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Wedefine a capacity reservemodel to dimension passenger car service installations according to the demographic distribution of the
area to be serviced by using hospital’s emergency roomanalogies.Usually, service facilities are designed applying empiricalmethods,
but customers arrive under uncertain conditions not included in the original estimations, and there is a gap between customer’s real
demand and the service’s capacity. Our research establishes a validmethodology and covers the absence of recent researches and the
lack of statistical techniques implementation, integrating demand uncertainty in a unique model built in stages by implementing
ARIMA forecasting, queuing theory, and Monte Carlo simulation to optimize the service capacity and occupancy, minimizing
the implicit cost of the capacity that must be reserved to service unexpected customers. Our model has proved to be a useful
tool for optimal decision making under uncertainty integrating the prediction of the cost implicit in the reserve capacity to serve
unexpected demand and defining a set of new process indicators, such us capacity, occupancy, and cost of capacity reserve never
studied before.The new indicators are intended to optimize the service operation.This set of new indicators could be implemented
in the information systems used in the passenger car services.

1. Introduction and Literature Review

Today, the passenger car industry is one of the world’s
most important industries encompassing investment groups
and manufacturers. All passenger car brands operate in a
global competitive marketplace with commercial brands that
must offer a wide range of products, including repair and
maintenance services.

Historically, passenger car services were intended to fix
product issues and carry out the scheduled maintenance
routines. However, at present time, after-sale services have
evolved, becoming an indispensable part of the business
to ensure current customer retention and new customer
conquest.The after-sales servicemarket has ballooned to four
to five times the size of the original equipment business [1].

Under the above scope, any after-sales service opportu-
nity is taken into account, not only to fix or maintain the
car but also to respond to customer demands and increase
company’s revenue. Escalating customer expectations for

rapid, flawless service support has increased the opportunity
for firms to profit from appropriately priced differentiated
service products targeted to meet the needs of particular
market segments [1].

Thus, customer demands are not exclusively related to
product issues; therefore, services are conveniently designed
to suit customer needs and exceed initial expectations to
make sure clients remain loyal to the brand and keep pur-
chasing new products. On the other hand, services are usually
planned in advance and customers are required to arrange
an appointment prior to visiting the workshop, but whenever
there is a breakdown, servicing unexpected visits introduces
a random component and its resolution will always depend
on the workshop availability.

As a consequence of the additional challenges in the
after sales we have described in the previous paragraphs that
passenger car companies embrace commercial relationships
with a focus on maximizing revenue. That revenue will be
obtained only if the direct result of the customer lifetime value
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is positive. With this in mind, passenger car brands adopt the
motto “a happy customer is a returning customer,” but there
is an important difference between the meanings of satisfac-
tion and retention [2]. Nevertheless, even when everything
has been carefully planned, an unexpected customer might
appear, and independently of how the service manages the
customer, the emergency will affect the service revenue.

A very recent research [3] has demonstrated that the
integrated nature of the after-sales quality in the passenger
car service is strongly associated with the retention rate of
the customers. In that study, the authors confirmed that when
customers perceive the poor service quality, immediately they
switch to another service centre. In this study it is also proved
that, in this highly competitive environment, it is the service
quality only by which brands can retain their customers.
This confirms there is a real gap [4] between customer’s real
demand and actual service capacity.

The above gap is also studied by other authors. Literally
citing an article published by Cohen et al. [1] in 2006,
“Customers don’t expect products to be perfect, but they
do expect manufacturers to fix things quickly when they
break down. Not surprisingly, customers are usually unhappy
with the quality of after-sales support.” According to the
same publication, “That’s mainly because after-sales support
is notoriously difficult to manage, and only companies that
provide services efficiently can make money from them.”

Essentially, passenger car breakdowns are unexpected
and do not adhere to planned schedules, like maintenance.
Only those passenger car brands that manage after-sales
service skilfully make money from it [1, 5].

1.1. Service Quality and Service Capacity. Service quality as
a generic concept is well defined by various researchers in
several ways [6–9]; technical quality, functional quality, and
reputation are identified as the most frequent components of
service quality. Usually, passenger car brandsmeasure service
quality by comparing initial customer expectations before the
service with the perception after it has been delivered.

While service quality is a popular term in the passenger
car industry, service capacity is not. Only limited research
has been published on service capacity in the passenger car
industry with respect to the extra capacity required to serve
unexpected demand. Recent service capacity studies focus
mainly on the specific situation in emerging markets, such as
China and India, but no new researches have been published
in regard to mature markets, such as Europe or USA.

Although there are no new specific publications in the
passenger car field from an operations research approach,
there are other studies fromamarketing perspective [3, 10, 11].
This means that the issue of service capacity in the passenger
car service industry has hardly been dealt with [7].

1.1.1. A Very Different Approach: Hospital’s Service Capacity.
As opposed to the situation in the passenger car industry,
hospitals often reserve capacity for patients arriving to their
hospital’s emergency room (ER) in response to demand
uncertainty. Reserving part of the hospital’s capacity ensures
enough flexibility for urgent admissions. Particularly, this is

the usual scenario for premium passenger car manufacturers
and traders, but it is not limited to them. Passenger car
brands set up processes to ensure that customers are taken
care of with the maximum convenience, which allows us to
compare workshops with hospital’s emergency room (ER).
Under this scope, workshop bays are intended as ER beds,
technicians are like themedical staff and the service reception
and foreman must act like the hospital’s emergency room
(ER) capacity planner. Thus, there is a tradeoff to be opti-
mized between service efficiency and the capability to admit
unexpected customers in the process by reserving some of the
service capacity.

The seminal references in the healthcare sector for the
present document are based on the work of Kamenetzky et al.
[12], who studied, in 1982, how to estimate necessities and
demands for prehospital care. Subsequently in 1993, Badri
and Hollingsworth [13] published a simulation model for
scheduling in the hospital’s emergency room (ER). Later, in
1996, Gerchak et al. [14] studied a reservation planning under
uncertain demand for emergency surgery. Additionally, in
1998, Bazargan et al. [15] set an initial approach to hospital’s
emergency room (ER) and hospital services utilization using
a theoretical model from historical data (kind of patient,
demography, etc.).

