time: the longer the forecasting time
is, the more unreliable the prediction of HP given SAP
changes is and the larger the information carried byHP given
SAP modifications is [31]. More specifically, 1-step-ahead
predictive information of heart period series given systolic
arterial pressure dynamics better correlates with the activity
of autonomic nervous system in cardiovascular physiology.

Motivated by the GPRM approach and the practical
relevance of very short-term forecasting or 1-step-ahead
prediction elucidated above, the first objective of this study
is to construct a novel prediction model with the rolling
mechanism to improve the forecasting precision. Therefore,
the sample data set and model parameters are evolved in
each prediction step. The second objective of this study is to
develop an autoregressive model that can be used to model
nonstationary time series. Consequently, this autoregression
is different from the AR model in the time series analysis
literature. We also call it autoregression, because the current
value of the series is also a linear combination of several most
recent past values of itself plus an “innovation” term that
incorporates everything new in the series that is not explained
by the past values, but it can be used to model nonstationary
time series.
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The remainder of the paper is organized as follows. We
start from short introduction of AR method in Section 2.
Section 3 involves the basic idea of ARPRM,model establish-
ment, and parameter estimation. The best unbiased property
of prediction is also discussed. In Section 4, simulation
studies, including general verification, performance impact
of sample size, system nonlinearity dynamic mechanism,
and variance, are conducted to assess the validity of the
approach, whilst Section 5 contains applications to real data
sets, including building settlement sequences and economic
series. In Section 6, we close this paper with a discussion and
conclusion.

2. AR Model Introduction

Let 𝑥1, 𝑥2, . . . , 𝑥𝑛 denote a time series with sample size 𝑛.
Autoregressive models, in the literature, are created with the
idea that the present value of the series 𝑥𝑡 can be explained
as a function of 𝑝 past values 𝑥𝑡−1, 𝑥𝑡−2, . . . , 𝑥𝑡−𝑝, where 𝑝

determines the number of steps into the past needed to
forecast the current value. The AR(𝑝) model can be given as
[8]

Φ (𝐿) 𝑥𝑡 = 𝜑0 + 𝜀𝑡 𝜀𝑡 ∼ NID [0, 𝜎
2

𝜀 ] , (1)

whereΦ(𝐿) = 1−𝜑1𝐿−⋅ ⋅ ⋅−𝜑𝑝𝐿
𝑝 specifies the lag-polynomial

with model order 𝑝 and 𝜑0 is a constant relating to series
mean. It is well known in the literature that a stationarity con-
dition has to be satisfied for the AR(𝑝) process; that is, subject
to the restriction that 𝜀𝑡 is independent of 𝑥𝑡−1, 𝑥𝑡−2, . . . and
that𝜎2𝜀 > 0, a stationary solution to (1) exists if and only if the
root of the AR characteristic equation exceeds 1 in absolute
value (modulus).

According to least-squares method, model parameters
can be calculated by

𝜑0 = 𝑥0 −

𝑝

∑

𝑖=1

𝜑𝑖𝑥𝑖,

(𝜑1, 𝜑2, . . . , 𝜑𝑝)
T

= (L𝜂𝜂)
−1

𝑝×𝑝
(L𝜂)𝑝×1,

(2)

where mean 𝑥𝑖, 𝑖 = 0, 1, . . . , 𝑝 can be obtain by

𝑥𝑖 =
1

𝑛 − 𝑝

𝑛

∑

𝑡=1+𝑝

𝑥𝑡−𝑝 𝑖 = 0, 1, . . . , 𝑝 (3)

and L𝜂𝜂 = (𝑆𝑖𝑗)𝑝×𝑝
is a 𝑝-order matrix, and L𝜂 =

(𝑆1, 𝑆2, . . . , 𝑆𝑝)
T is a 𝑝-order column vector, whose elements

can be determined through

𝑆𝑖𝑗 =

𝑛

∑

𝑡=𝑝+1

(𝑥𝑡−𝑖 − 𝑥𝑖) (𝑥𝑡−𝑗 − 𝑥𝑗) 𝑖, 𝑗 = 1, 2, . . . , 𝑝,

𝑆𝑖 =

𝑛

∑

𝑡=𝑝+1

(𝑥𝑡 − 𝑥0) (𝑥𝑡−𝑖 − 𝑥𝑖) 𝑖 = 1, 2, . . . , 𝑝.