Other authors approached hospital’s capacity problem
from an operational research point of view. In 2004, Brails-
ford et al. [16] developed a model for emergency and on-
demand health care for large complex systems. Also in 2004,
Beraldi et al. [17] created a stochastic programming routine
with probabilistic constraints aimed to solve a location and
dimensioning problem. Then in 2006, Green et al. [18]
developed a model to manage patient service in a diagnostic
medical facility.

Unlike the passenger car industry, hospitals usually man-
age their hospital’s emergency room (ER) capacity by making
the distinction between elective and emergency (nonelective)
admissions and highlight the importance of an accurate
forecast on both [19], estimating how fixed capacity on the
nonelective admission expectations of unexpected demand
turns into effective demand.

In other words, if a hospital capacity requires a number
of available beds to assign to incoming patients, health
managers have capacity for those patients who might enter
the hospital as elective demand; that is, after a specialist
diagnoses and retains some of the whole hospital capacity for
those patients entering from the emergency room, because as
depending on the severity of their disease they might not be
rejected.

In contrast to what is described as a standard process in
the passenger car arena, hospitals usually reserve some capac-
ity in response to demand uncertainty to support the specifi-
cation for optimal capability, incorporating cost derived from
capacity reservation. By reserving some “empty” beds in the
hospital, capacity planners ensure the required capacity to
serve “emergency” admissions of patients.

Unfortunately, the literature review, in regard to health
management, confirms that seldom estimations of hospi-
tal cost structures have taken production into account by
incorporating the impact of nonelective demand on hospital
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cost structures. The same papers establish that hospitals
are in control of the output decisions, in response to such
unexpected demand [20]. In these studies the emphasis has
been on estimating (andminimizing) the cost of maintaining
reserve capacity rather than using nonelective demand as part
of a decision support system. Our research will lean on the
work referred to in this paragraph to apply the proposed
methodology to the unexpected demand in the passenger car
service industry.

1.2. Usual Tools and Models in the Passenger Car Industry and
the Service Sector. An extended tool along the passenger car
industry is an IT system called “dealer management system,”
known as dealer management system (DMS). Generically,
dealer management system (DMS) includes inventory tool
kits to manage parts availability information while arranging
appointments. Often, the same solution is applied to book
available dates in the service diary, but inventory techniques
are intended for basic control and future decisions are not
supported properly.

Inventory models, particularly “newsvendor” solutions,
built in the current dealer management systems (DMS) have
been studied intensively. Unfortunately, inventory models
have an important limitation as they are intended to obtain
a point forecast [21], a mathematical expression to help
in determining the economic order quantity [22], or the
ordering frequency, to keep goods or services flowing to the
customer without interruption [23] or delay [24]. Therefore,
inventory models only deal with part of the problem of
capacity reserve.

The second limitation of inventory models is, even when
they can incorporate uncertain demand, themain application
that is directed to quantify decisions or to estimate profit (or
loss) of unsold units, and so forth, but, whatever themodel is,
there is a common goal: to maximize the expected profit [25].
An important constraint of inventory models is, according
to the reviewed literature [26], the resource requirements
that are not fully known when a decision about the service
resource distribution is taken due to the nature of customer
behaviour. Thus, a strategy that balances service quality and
cost yields must be found [27].

A third limitation of inventory models is the dating
process that frequently does not work properly given that
customers are not always able to arrive within the appointed
time window, delaying the reception operation and creating
a bullwhip effect in upstream dates [28].Therefore, inventory
models cannot respond to the car manufacturer problem
since they do not cover potential emergencies or capacity
reserve. Additionally, in the passenger car industry, profit is
not always related to stock trade but to a customer long-term
relationship.

Yieldmanagement [29] is anothermethodology intended
to manage the capacity of service systems. An important
limitation is yieldmanagement that focuses on service pricing
instead of service constraints and system capacity. This
approach seems to be interesting for other service sectors,
such as hotels and airlines, where the service duration is well
known (i.e., one night, 3 hours flight) and service prices vary

with the demand. Therefore, yield management models are
not specifically developed to respond to the questions we aim
to answer with our suggested service model for the passenger
car industry.

In addition to the above methods, a common optimiza-
tion methodology used in the service operation consists in
running a simple forecast to estimate future demand values,
without estimating uncertainty by means of a probability
model [5]. Forecasts are then used to feed a mathematical
expression that can be derived to minimize or maximize a
variable. Nonetheless, there is no uncertainty quantification
incorporated in the above optimization method as input
demand is taken as an aggregated value, without differenti-
ating between elective and nonelective demands.

In other cases [4], previous service’s research mainly
focuses on understanding and measuring customer expec-
tations and perceptions about the quality of service being
provided. This would result in ascertaining the gap between
customers’ expectation and perception. The obvious next
stage is to identify the reasons for the gap between customer’s
expectation and service capacity and finally provide sugges-
tions for bridging this gap and a follow-up of the effectiveness
of the actions taken.

1.3. Research Purpose. In the context of demand uncertainty,
resolution of optimal capacity is very strongly dependent
on an appropriate specification of the service outputs. One
limitation of previous studies is that they have used aggregate
measures of service to define outputs [30]; a second limitation
is the reliance on annual or quarterly fluctuations in demand
to system responses to nonelective demand [31], but failing to
take account nonelective demand leads to a misspecification
of system cost output relation [32].

With the input desegregation in mind [33], just after the
beginning of a time period, when the aggregated demand
for this period is known, a decision can be made, but this
works against optimal capacity. Thus, when capacity reserve
is expensive or the rejection rate is high, any further increase
of its value will cause a decrease in optimal capacity [34].

An important property of the time series is that con-
straints on elective and nonelective demand are separated
from other constraints [35]. On the other hand, in hospital
emergency room (ER) applications it is being assumed that
all hospitals have similar patient stream structure and that
patients arrive at the hospital according to a Poisson flow
[36], but without taking into account how the stochastic
nature of demand is related to the type of case being serviced,
while in this paper wewill incorporate this relationship.Thus,
our research will implement queuing theory to study arrival
patterns at the service reception, waiting lines and servers,
waiting times, and tasks completed [37].

To summarize, this paper is about the stochastic simula-
tion of the process of service capacity reserve in the passenger
car industry. A stochastic model has been implemented
in a Monte Carlo simulation code written in Matlab and
has proved to be a very useful tool for optimal decision
making under uncertainty, involving an optimization process
to define and maximize new key process indicators (KPIs).
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The major contributions of this paper are the definition of
new key process indicators (KPIs) and the development of
valid integrated capacitymodel to respond to the needs of the
passenger car service industry.