(4)

Based on the estimated coefficients 𝜑0, 𝜑1, 𝜑2, . . . , 𝜑𝑝, the
AR(𝑝) prediction equation can be determined as

𝑥𝑛+𝑙|𝑛 = 𝜑0 +

𝑝

∑

𝑖=1

𝜑𝑖𝑥𝑛+𝑙−𝑖|𝑛, (5)

where 𝑥𝑛+𝑙|𝑛 denotes the 𝑙-step-ahead prediction at time 𝑛+ 𝑙.

3. ARPRM Model Construction

3.1. Basic Idea of ARPRM Method. Based on initial obser-
vational sample 𝑥1, 𝑥2, . . . , 𝑥𝑛, the 1-step-ahead ARPRM(𝑝1)

model can be established as

𝑥𝑡 = 𝜂10 +

𝑝
1

∑

𝑖=1

𝜂1𝑖𝑥𝑡−𝑖 + 𝜀1𝑡, (6)

where 𝑝1 is the 1-step-ahead ARPRMmodel order that can be
determined by Akaike Information criterion rule [32], {𝜀1𝑡}
is white noise series of 1-step-ahead ARPRM model, and 𝜂1 𝑖

(𝑖 = 0, 1, . . . , 𝑝1) are autoregressive coefficients of the 1-step-
ahead ARPRM equation. Then the 1-step-ahead prediction
result can be calculated by

𝑥𝑛+𝑙|𝑛 = 𝜂10 +

𝑝
1

∑

𝑖=1

𝜂1𝑖𝑥𝑛+1−𝑖. (7)

Then for the 2-step-ahead forecasting, according to
the basic idea described in Section 3.1, a new sample
𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑥𝑛+1|𝑛 is first constructed, and the 2-step-ahead
ARPRM(𝑝2) model can be found as

𝑥𝑡 = 𝜂20 + 𝜂21𝑥𝑛+1|𝑛 +

𝑝
2

∑

𝑖=2

𝜂2𝑖𝑥𝑡−𝑖 + 𝜀2𝑡, (8)

where 𝑝2, {𝜀2𝑡}, and 𝜂2𝑖 (𝑖 = 0, 1, . . . , 𝑝2) are model order,
white noise series, and the autoregressive coefficients of the
2-step-ahead ARPRM equation, respectively.

Analogically, considering the 𝑙-step-ahead prediction,
one can first form a new sample with general notations
𝑥
∗
𝑙 , 𝑥
∗
𝑙+1, . . . , 𝑥

∗
𝑛+𝑙−1 according to the rolling mechanism men-

tioned above, where

𝑥
∗

𝑘 = {

𝑥𝑘 𝑘 ≤ 𝑛

𝑥𝑘|𝑛 𝑘 > 𝑛.

(9)

It can be seen that 𝑥∗𝑘 is an original observation data if 𝑘 ≤

𝑛, while it will be a prediction result of a previous step when
𝑘 > 𝑛. Accordingly, for the 1st-step-ahead prediction (i.e.,
𝑙 = 1), the sample will be 𝑥

∗
1 , 𝑥
∗
2 , . . . , 𝑥

∗
𝑛 , that is 𝑥1, 𝑥2, . . . , 𝑥𝑛

based on (9). For the 2nd-step-ahead prediction (i.e., 𝑙 = 2),
the samplewill be𝑥

∗
2 , 𝑥
∗
3 , . . . , 𝑥

∗
𝑛+1, that is𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑥𝑛+1|𝑛

based on (9). This is consistent with the samples described
above. Then based on this new sample 𝑥

∗
𝑙 , 𝑥
∗
𝑙+1, . . . , 𝑥

∗
𝑛+𝑙−1

ARPRM (𝑝𝑙) equation can be established as

𝑥𝑡 = 𝜂𝑙0 +

𝑝
𝑙

∑

𝑖=1

𝜂𝑙𝑖𝑥
∗

𝑡−𝑖 + 𝜀𝑙𝑡, (10)
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where 𝑝𝑙, {𝜀𝑙𝑡}, and 𝜂𝑙𝑖 (𝑖 = 0, 1, . . . , 𝑝𝑙) are model order,
white noise series, and autoregressive coefficients of the 𝑙-
step-ahead ARPRMmodel, respectively. Accordingly, we can
obtain the 𝑙-step-ahead prediction result by

𝑥𝑛+𝑙|𝑛 = 𝜂𝑙0 +

𝑝
𝑙

∑

𝑖=1

𝜂𝑙𝑖𝑥
∗

𝑛+𝑙−𝑖. (11)

From the above description, we can see that a new
autoregressive prediction model, with its own model order
and autoregressive parameters, is constructed in each step.
We should note that the existing AR model in time series
analysis literature can only model the series that satisfies
the stationarity requirement. In this study, however, we only
adopt the basic idea of autoregression in each prediction step.
This autoregressive model in each forecasting step, can be
used to model series that does not satisfy the stationarity
condition. It regresses to the traditional AR model when the
focused time series is a stationary one.