2. Our Integrated Approach: Capacity
Reserve Model

There is a very scarce literature on applying simulation
techniques to capacity reserve in the car industry, and inven-
tory models do not include customer expectations but are
intended to define some constraints related to supply chain
specifics. Our simulation process has been developed to fill
this gap, finding the conditions for maximum average service
occupancy and average minimum capacity reserve cost; the
probability distributions are obtained from the Monte Carlo
simulations.

According to specific studies [38], in practice, service
operation algorithms are ultimately carried out by computer
simulations. Therefore, the Markov chain usually simulated
is only an approximation to the true chain. Such limitations
affect the simulation process, reducing the final results and
raising questions about the validity of the previous algorithms
used to build the model.

In this paper, we propose a new methodology which
substantiates the integration of existing strategies used in
medical installations to develop a valid model to be used
in the passenger car industry. The model will be used
to predict unexpected service demand and set a decision
support system to estimate (in accordance with the tradeoff
of above) the optimal operational costs (service efficiency
mentioned above) and optimum service capacity reserve
(servicing unexpected customers) by coupling discrete events
with simulation techniques.

Additional references [39–41] will be cited below when
describing the methodology.

2.1. Basics of the Methodology. We propose a major innova-
tion which implements changes in demand estimation for the
initial inputs, providing definition of new outputs and the
development of a stochastic simulator for the whole process.

Our methodology incorporates the risk in quantitative
analysis and decision making; thus, we are able to provide
service managers with a range of possible outcomes and the
probability for each of them. Thus, we can select different
simulated variables and compare with the logical solution of
going for the most conservative decision; this is, keeping the
service workshop layout as is, but considering the impact of
increasing service staff.

The methodology follows the 5-stage process flow as
displayed in Figure 1.

(i) 1st Stage: Service Demand Estimation. We split the
total demand (TV) in two major types, elective and
nonelective, each with its own probabilistic distribu-
tion; therefore, we can integrate the stochastic models
and sources of uncertainty of demand (elective and
nonelective) and propagate this uncertainty to the
output, thus adding value to predictions and allowing

for statistical interpretation. We do this by applying
ARIMA models to stepA in Figure 1, for both types,
and specific models are developed for each. Input
data is gathered from the dealer management system
(DMS).

(ii) 2nd Stage: Service Times Definition. Dealer’s historic
service data are gathered from the dealer man-
agement system (DMS) to estimate the probability
distribution of each service time variable (reception,
parts, and workshop). A stochastic queuing system is
thus defined and fed with the adequate probabilistic
models at stepB in Figure 1.

(iii) 3rd Stage: Service KPI Definition. We define a new set
of output key process indicators (KPIs) at step C in
Figure 1, which are functions of the random variables
defined in stages 1 and 2.

(iv) 4th Stage: Monte Carlo Simulation. We run simula-
tions to generate samples of the random variables of
stages 1 and 2 and then propagate this uncertainty
to obtain samples of the joint distribution of the
different key process indicators (KPIs). If we do this
for a number of scenarios (changing the number of
technicians and of work bays), we will obtain different
samples of the KPI joint distribution, one sample
for each scenario. From each Monte Carlo sample
we produce a report which displays a probabilistic
analysis.

(v) 5th Stage: Results Analysis and Optimization: Here we
analyse the simulation results to identify the service
operation conditions for maximum average service
occupancy and average minimum capacity reserve
cost; the different scenarios are given in terms of the
number of work bays and technicians. During the
optimization stage, our methodology incorporates
other variables, that will be defined later, which are
used to identify the optimal scenario to assess the
current system’s effectiveness and improve ability to
anticipate the impact of various changes in the service
settings, similarly to previous researches [13].Thiswill
be discussed in Section 3.

2.2. Stage 1: Service Demand Variable Definition and Mod-
elling. A common way to manage service times is to request
the customer to arrange a valid date for the next visit in
advance.We define elective demand (ED) as the total number
of prearranged visits to the service. This variable increases
service reception managing capacity and saves time and
money by arranging parts and skilled staff in advance.

As discussed in the introduction, the dating process does
not work properly if customers do not arrive in time or
change their minds, delaying the reception operation and
creating a bullwhip effect in upstream dates [28]. Some
customers dislike the dating process due to the inflexibility
and lack of same or next day availability. Elective demand
(ED) is thus a stochastic variable subject to high variability,
partially dependable on customer requests which are only
known with certainty after the arrival. We define nonelective
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Figure 1: Methodology.

demand (NED) as the total number of unexpected ser-
vices accepted in the system without a previous appoint-
ment.

As stated before, [26], resource requirements are not fully
known at the time when a decision about the service resource
distribution is taken. Therefore, in order to obtain valid
forecasts, elective demand (ED) and nonelective demand
(NED) should be the result of different randomprocesses and
can be expressed in a mathematical form as a probabilistic
concept used to describe a sequence of random variables
(stochastic process) that evolves in terms of another variable
(index), usually time. Each of the random variables of the
full service process has its own probability distribution, and
variables may be correlated or not.

Hence, we suggest using ARIMA models for elective
demand (ED) and nonelective demand (NED) forecasting. It
should be noted there is a clear difference between both vari-
ables, and that is the reason to use separated variables (ED &
NED) and feed the queuing systemwith each variable unique
probabilistic distribution.This is required to demonstrate our
methodology obtains valid results, integrating uncertainty
and adding statistical value to the simple forecasting pro-
cesses.

As discussed previously, nonelective demand (NED) has
never been studied or estimated in the passenger car industry
yet; therefore, there are no time series data to work with,
neither the cost implicit in reserving capacity to service
unexpected demand has been part of any research. This cost
is a new concept which we will define below, in stage 3, as

the capacity reserve cost to serve all nonelective demands
(CAPRNED).

In the current economic situation, customers are
demanding prompt and flexible service; thus, nonelective
demand (NED) is becoming a huge issue for all passenger
car brands. Elective demand (ED) and nonelective demand
(NED) balance has a cost related to the capacity reserve to
suit nonelective demand (NED) service needs.

If capacity reserve for nonelective demand (NED) is high,
services could lose elective demand’s (ED) service income
and profit would be lower than expected. Also, if service is
full with elective demand (ED) only, there is no capacity to
suit nonelective demand (NED) arrivals and customers will
turn away.

Else, operating at full capacity sets the optimal reserve
capacity levels compatible with economically efficient utiliza-
tion but imposes a cost, however, in the form of production
inflexibility, leading to patients being queued or turned away.
At the same time, failing to take account nonelective demand
leads to a misspecification of system cost output relation [32].

As explained in the literature review, emphasis has been
on estimating (and minimizing) the cost of maintaining
reserve capacity rather than using nonelective demand as part
of a decision support system. Our research will lean on the
work referred to in this paragraph and extend it to apply
the proposed methodology to unexpected demand at the car
industry, according to the reviewed literature [12–18, 20].

Even when dealer management systems (DMS) are not
focused on time series analysis, we can gather sufficient data
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to create time series to work with, which will include the
following information:

(i) period,
(ii) total demand (TV),
(iii) elective demand (ED),
(iv) monthly work time,
(v) monthly invested time,
(vi) monthly invoiced time,
(vii) total part sales,
(viii) cost of part sales,
(ix) vehicle sales,
(x) cumulative vehicle car park.

Now, we can estimate the following parameters with the
previous data:

(i) average invested hours per vehicle (invested time/car
park),

(ii) average invoiced hours per vehicle (invoiced time/car
park),

(iii) average sold parts per vehicle (total part sales time/car
park),

(iv) average technician employment (invested time/work
time),

(v) average technician productivity (invoiced time/work
time),

(vi) average technician efficiency (invoiced time/invested
time).

A simpler modelling could be developed by using an
aggregated ARIMAmodel for total demand (TV) time series
data only, but this would not allow us to relate the model
to unexpected visits. Thus, in order to obtain a valid time
series for nonelective demand we must gather the relevant
data from the dealer management systems (DMS).

Dealer management systems (DMS) usually register all
service visits but also manage the appointment process
effectiveness by registering elective demand separately. We
define total demand (TV) as the total number of visits in a
given time period:

TV = ∑(ED +NED) . (1)

Total demand (TV) is thus the sum of elective and non-
elective demands. Since this paper is intended to set a valid
methodology to estimate the unexpected demand reserve
costs, we need to differentiate between elective demand (ED)
and nonnlective demand (NED) rather than using a single
nondisaggregated variable, as total demand (TV) is.

Once a time series is available for total demand (TV) and
elective demand (ED), we will be able to obtain the nonelec-
tive demand (NED) time series to predict future values with
specific ARIMA models for each. This analysis will produce
a forecast with uncertainty bands and confidence intervals
that can be used to confirm if both time series forecasts are
confident simultaneously.

The sample data time series from a real service is shown in
Table 1; also data graph is displayed in Figure 2. Data will be
used to estimate valid service demand ARIMA models, for
elective demand (ED) and nonelective demand (NED), and
to feed the stochastic queuing system.

An important property of the observed samples of time
series is that constraints on elective demand (ED) and non-
elective demand (NED) are independent of other constraints
[35]. One axiom of our research is that elective demand (ED)
and nonelective demand (NED) are independent. To check
this, we must confirm from the data that elective demand
(ED) and nonelective demand (NED) are not correlated.

Thus, individualARIMAmodels and forecasts for elective
demand (ED) and nonelective demand (NED) will have the
form of a parametric expression that relates the future value
to previous ones, plus the noise. Given an ARIMA model of
consumer demand and the lead times at each stage, it has been
proven that the orders and inventories at each stage are also
ARIMA [28], and closed-form expressions for these models
are given.

2.3. Stage 2: Service Times. We now deal with the second
stage: we estimate the probability distributions required to
feed a stochastic queuing system and emulate the whole
service operation.

We build the queuing model to analyse the behaviour of
the system along time and the reaction to different stimuli
and waiting times for a queue in which customers require
simultaneous service from a variable number of servers
[41]. In previous studies, the service systems considered are
centralized and controllable and do not generate labour at a
constant rate [40].

Tasks are admitted upon generation and processed by the
system and completed labour is ejected from the system that
has the capability of dealing with as many jobs per unit time
on average as possible. Under this generic framework the
system capability is measured as the maximum rate of work
arrivals for which the system has a steady state [39].

We differ from the previous statement since we are
considering service operation as a complete unit; that is, we
include additional departments and not just service’s work-
shop. This is, we are considering Parts and Reception times,
including reception delays due to customer unavailability to
arrive, “elective” customers changing to “nonelective,” and
other delays related to parts ordering and delivery.

We propose to measure the full service system capability
(as shown in Figure 3) by running a queuing model built in
the simulation loop at a constant arrival rate of work (arrival
rate 𝜆: shown in Figure 3 and defined in Table 2). Therefore,
ourmethodology will cover a unique service cycle (as seen by
customers) with the following phases, shown in Figures 2 and
3:

(1) arrival,

(2) reception,

(3) parts,

(4) service workshop.
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Table 1: Sample data.

Period TV ED NED
1 107 91 16
2 94 91 3
3 131 119 12
4 116 113 3
5 172 172 0
6 184 182 2
7 154 148 6
8 75 75 0
9 107 97 10
10 125 107 18
11 129 108 21
12 103 91 12
13 149 135 14
14 130 130 0
15 165 147 18
16 249 248 1
17 137 137 0
18 179 179 0
19 145 145 0
20 117 117 0
21 195 179 16
22 149 131 18
23 205 169 36
24 135 122 13
25 150 121 29
26 149 115 34
27 144 140 4
28 132 127 5
29 252 243 9
30 165 159 6
31 169 144 25
32 105 94 11
33 172 142 30
34 131 109 22
35 180 144 36
36 128 115 13
37 180 141 39
38 148 127 21
39 155 127 28
40 138 124 14
41 258 222 36
42 168 152 16
43 151 135 16
44 114 99 15
45 128 97 31
46 151 140 11
47 139 111 28
48 97 85 12
49 160 136 24
50 173 149 24

Table 1: Continued.