While aforementioned procedure is considered to add
one forecasting result and delete one sample value in each
prediction step, the adding and deleting number can be
unequal; that is, one can add one and delete more sample
values at each prediction step without departing from the
spirit of the proposedmethod. Facts indicate that redefinition
for each step can modify the ARPRM model coefficients
in each prediction step according to the metabolic sample,
and the prediction accuracy can consequently be effectively
improved.

3.2. Parameter Estimation. First, model order 𝑝𝑙 for the 𝑙-
step-ahead ARPRM (𝑝𝑙) (11) can be determined by Akaike
information criterion rule [32]. When 𝑝𝑙 increases from one,
the calculated result should enable the flowing formula

AIC (𝑝𝑙) = ln 𝜎̂
2

𝑙𝜀 +
2𝑝𝑙

𝑛 + 𝑙 − 1

(12)

to achieve its minimum.
Then, according to least-squares method, the autoregres-

sive coefficient 𝜂𝑙0 can be calculated by

𝜂𝑙0 = 𝑥𝑙0 −

𝑝
𝑙

∑

𝑖=1

𝜂𝑙𝑖𝑥𝑙𝑖, (13)

where mean 𝑥𝑙𝑖 (𝑖 = 0, 1, . . . , 𝑝𝑙) can be obtain by

𝑥𝑙𝑖 =
1

𝑛 − 𝑝𝑙

𝑛+𝑙−1

∑

𝑡=𝑙+𝑝
𝑙

𝑥
∗

𝑡−𝑖 𝑖 = 0, 1, . . . , 𝑝𝑙, (14)

where 𝑥
∗
𝑡 is derived by (9).The autoregressive coefficients 𝜂𝑙𝑖,

𝑖 = 1, . . . , 𝑝𝑙, can be derived by

(𝜂𝑙1, 𝜂𝑙2, . . . , 𝜂𝑙𝑝
𝑙

)

T
= (L𝑙𝜂𝜂)

−1

𝑝
𝑙
×𝑝
𝑙

(L𝑙𝜂)𝑝
𝑙
×1

, (15)

where (L𝑙𝜂𝜂)𝑝
𝑙
×𝑝
𝑙

= (𝑆𝑙𝑖𝑗)𝑝
𝑙
×𝑝
𝑙

is a 𝑝𝑙-order matrix and (L𝑙𝜂)𝑝
𝑙
×1

= (𝑆𝑙1, 𝑆𝑙2, . . . , 𝑆𝑙𝑝
𝑙

)
T is a 𝑝𝑙-order column vector.The elements

can be determined through

𝑆𝑙𝑖𝑗 =

𝑛+𝑙−1

∑

𝑡=𝑝
𝑙
+𝑙

(𝑥
∗

𝑡−𝑖 − 𝑥𝑙𝑖) (𝑥
∗

𝑡−𝑗 − 𝑥𝑙𝑗) 𝑖, 𝑗 = 1, 2, . . . , 𝑝𝑙,

𝑆𝑙𝑖 =

𝑛+𝑙−1

∑

𝑡=𝑝
𝑙
+𝑙

(𝑥
∗

𝑡 − 𝑥𝑙0) (𝑥
∗

𝑡−𝑖 − 𝑥𝑙𝑖) 𝑖 = 1, 2, . . . , 𝑝𝑙.