Period TV ED NED
51 146 119 27
52 331 307 24
53 140 129 11
54 137 124 13
55 174 163 11
56 88 86 2
57 131 117 14
58 183 162 21
59 135 120 15
60 125 119 6
61 98 93 5
62 145 124 21
63 138 116 22
64 200 185 15
65 226 212 14
66 166 156 10
67 151 139 12
68 124 99 25
69 156 137 19
70 183 165 18
71 141 118 23
72 118 109 9
73 119 111 8
74 122 109 13
75 113 95 18
76 221 197 24
77 193 171 22
78 140 133 7
79 160 144 16
80 117 92 25
81 141 130 9
82 148 139 9
83 135 123 12
84 111 99 12
85 108 105 3
86 110 109 1
87 112 106 6
88 132 131 1
89 128 126 2
90 129 127 2
91 117 109 8
92 95 91 4
93 117 103 14
94 119 116 3
95 134 126 8
96 136 134 2
97 112 111 1
98 70 61 9
99 89 82 7
100 84 81 3
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The arrival rate (𝜆) is given by the elective demand (ED)
and nonelective demand (NED) forecasts.

Now the purpose of this section is to do the following.

(1) We use the dealer management system (DMS) data to
estimate the probability distributions of the following
random variables:

(a) reception time,
(b) parts time,
(c) workshop time.

(2) Subsequently, we use these distributions to feed our
queuing system and estimate the distribution of its
random variables, in terms of the reception time,
parts time, and workshop time described referred in
the previous point:

(a) customer time at the reception of the service,
(b) parts lead time,
(c) parts availability,
(d) working time per vehicle,
(e) additional specific queuing model parame-

ters (defined below in Section 2.3.1 Queuing
Methodology for Service Times).

We define the total preparation time (TSR) as the nec-
essary time in minutes to deal with the customer, find the
required parts, and take the vehicle to the technician. This
variable is notmeasured in the industry and requires physical
checks on the field and data sampling to understand its
structure. The total preparation time (TSR) is thus the result
of adding the time the customer is at the dealership and the
time to get the parts physically:

TSR = TCust + TParts, (2)

where

(i) TCust (customer waiting time) is the time to manage
customer request at the reception desk and raise a job
card;

(ii) TParts (parts lead time) is the time to get the parts
supplied before being fitted to the car in the service.

Now, knowing the car fleet for a particular region we
estimate from the dealermanagement system (DMS) data the
distribution of the service time per vehicle (TSW), which will
vary with the model, region, service skills and competency,
workshop layout, and other parameters.

2.3.1. Queuing Methodology for Service Times. As we dis-
cussed in the introduction, queuing theory allows for the
study of waiting lines and servers, including arriving patterns
at the queue, waiting times, and tasks completed [37].

We build a queuing system into theMatlab code, with the
following 6 characteristics.

(1) Arrival pattern of customers: as mentioned before, it
is a constant rate process, where the rate is a function
of the total demand (TV) and therefore will depend
on the elective demand (ED) and nonelective demand
(NED) probability distributions.

(2) Service pattern of customers: it depends on the
number of customers queuing for service and will be
a function of the distribution of the customer waiting
time (TCust).

(3) Queue discipline: in our research we set priorities in
terms of part availability. If a part is backordered, the
customer will be requested to wait.Therefore, this will
be a function of the distribution of the parts lead time
(TParts).

(4) Queuing capacity: it is limited by the number of
appointments plus the emergency visits. It depends on
the customer waiting time (TCust) and the parts lead
time (TParts).Thus, it is a function of the distribution
of the total preparation time (TSR).

(5) Number of servers: rather than considering a two-
stage server system (reception and workshop), we set
our system as a single-level server, where customers
leave their vehicles at the reception but they do not
physically wait until it is taken to the workshop.
Therefore, this characteristic will be a function of the
service time per vehicle (TSW).Maximumnumber of
servers is given by the facility layout and could vary
with time depending on the technician’s availability,
including holiday periods, sick leaves, and training
courses.Wewill simulate this variability as part of our
methodology.

(6) Number of work phases along the complete service
process: similar to hospital’s emergency room (ER)
we assume a single stage service for the whole service
process, but we simulate the time variability due to the
work complexity and different kinds of servicesThus,
it is a function of the service time per vehicle (TSW).

In Figure 4, customers (C1,C2, . . . ,Cc) arrive at the
reception area; they could be part of elective demand (ED)
or nonelective demand (NED) with their own probability
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distribution, but once at the service reception, they travel
through the network and are served at the reception nodes
(receptions 1, 2, . . . , 𝑟) through parts and to the workshop
nodes (Tech. 1, 2, . . . , 𝑡).

The first variable to be defined is the customer’s arrival
rate (𝜆), where Cc is the number of customers waiting at the

queue, where, as an open network, customers can join and
leave the system as shown in Figure 4.

Arrival rate (𝜆) and service rate (𝜇) are function random
variables: the total preparation time (TSR) and the service
time per vehicle (TSW), respectively; therefore, they are
random variables.
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Table 2: Queuing system steady-state measures of effectiveness.

Steady-state measures of effectiveness Variable Name

Nveh = TV
WDM Number of vehicles arriving to the service Nveh

Simulation variable Average number of vehicles in the Q-NTec 𝐿

Simulation variable Average number of vehicles in the Queue Lq

FTI = 1 − Wtecx
NTec
= 𝑃
0
+ (

𝑠 − 1

𝑠

) × 𝑃
1
+ ⋅ ⋅ ⋅ + (

1

𝑠

) × 𝑃
𝑆−1 Fraction of time that a technician is idle FTI

VhW = NVeh − 𝐿 Average number of vehicles that are being worked VhW

Wtec = 𝐿 − Lq = NTec −
𝑠−1

∑

𝑛=0

(𝑠 − 𝑛) ∗ 𝑃
𝑛 Average number of technicians that are working Wtec

EFCTec = VhW
NVeh Operating efficiency per vehicle EFCVeh

EFCVeh =
Wtec
NVeh Operating efficiency per technician EFCTec

𝜇 =

1

TSW × 60 Service rate [vehicles/hour] 𝜇

𝜆 =

1

TSR × 60 Arrival rate [vehicles/hour] 𝜆

𝑃
𝑛
=

NVeh!
ℎ! × (NVeh − ℎ)!

× (

𝜆

𝜇

)

ℎ

× 𝑃
0

Probability 𝑛 vehicles are in the queuing system
(Q-Ntec) Pn

𝑃
𝑛
=

1

(𝑃
0
)

−1 Probability of no calling units in the queuing system. Po

Initial Po inverse = 0, then: 𝑃
0
= (𝑃
0
)

−1
+ den 1 Po inverse Po−1

f(den 1) = NVeh!
ℎ! × (NVeh − ℎ)!