(16)

In addition, the estimator of𝜎2𝑙𝜀 = Var(𝜀𝑙𝑡) can be obtained
by

𝜎̂
2

𝑙𝜀 =
1

𝑛 + 𝑙 − 𝑝𝑙 − 1

𝑛+𝑙−1

∑

𝑡=𝑝
𝑙
+1

(𝑥
∗

𝑡 − 𝜂𝑙0 −

𝑝
𝑙

∑

𝑖=1

𝜂𝑙𝑖𝑥𝑙𝑖)

2

. (17)

Then, the 𝑙-step-ahead prediction value 𝑥𝑛+𝑙|𝑛 can be deter-
mined by

𝑥𝑛+𝑙|𝑛 = 𝜂𝑙0 +

𝑝
𝑙

∑

𝑖=1

𝜂𝑙𝑖𝑥
∗

𝑛+𝑙−𝑖|𝑛 . (18)

And its mean square error 𝜎
2
𝑛+𝑙|𝑛 can be derived by

𝜎
2

𝑛+𝑙|𝑛 = E(𝑥𝑛+𝑙 − 𝑥𝑛+𝑙|𝑛)
2
=

𝑙

∑

𝑖=1

𝛼
2

𝑙𝑖𝜎
2

(𝑙+1−𝑖)𝜀,
(19)

where 𝜂𝑙𝑖 = 0 when 𝑖 > 𝑝𝑙 and

𝛼𝑘1 = 1 𝑘 = 1, 2, . . . , 𝑙,

𝛼𝑘𝑖 =

𝑖−1

∑

𝑗=1

𝜂𝑘𝑗𝛼(𝑘−𝑗) (𝑖−𝑗) 𝑘 = 2, 3, . . . , 𝑙; 𝑖 = 2, 3, . . . , 𝑘.

(20)

3.3. Best Unbiased Nature. The prediction result obtained by
the proposed ARPRMmethod shows best unbiased property,
which can be deduced from the least-square error forecasting
method.

4. Simulation Study

ARPRM is a general approach for stochastic and unstable
time series forecasting. In this section,we focus on the robust-
ness of its performance.The general simulation study is firstly
conducted to verify the general reasonableness of theARPRM
prediction method with 4 different models. ARPRM perfor-
mance while varying sample size and innovation variance is
also checked, because these two aspects are both of significant
importance for small sample prediction problem.Meanwhile,
statistical analysis has been performed to demonstrate the
significance of the observed trends. Results show that the
trends do affect the performance of the proposed method,
andwe further found that the trend nonlinearity plays amuch
more important role in forecasting performance than trend
significance. Consequently, we illustrate the nonlinearity
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Table 1: Model specifications by experiments for general verifica-
tion.

Experiment Model specifications
1 𝑥𝑡 = 0.3𝑒

𝑡
+ 0.2𝑥𝑡−1 + 𝜀𝑡 𝜀𝑡 ∼ NID[0, 1]

2 𝑥𝑡 = 𝑡
2
+ 2𝑥𝑡−1 + 𝜀𝑡 𝜀𝑡 ∼ NID[0, 1]

3 𝑥𝑡 = 10 ln 𝑡 + 1.5𝑥𝑡−1 + 𝜀𝑡 𝜀𝑡 ∼ NID[0, 1]

4 𝑥𝑡 = 𝑡𝑒
0.6𝑡

+ 0.3𝑥𝑡−1 + 𝜀𝑡 𝜀𝑡 ∼ NID[0, 1]

dynamics monitoring in this simulation study. In addition,
as ARPRMmodel has to be constructed independently based
on the metabolism sample in each prediction step, it can be
concluded that this is a nonlinear forecasting with a stepwise
linear form. Accordingly, we also conduct a simulation study
to monitor the effect of this rolling mechanism, which can
also illustrate the ability of the model to follow nonlinear
dynamics.

4.1. General Verification. The proposed ARPRM approach is
quite general. We consider and study four simulation models
to verify the general reasonableness of theARPRMprediction
method. The models assumed in each of the experiments
are summarized in Table 1. We also considered an AR(𝑝)
specification with 𝑝 > 1 to study the forecasting effect of
the established model, and the results were very similar to
those reported in this paper. Since we focus on the rationality
and validity of ARPRM approach in small sample forecasting
problems,we consider conducting 𝑙 = 5 step ahead prediction
based on a observational data set with sample size 𝑛 = 10.

Simulation results are analyzed by the index of percent
relative error err = |𝑥𝑡 − 𝑥𝑡| × 100/𝑥𝑡, which is presented
in Table 2. The results are based on 50000 Monte Carlo
simulations with innovations drawn from an IID Gaussian
distribution. We consider the mean percent relative error
result of each forecasting step. It can be concluded, from
Table 2, that the percent relative error is upward as forecasting
step 𝑙 increasing from 1 to 5. It can be seen that the 1-step-
ahead prediction is so accurate that the minimum percent
relative error is 0.041%. The maximum percent relative
error for the 5-step-ahead forecasting is 7.90%, which is
still considered to be good and shows a promise for future
applications.

4.2. Sample Size and Nonlinearity Dynamics Monitoring.
Simulation studies show that the sample size and class of
nonlinear mechanism generating dynamics both play an
important role in its prediction performance, especially
in small sample problems. Consequently, the sample size
checking and class of nonlinearity dynamics monitoring are
both included in this section. Two simulation models with
intuitive different nonlinear mechanism, listed in Table 3, are
considered. To make the illustration more distinct, scale of
the generated data set is controlled. The reason is that the
same absolute prediction error will lead to a larger relative
error for data of lower order of magnitude. Let 𝑓(𝑡) = 𝑒

0.3𝑡 be
a deterministic function (dynamics generation mechanism
of Experiment 1 in Table 3 without white noise); then it is

obvious that a linear relationship exists between current value
𝑓(𝑡) and the most recent past value 𝑓(𝑡 − 1); that is, 𝑓(𝑡) =

𝑒
0.3

𝑓(𝑡 − 1). Considering Experiment 2, listed in Table 3, the
data generating process ismuch complicated. AnAR(1) series
𝑦𝑡 (satisfying the stationarity condition) is firstly generated;
then an accumulated sequence 𝑑𝑡 = 𝑑𝑡−1 + 𝑦𝑡 is derived by
the accumulated generating operation process; finally data
set 𝑥𝑡 can be obtained by adding a trend √(𝑒

0.8𝑡
− 𝑒
−0.3𝑡

)/2 to
𝑑𝑡. Accordingly, it can be seen that the nonlinearity aptitude
of Experiment 2 is much higher than that of Experiment 1.
The nonlinearity dynamics can be monitored through the
prediction performance of these two models.

Furthermore, the impact of sample size is also checked.
For comparing, three samples of𝑥𝑡, (1) 𝑡 = 1, 2, . . . , 10, (2) 𝑡 =

2, 3, . . . , 10, and (3) 𝑡 = 3, 4, . . . , 10, are considered to conduct
the same 𝑙 = 5 step ahead prediction from 𝑡 = 11 to 𝑡 = 15.
Index of percent relative error err = |𝑥𝑡 − 𝑥𝑡| × 100/𝑥𝑡, 𝑡 =

11, 12, . . . , 15, listed in Table 4, is also analyzed for clarifying
the changes of the statistical properties while varying the
sample size. The results are also based on 50000Monte Carlo
simulations with innovations drawn from an IID Gaussian
distribution.

From the comparative results summarized in Table 4, the
following can be seen. (1)Thepercent relative error is upward
as forecasting step 𝑙 increasing from 1 to 5 for one experiment
model under the same sample size. (2) For either Experiment
1 or Experiment 2, forecasting performance decreases when
sample size becomes smaller. The change is distinct, because
this is a small sample problem where 10 or less data is used
to conduct 5-step-ahead predictions. (3) Comparing percent
relative error derived from the two classes of nonlinear
mechanism generating dynamics, precision of Experiment
2 is significantly lower than that of Experiment 1. These
conclusions are consistent with our general understanding
and deduction.

4.3. Variance Check. In order to check whether the per-
formance of the method depends on the variance of the
innovation, model of Experiment 1, listed in Table 3 with four
different innovation variances, (1) 𝜀𝑡 ∼ NID[0, 0.25], (2) 𝜀𝑡 ∼

NID[0, 2], (3) 𝜀𝑡 ∼ NID[0, 5], and (4) 𝜀𝑡 ∼ NID[0, 10], is
considered for verification and the same 𝑙 = 3 step ahead
prediction from 𝑡 = 11 to 𝑡 = 13 is conducted with the same
sample size 𝑥1, 𝑥2, . . . , 𝑥10 for comparison. Percent relative
error err = |𝑥𝑡 − 𝑥𝑡| × 100/𝑥𝑡, 𝑡 = 11, 12, 13, under the
four variances, is illustrated in Table 5. Likewise, the results
are also based on 50000 Monte Carlo simulations with inno-
vations drawn from an IID Gaussian distribution. Table 5
shows that performance of the ARPRM method decreases
with the increasing of variance of the innovation. This is also
consistent with our general understanding.The reason is that
larger variance means greater uncertainty, which will lead
to lower forecasting performance. There is an issue worth
noticing. Expectation of generated sample 𝑥1, 𝑥2, . . . , 𝑥13 is
not so large, where 𝐸(𝑥1) = 1.35, 𝐸(𝑥2) = 1.82, 𝐸(𝑥3) = 2.46,
𝐸(𝑥4) = 3.32, 𝐸(𝑥5) = 4.48, 𝐸(𝑥6) = 6.05, 𝐸(𝑥7) = 8.17,
𝐸(𝑥8) = 11.0, 𝐸(𝑥9) = 14.9, 𝐸(𝑥10) = 20.1, 𝐸(𝑥11) = 27.1,
𝐸(𝑥12) = 36.6, and 𝐸(𝑥13) = 49.4. It can be seen that
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Table 2: Results of ARPRM forecasting percent relative error for general verification (%).