× (

𝜆

𝜇

)

ℎ

Operator f(den 1)

In queuing theory, the state of the system is given by a
vector with different variables. The complete list of variables
to be used in the stochastic queuing system (defined by the
above characteristics) is detailed in Table 2.

The queuing system allows us to estimate the average
cycle service time per vehicle (ATPV), this time is not just
calculated adding the service time per vehicle (TSW) and
the total preparation time (TSR). It is the result of a complex
forecast process to estimate the whole service time, including
timing delays due to operational inefficiencies and other
system limitations; that is, vehicle movements included in the
Service Time per Vehicle (TSW) or some Elective Demand
(ED) missing the time window appointment.

The time spent in each of the processes above is a
random variable, with its own probability distributions and
parameters.

2.4. Stage 3: Service Key Process Indicators (KPIs). This is an
essential contribution of this research and consists of the
definition of a set of new KPIs for the passenger car industry,
in terms of the inputs defined above and of additional
random variables and parameters to be defined as follows. A
comprehensive list of key process indicators (KPIs) is detailed

in Table 3, showing input variables to feed the model with
and output variables to be obtained from the Monte Carlo
simulation.

Traditionally, service management organizes and mea-
sures the technician’s time to administer the service depart-
ment’s labour availability and performance to maximize
operational net profit. Technician performance and time
control are basically monitored upon the 3 measurement
ratios below.

(i) Productivity: time the technician is physically present
at work divided by the actual working hours.

(ii) Efficiency: time spent working on a vehicle divided by
the flat rate time received.

(iii) Availability: flat rate time received divided by the time
the technician is physically present.

Without doubt, these three indicators are useful to mon-
itor technical service performance, but they do not incor-
porate delays on reception or parts backorder. Therefore, we
need to define new measures of effectiveness which take into
account inputs from service, parts, and reception and include
customer “expectations” in our model. We now focus on the
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Table 3: List of acronyms: parameters and variables-simulation inputs and outputs.

(a)

Acronym Definition Source Parameter
Lab Retail labour rate DMS data Constant
Ntec Number of available technicians Constant
WBN Total number of staffed work bays Constant
Ψ Number of work bays per technician (WBN/Ntec) Constant (from 1 to 2)

(b) Simulation Random Inputs

Acronym Definition Source Prob. distribution
ED Elective demand

DMS data

ARIMA
HPRES Working time per month (hours) 𝑁(399,65; 85,92)
InvoT Invoiced time 𝑁(373,76; 76,9)
NED Nonelective demand (NED = TV – ED) ARIMA
Nveh Number of vehicles arriving to the service per day 𝑁(6,13; 1,85)
PartsCost Cost of parts sale 𝑁(21297,95; 11963,79)
PS Parts sale 𝑁(27278,41; 13517,82)
TV Total demand ARIMA
WDM Working days per month 𝑁(21; 1)
WTD Daily working time (hours per day) 𝑁(6,51; 1,13)

(c) Simulation random outputs

Acronym Definition Source
ATPV Average cycle service time per vehicle (hours)

Queuing + simulation

CAP Service incremental capacity
CAPRNED Capacity reserve cost to serve all nonelective demands
CAPRNED1 Capacity reserve cost to serve 1 unexpected vehicle
CEW Empty work bay cost estimation
DMS Dealer management system
EFC Service system efficiency
EFCTec Operating efficiency per technician
EFCVeh Operating efficiency per vehicle
GSR Monthly gross service revenue estimation
InvoTn Invoiced time estimation
OCC Service occupancy
PartsCostn Cost of parts sale estimation
PFunit Profit per vehicle in service
PSn Parts sale estimation
Pstec Parts sale per technician
Tcust Customer waiting time
TEXP Monthly workshop total cost estimation
Tparts Parts lead time
TPF Service total gross profit estimation
TSR Total preparation time. TSR = TCust + TParts
TSW Service time per vehicle
VhW Average number of vehicles that are being worked
Wtec Average number of technicians that are working

(d) Other queuing system outputs

Acronym Definition Source
f(den 1) Mathematical operator

Queuing + simulationFTI Fraction of time that a technician is idle
𝐿 Average number of vehicles in the Q-NTec
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(d) Continued.

Acronym Definition Source
Lq Average number of vehicles in the queue
𝑃
𝑛

Probability 𝑛 vehicles are in the queuing system (Q-Ntec)
Po Probability of no calling units in the queuing system
Po−1 Po inverse
𝜆 Arrival rate [vehicles/hour]
𝜇 Service rate [vehicles/hour]

seven new key process indicators (KPIs) that we are going to
define:

(i) service incremental capacity (CAP),

(ii) service occupancy (OCC),

(iii) nonelective demand (NED),

(iv) cost of capacity reserve (RCAP),

(v) cost of empty work bay (CEW),

(vi) capacity reserve cost to serve all nonelective demand
(CAPRNED),

(vii) profit per vehicle in service (PFUNIT).

2.4.1. Service Incremental Capacity. We define the service
incremental capacity (CAP) as the system potentiality to
admit additional workload without interrupting on-going
works. In other words, the service incremental capacity
(CAP) is the capability to accommodate unexpected cus-
tomers during the normal working time.

Service incremental capacity (CAP) is calculated as a
percentage rate of the whole service process capacity that will
decrease as long as the number of vehicles through the system
increases:

CAP = WBN ×WTD
ATPV

× Ψ × EFC. (3)

Therefore, we express the service incremental capacity (CAP)
as a function of the following.

(i) WBN is the total number of staffed work bays. It is
constant and depends on the workshop layout.

(ii) WTD is the daily working time.

(iii) ATPV is the average cycle service time per vehicle.

(iv) Ψ is the number of work bays/technician, which
usually can vary from 1 to 2. It is constant and will
depend on the facility layout.

(v) EFC is the average workshop efficiency rate.

2.4.2. Service Occupancy. We define the service occupancy
(OCC) as the measurement of vehicles in-progress through
the service system. It is related to the number of vehicles
entering the system divided by the work bays and the system
capability expressed as service incremental capacity (CAP).

Service occupancy (OCC) is calculated as a percentage
rate of the whole service process workload that will grow as
long as the number of vehicles through the system increases.

OCC = TV
CAP ×WDM

. (4)

OCC is the service occupancy expressed above as a function
of the following.

(i) Total demand (TV) is the total visit number in a given
time period.

(ii) WDM is the total working days in a given month.

Now, if we write nonelective demand (NED) as a function of
(1) and (4), then

NED = (OCC × CAP ×WDM) − ED. (5)

2.4.3. Cost of Capacity Reserve. We define cost of capacity
reserve (RCAP) as the opportunity cost in C to reserve service
capacity in the form of empty work bay. It is expressed as the
following equation:

RCAP = TPF
TV
+

TEXP
TV
, (6)

where

(i) TPF is the monthly workshop gross profit,
(ii) TEXP is the monthly workshop total cost.

The first component of the above expression is the profit per
unit (PFUNIT):

PFUNIT =
TPF
TV
. (7)

By replacing (7) with (6), we define the capacity reserve cost
for a single nonelective demand (CAPRNED

1
):

CAPRNED = PFUNIT +
TEXP
NED
. (8)

Also, by replacing (5) with (8),

CAPRNED
1
= PFUNIT +

TEXP
(OCC × CAP ×WDM) − ED

.

(9)
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Therefore, the capacity reserve cost to serve all nonelective
demand (CAPRNED) will be

CAPRNED = NED × CAPRNED
1
. (10)

And then replacing (8) with (10),

CAPRNED = (NED × PFUNIT) + TEXP. (11)

Given that service incremental capacity (CAP), service occu-
pancy (OCC), nonelective demand (NED), and capacity
reserve cost to serve all nonelective demand (CAPRNED)
are function of the random variables detailed in Table 3, they
are also random variables whose joint distribution will be
estimated through Monte Carlo simulation.

2.5. Stage 4: Monte Carlo Simulation. The purpose of this
section is to obtain Monte Carlo samples of the distributions
of the key process indicators (KPIs) defined above.

As covered in the literature review, the queuing system, or
Markov chain, actually simulated is only an approximation
of the true chain. Such results with finite precision and
range are introduced and pose further questions about
the validity of these algorithms [38]. Thus, we apply the
Monte Carlo methodology to generate samples of the input
variables defined in Section 2 and propagate their uncertainty
obtaining samples of the distributions of the key process
indicators (KPIs).

This stage has been implemented in a Matlab code which
runs a complete set of calculations to simulate capacity
reserve with a queuing model to obtain samples of the same
size for each KPI.

We repeat the simulations for a number of scenarios
(changing number of technicians and of work-bays). The
Matlab code will run two loops taking different values of both
variables (number of technicians and of number of work-
bays). The value of each variable will be increased 1 by 1 each

loop to obtain different samples of the joint distribution of the
key process indicators (KPIs). The sequence is as follows:

number of technicians → number of work bays →
queuing system loop.

For each KPI, the simulation will then store the results
in a tridimensional matrix: the first index varies with the
sample (i.e., from 1 to 1000), the second with the number of
technicians, and the third with the number of work bays.

3. Statistical Analysis of Key Process Indicators
and Optimization

The purpose of this section is twofold:

(a) statistical analysis of the Monte Carlo samples of the
joint distributions of our new key process indicators
(KPIs);

(b) set the optimization criteria to define the optimum
scenario in terms of recommended number of tech-
nicians and number of work bays.

After running the simulation we can estimate the joint
and marginal distributions of the key process indicators
(KPIs) and identify if there are additional relationships
among them. A further statistical analysis is discussed in
Section 4.

After the previous stages have been fully completed,
our Matlab code identifies the service optimal scenario as
a tradeoff between the dealer’s total demand (TV) and
the capacity reserve cost to serve all nonelective demands
(CAPRNED).
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Table 4: Simulation-decision support system final report.

(a)

Description Constant
Working days per month WDM 21
Nonelective demand NED1 12
Work bays per technician WBtec2 1,25

(b)

Description Variable Average Standard deviation
Customer waiting time (min) TCust 37,61 12,966
Pats lead time (min) TParts 3586,87 2080,052
Total preparation time (min) TSR 3624,48 2080,052
Service time per vehicle (min) TSW 6533,74 3730,76
% Time a technician is idle FTI 16,89% 0,24
Working time per day (hours) WTD 7,5 0,58
Parts sold per technician (C) PStec 4755,03 1458,17
% Time sold at retail price RLab 72,40% 0,072
Effective labour price (C) ELab 66,13 0,486

(c)

Description
Simulation results (Ntec) Simulation results (Ntec + 1)

Variable Average Standard
deviation Variable Average Standard

deviation

Efficiency per vehicle EFCvh1 34,60% 0,25 EFCvh2 36,31% 0,24
Average service efficiency EFC1 86,50% 0,23 EFC2 83,11% 0,24
Workshop available time (min) HPRES1 1102,43 85,3 HPRES2 1259,92 97,48
Average cycle service time per vehicle (hours) ATPV1 3,46 0,95 ATPV2 3,79 1,13
Service incremental capacity CAP1 26,80% — CAP2 20,50% —
Service occupancy OCC1 49,00% — OCC2 64,00% —
Profit per vehicle (C) PFunit1 120,84 36,98 PFunit2 137,83 42,27
Estimation of parts sale (C) PS1 33285,2 10207,19 PS2 38040,2 11665,36
Work bays per technician WBtec1 1,43 0 WBtec2 6,65 1,917
Cost of empty bay (C) CEW1 34,27 6,301 CEW2 39,07 7,191
Capacity reserve cost for all nonelective
demands (C) CAPRNED1 1861,32 449,97 CAPRNED2 2122,85 514,798

Capacity reserve cost to serve 1 unexpected
customer (C) CAPRNED11 155,11 37,498 CAPRNED21 176,9 42,9

Number of cars in the workshop VhW1 4,5 3,206 VhW2 4,72 3,15

The optimal scenario will be selected following the hier-
archical approach displayed in Figure 5 and detailed below.

(1) The code will select those scenarios with a maxi-
mumservice occupancy (OCC) andminimumcapac-
ity reserve cost to serve all nonelective demands
(CAPRNED).

(2) Then it will order the selected scenarios starting from

(a) the lowest number of work bays (layout con-
straints and cost),

(b) the lowest number of technicians (operational
constraints and cost),

(c) the lowest number of unobserved unexpected
customers.

(3) A 3rd level will filter those scenarios with the lowest
cost for an empty server (work bay).

(4) The final level filters and selects the scenario with
the highest whole service (reception, parts, and
workshop) operational efficiency out of the previous
selection. With the information from the “optimal
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Table 5: 95% confidence intervals.