Percent error Experiments 1 Experiments 2 Experiments 3 Experiments 4
Step 𝑙 = 1 0.041 0.065 0.230 0.220
Step 𝑙 = 2 0.077 0.176 0.510 0.670
Step 𝑙 = 3 0.119 0.375 0.970 1.510
Step 𝑙 = 4 0.177 0.986 1.750 2.970
Step 𝑙 = 5 0.348 6.743 4.410 7.900
Note: Experiments 1–4 are defined in Table 1.

Table 3: Model specifications by experiments for sample size and
nonlinearity dynamics monitoring.

Experiment Model specifications
1 𝑥𝑡 = 𝑒

0.3𝑡
+ 𝜀𝑡 𝜀𝑡 ∼ NID[0, 1]

2
𝑦𝑡 = 0.8𝑦𝑡−1 + 𝜀𝑡 𝜀𝑡 ∼ NID[0, 1]

𝑑𝑡 = 𝑑𝑡−1 + 𝑦𝑡 𝑥𝑡 =
√

𝑒
0.8𝑡

− 𝑒
−0.3𝑡

2

+ 𝑑𝑡

Table 4: Results of ARPRM forecasting percent relative error for
sample size and nonlinearity dynamics monitoring (%).

Percent error
Experiment 1
sample Size

Experiment 2
sample Size

𝑛 = 10 𝑛 = 9 𝑛 = 8 𝑛 = 10 𝑛 = 9 𝑛 = 8

Step 𝑙 = 1 3.13 3.85 3.93 4.23 4.59 5.39
Step 𝑙 = 2 4.40 5.83 7.44 9.73 11.3 13.5
Step 𝑙 = 3 6.60 9.26 11.6 16.5 21.2 25.5
Step 𝑙 = 4 8.80 12.0 16.8 24.4 34.2 41.9
Step 𝑙 = 5 11.0 15.8 22.9 33.6 52.1 66.2

Table 5: Comparative results of ARPRM forecasting percent relative
error for different variance (×10

−5%).

Percent
error

Variance of the innovation 𝜀𝑡 ∼ NID[0, 𝜎
2
]

0.25 2 5 10
Step 𝑙 = 1 1.64 4.65 7.43 10.8
Step 𝑙 = 2 2.53 7.08 11.3 16.2
Step 𝑙 = 3 3.70 10.3 16.4 23.2

the innovation 𝜀𝑡 ∼ NID[0, 1] does make a considerably
great randomness for the first few sample values, and bigger
innovation variances like 2, 5, 10 lead to lower performance
because of the significant uncertainty of the sample data
𝑥1, 𝑥2, . . . , 𝑥10. The objective of adopting Experiment 1 as the
simulationmodel is to illustrate the variance impact in amore
intuitive and obviousway.Difference between err indexeswill
not be that distinct when scale of sample data is enlarged; for
example, model 𝑥𝑡 = 𝑒

0.5𝑡
+ 𝜀𝑡 is used to generate data set.

5. Empirical Applications

In this section, we focus on the practical performance of the
proposed ARPRM approach. Our experiments are presented
for building settlement prediction illustrated in Section 5.1

and economic forecasting containing two different data sets
shown in Section 5.2.

5.1. Building Settlement Prediction. The prediction of future
building settlement, especially for high-rising building, is a
hot topic in Structural HealthMonitoring. However, it is very
difficult to develop goodmathematical models and thus yield
accurate predictions for building settlement, which is caused
by the problems of small sample size (settlement observations
are relatively few), nonstationary (the statistical properties of
the measurement change over time), and nonlinearity (it is
difficult to use mathematical prediction models with linear
structure) [33].