(a)

Description Input variable Mean Standard error 95% Confidence intervals
Lower limit Upper limit

Elective demand ED 147,859 4,32304 139,305 156,414
Nonelective demand NED 13,3672 0,824012 11,7366 14,9978
Total demand TV 161,328 4,51834 152,286 170,168

(b)

Description Input variable Sigma Lower limit Upper limit
Elective demand ED 48,9096 43,5628 55,7652
Nonelective demand NED 9,32263 8,30348 10,6294
Total demand TV 51,1192 45,5308 58,2845

(c)

Output variable Output variable Mean Standard error Lower limit Upper limit

Capacity reserve cost for all nonelective demands (C) CAPRNED1 1861,14 4,5 1852,31 1869,96
CAPRNED2 2122,64 5,15 2112,54 2132,74

Cost of an empty work bay (C) CEW1 34,26 0,06 34,14 34,39
CEW2 39,07 0,07 38,93 39,21

Efficiency per vehicle in service (%) EFCvh1 0,35 0,001 0,34 0,35
EFCvh2 0,36 0,001 0,36 0,37

Cost of purchased parts (C) PartCost1 402,27 0,76 400,79 403,75
PartCost2 458,65 0,86 456,96 460,34

Average profit per vehicle in the workshop (C) PFunit1 120,83 0,37 120,11 121,56
PFunit2 137,82 0,42 136,99 138,65

Monthly workshop total cost (C) TExp1 411,18 0,76 409,69 412,66
TExp2 468,83 0,86 467,14 470,52

(d)

Output variable Output variable Sigma Lower limit Upper limit

Capacity reserve cost for all nonelective demands (C) CAPRNED1 450,33 444,18 456,66
CAPRNED2 515,21 508,17 522,45

Cost of an empty work bay (C) CEW1 6,31 6,22 6,4
CEW2 7,2 7,1 7,3

Efficiency per vehicle in service(%) EFCvh1 0,25 0,24 0,25
EFCvh2 0,24 0,24 0,25

Cost of purchased parts (C) PartCost1 75,54 74,51 76,6
PartCost2 86,22 85,04 87,43

Average profit per vehicle in the workshop(C) PFunit1 37 36,49 37,52
PFunit2 42,29 41,71 42,88

Monthly workshop total cost (C) TExp1 75,71 74,68 76,78
TExp2 86,42 85,24 87,64

scenario,” we will produce a final report (Table 4)
which displays the expected key process indicators
(KPIs) for the recommended number of work bays
(WBN) and the recommended number of technicians
(NTec). It also displays a second simulation with
an additional technician (NTec + 1) to support the
decision making in the following scenarios:

(i) Short term: identifying how indirect operational
revenue or cost can be improved by increasing
the operational staff.

(ii) Medium term: assessing the effectiveness of
the current service system and identifying the
impact of applying changes to the original ser-
vice settings.

The report identifies also capacity and occupancy levels
for the optimal scenario and how they could be affected when
the existing staffs are increased by 1 head, provided that there
is at least 1 additional work bay to be used for servicing
nonelective demand (NED).
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Also, we noticed when service staff is increased and
unexpected demand is part of the capacity reserve, the empty
work bay cost estimation is also reduced. As stated before,
service incremental capacity (CAP) is inversely proportional
to the service productive headcount, as it drops as soon as
staff increases, while service occupancy (OCC) is directly
proportional to the service staff.

This makes sense and confirms the expected outcome;
the potential capacity we could have in the system should be
lower when an additional vehicle is processed in the service
system, showing an increment in the system occupancy rate.
The simulation results suggest that services generate costs
when reserving service capacity to serve nonelective demand.

4. Simulation Results Analysis and Uncertainty

This section shows the simulation results report in Table 4,
including the relevant key process indicators (KPIs) informa-
tion, and a sample of variables histograms in Figure 6. As said
before, we use probabilistic distributions to demonstrate that
ourmethodology obtains valid results integrating uncertainty
and adding value to the simple forecasting processes which
are common in the passenger car service industry.

In addition to the standard deviations shown below,
interquartile ranges or 95% intervals could be easily com-
puted from the samples as complementary measures of
uncertainty. This is done in Table 5, where we are showing
95% confidence intervals for the means and standard devia-
tions of each of the selected variables.

Other key process indicators (KPIs) are used to under-
stand how economic variables could change depending on
the solution applied, comparing the current layout and
situation with the possibility of increasing service staff in one
head.

Thus, the cost of empty work bay (CEW
1
and CEW

2
in

Table 5) is increased as long as the profit per unit (PFunit
1

and PFunit
2
in Table 4) raises, so the cost implicit in capacity

reserve to suit customer needs affects all the economic factors
as we wanted to demonstrate.

Now we will study six variables out of the total number
displayed in Table 4 (see Figure 6 and Table 5).

5. Conclusions

This paper studies a new approach, where, by analysing
nonelective demand (NED), the apparent inefficiency result-
ing from services operating within production limits is
understood. This analysis could also help brand managers
when setting efficiency objectives with adequate adjustment
for unexpected demand and its impact on cost structures.

We confirm here how separating nonelective demand
(NED) from elective demand (ED) when estimating service
costs is of paramount importance, as well as for labour fees
setting and service level, which will depend also on how
accurate service demand and general costs predictions are.
Furthermore, the leftmost column of the simulation report,
as displayed in Table 4, identifies some apparent inefficiencies
resulting from services operating within production limits.

With this information, the report compares several service
process indicators to demonstrate how results can be affected
by hiring additional technical staff.

The significance of the contribution of our research is the
definition of new key process indicators (KPIs) to be used as
a management tool for services.The capacity reserve strategy
has been proved to be plausible and consistent, according to
the reviewed literature of the hospital’s emergency room (ER)
field, with our conceptual arguments relating to production
responses to demand uncertainty.Therefore, the information
used allows for amore detailed specification of service output
that can be applied to the passenger car industry to forecast
service requisites and plan brand strategies which are aligned
with the customer’s real demand.

Future research could afford an exhaustive analysis to
the data gathered after the Monte Carlo simulation. This
could be done with the support of any of the existing
statistical software packages to fully understand the existing
relations among the multiple key process indicators (KPIs)
and between inputs and outputs, like partial correlations
and stochastic dependence between the new key process
indicators (KPIs) defined in this paper.
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