The application illustrated in this section is the future set-
tlement forecasting forChangchun branch’s business building
of China Everbright Bank. The building has a steel structure
form, with 28 floors above ground, and a base area of 2176
square meters. There are ten observation points marked
𝐾1,𝐾2, . . . , 𝐾10. Observation settlement series 𝑥

(𝑘)
𝑡 (𝑘 =

1, 2, . . . , 10, 𝑡 = 1, 2, . . . , 18), corresponding to each obser-
vation point 𝐾1,𝐾2, . . . , 𝐾10, was got [34]. See Figure 1 for
the data sets. It can be seen that the problems of small sample
size, nonlinear, and nonstationary all exist.

The last 3 settlement values are predicted based on the
former 15 data. The GM(1,1) model, GM(1,1) rolling model,
and AR model with linear interpolation [34] are adopted
as reference methods for comparisons. Before AR model
construction, the sample size of each data set is increased
from 18 to 35 through linear interpolation; that is, a new
data (𝑥

(𝑘)

𝑖
+ 𝑥
(𝑘)

𝑖+1
)/2 is inserted between 𝑥

(𝑘)

𝑖
and 𝑥

(𝑘)

𝑖+1
, 𝑖 =

1, 2, . . . , 17, 𝑘 = 1, 2, . . . , 10. And this is so called AR model
with linear interpolation.

To demonstrate the effectiveness and reasonability, the
prediction results are analyzed by the index of average relative
percentage error ARPE = (1/10)∑

10

𝑘=1 |𝑥
(𝑘)
𝑡 − 𝑥

(𝑘)
𝑡 | × 100/𝑥

(𝑘)
𝑡 ,

𝑡 = 16, 17, 18, where 𝑥
(𝑘)
𝑡 is the prediction result correspond-

ing to observation point 𝑘 = 1, 2, . . . , 10. The comparative
results are listed in Table 6, which show that the most precise
forecast is given by ARPRM, the following one is obtained
by AR model with linear interpolation, and a considerably
unreasonable accuracy is got by the GM(1,1) model and
GM(1,1) rollingmodel. One problemworth noticing is that, in
theARmodel with linear interpolation processing procedure,
the former 32 values of the interpolation series are utilized
to conduct a 5-step-ahead prediction. And the forecasting
result of the last 3 settlement values at 𝑡 = 16, 17, 18, which
correspond to 𝑡

∗
= 33, 35, 37 in the interpolated sequence,
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Figure 1: (a) Settlement sequence for observational point 𝐾1 to 𝐾5. (b) Settlement sequence for observational point 𝐾6 to 𝐾10.

can be derived. In can be seen that the 32nd value, obtained
interpolation 𝑥

∗(𝑘)
32 = (𝑥

(𝑘)
15 +𝑥

(𝑘)
16 )/2, contains the information

of 𝑥
(𝑘)
16 that we want to predict. Actually, this interpolation

value 𝑥
∗(𝑘)
32 cannot be utilized in the forecasting.

5.2. Economic Forecasting. In this section, our empirical
study is also devoted to the comparison of our forecasting
procedure with GM(1,1) model, GM(1,1) rolling model, and
AR model with linear interpolation. The economic data sets
include Chinese annual power load data [35] and Chinese
annual gross domestic product (GDP) data [36] from 1987 to
2002, seen in Figures 2 and 3.

We predict the latest two data with the former 14 for
Chinese annual power load and GDP. The index of relative
percentage error RPE = |𝑥𝑡 − 𝑥𝑡| × 100/𝑥𝑡 is used to
demonstrate the accuracy. The comparative results for each
economic data set are listed in Tables 7 and 8. Table 7
shows that ARPRM derives the best prediction accuracy, and
GM(1,1) model and GM(1,1) rolling model also give good
forecast results for the Chinese annual power load forecast.
Although AR model with linear interpolation provides the
worst prediction, its accuracy is still acceptable. A similar
conclusion with Section 5.1 can be obtained for the Chinese
annual GDP prediction results.

Based on the empirical study discussed above, it can
be concluded that prediction accuracy of ARPRM and AR
model with linear interpolation method is relatively stable.
Precision of GM(1,1) model and GM(1,1) rolling model is
considerably good when data set show an exponential trend,
such asChinese annual power load.Otherwise, the prediction
accuracy of GM(1,1) model andGM(1,1) rollingmodel cannot
be satisfied when nonexponential data exist. In addition,
GM(1,1) rolling approach derives a better prediction precise
compared with GM(1,1) model, and this is the superiority of
the rolling mechanism.
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Figure 2: Chinese annual power load data.
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Table 6: ARPE of the prediction results (%).

ARPE ARPRM GM(1,1) model GM(1,1)
rolling model

AR model with
linear interpolation

𝑡 = 16 3.87 30.96 30.96 3.69
𝑡 = 17 7.46 48.75 44.80 11.66
𝑡 = 18 12.15 71.23 65.98 18.17

Table 7: ARPE of the Chinese annual power load prediction results (%).

ARPE ARPRM GM(1,1) model GM(1,1)
rolling model

AR model with
linear interpolation

𝑡 = 15 3.08 0.68 0.68 0.08
𝑡 = 16 0.14 4.17 4.42 7.37

Table 8: ARPE of the Chinese annual GDP prediction results (%).

ARPE ARPRM GM(1,1) model GM(1,1)
rolling model

AR model with
linear interpolation

𝑡 = 15 5.77 23.22 23.22 1.83
𝑡 = 16 7.61 31.53 32.50 10.18

6. Conclusions

This study presents a novel approach to settle the small sample
time series prediction problem in the presence of unstable.
One should construct an ARPRM model independently
based on the metabolism sample in every prediction step. In
other words, the model order and parameters are modified
in each new forecasting step. This modification is much
helpful to improve the prediction accuracy in small sample
circumstance. We should note that the autoregressive in this
study, which can model nonstationary sequences, is different
from the ARmethod in the literature, which has to satisfy the
stationarity requirement.

Simulation study first conducts a general verification,
thenmonitors the performance of the ARPRMmethod while
varying the sample size and nonlinearity dynamic mecha-
nism, and finally checks whether the reasonability depends
on the variance of the innovation. We also performed
statistical analysis to demonstrate the significance of the
observed trends. Results show that factors including sample
size, nonlinearity dynamicmechanism, significance of trends,
and innovation variance do impacts on the performance of
the proposed methodology. Specifically, we found that the
nonlinearity plays a muchmore important role in forecasting
performance than trend significance. For the same simulation
model, precision will be enhanced while increasing sample
size or reducing the innovation variance. Meanwhile, the
established approach will illustrate a better property for
the dynamic mechanisms that show a stronger linearity.
Comparing the results in simulation study in Section 4, it
can be seen that innovation variance (the uncertainty or
randomness) has a greater effect on the performance.

Empirical applications with building settlement predic-
tion and economic forecasting are also included. The results
show that the proposed method outperforms the Grey pre-
diction model GM(1,1) and GM(1,1) rolling model, and AR

model with linear interpolation, and also illustrate a promise
for future applications in small sample time series prediction.
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“Power fluctuations from large wind farms,” IEEE Transactions
on Power Systems, vol. 22, no. 3, pp. 958–965, 2007.

[29] V. Akhmatov, “Influence of wind direction on intense power
fluctuations in large ofshore windfamrs in the North Sea,”Wind
Engineering, vol. 31, no. 1, pp. 59–64, 2007.

[30] M. di Rienzo,G. Parati, G.Mancia, A. Pedotti, andP.Castiglioni,
“Investigating baroreflex control of circulation using signal
processing techniques,” Engineering in Medicine and Biology
Magazine, vol. 16, no. 5, pp. 86–95, 1997.

[31] A. Porta, P. Castiglioni, M. D. Rienzo et al., “Information
domain analysis of the spontaneous baroreflex during phar-
macological challenges,” Autonomic Neuroscience: Basic and
Clinical, vol. 178, pp. 67–75, 2013.

[32] H. Akaike, “A new look at the statistical model identification,”
IEEE Transactions on Automatic Control, vol. 19, pp. 716–723,
1974, System identification and time-series analysis.

[33] H. Sohn, C. R. Farrar, F. M. Hemez et al., “A review of structural
health monitoring literature: 1996–2001,” Tech. Rep. LA-13976-
MS, Los Alamos National Laboratory, Los Alamos, NM, USA,
2004.

[34] X. Lin, Application of Time Series Analysis to the Buildings
Deformation Monitor, Ji Lin Univercity, Changchun, China,
2005.

[35] China Electric Power Committee, China Electric Power Year-
book 2003, China Electric Power Publishing House, Beijing,
China, 2003.

[36] National Bureau of Statistics of China, China Statistical Year-
book 2003, China Statistics Press, Beijing, China, 2003.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


