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Copyright © 2014 Jinzhu Li et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To describe the time-dependent behavior of soft clay, this paper extended one-dimensional Nishihara model to three-dimensional
stress state based on the framework of Perzyna’s overstress theory and modified cam-clay model. The yield criterion of modified
cam-clay model was used to describe the plastic properties of soft clay, and the overstress theory was used to describe the strain
rate effect. Triaxial rheological tests were carried out on Ningbo soft clay and the rheological characteristics were studied. Based on
laboratory results, the parameters of proposedmodel were determined by curve fitting, which show that thismodel is suitable for the
rheological characteristics of Ningbo soft clay. The analysis of parameters shows that, the value of parameters changes slightly with
different deviatoric stress when the confining pressure was constant, but changes notably with the increase of confining pressure. A
user material subroutine of the proposed constitutive mode was coded on the platform of the FEM software ABAQUS and verified
by triaxial compression of soil column. A plain strain problem was computed to analyze the rheological consolidation properties
of soft clay, in which the rheological effect and the finite strain effect were considered.

1. Introduction

According to the classic consolidation theory presented by
Terzaghi, when soft clay is consolidated under external loads,
the excessive pore pressure dissipates and the effective stress
increases, while the deformation grows until the excessive
pore pressure dissipates completely. This theory has laid the
foundation of soft soil mechanics and even became the main
theoretical basis of the computation of soft soil foundation.
However, in the former works, Buisman first discovered the
long term deformation of soils after the excessive pore pres-
sure was dissipated in experiments, which is also reported
in the works of Zeevaert [1], Leonards and Ramiah [2],
and also in lots of engineering practices. This long term
deformation which cannot be explained by classic theories
is usually called rheology, which contains creep, stress relax-
ation, long-term strength, elastic aftereffect, hysteresis effect,
and so on. Because of strict requirement of post-construction
settlement, researchers are paying increasing attention on

the rheology of soft clay. To propose a suitable constitutive
model to describe the rheology of soft clay and to determine
the model parameters accurately by laboratory tests, these
are the key points of the topic. Since 1960s, a number
of constitutive models were proposed for time-dependent
behavior of soft clay. Commonly used rheological constitutive
models can be divided into three categories: empirical mod-
els, component models, and microscopic models, in which
the first two categories were most widely used. Empirical
models such as Singh-Mitchell model [3], Mesri et al. model
[4, 5] are mostly one dimensional models, which were
often used to calculate the rheological deformation in one
dimensional problem but were limited in complex stress
state. Component models are intuitive in physical meaning,
which can describe numerous rheologicalmodels by different
combinations of components and can be easily extended to
multidimensional problems to apply in numeral computation
for complex stress state, such as the work of Adachi and
Oka [6], Fodil et al. [7], Yin et al. [8, 9], Hinchberger and
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Rowe [10], Hinchberger andQu [11]. Based on the framework
of Perzyna’s overstress theory [12] and modified cam-clay
model, this paper proposed a three-dimensional rheological
model.Themodel was verified by laboratory triaxial rheolog-
ical tests of Ningbo soft clay, and the model parameters were
determined by curve fitting. On the platform of ABAQUS,
a user material subroutine of the model was coded and
verified.

2. Model for Soft Clay

As one of commonly used component models, Nishihara
model was connected by Hooke body, Kelvin body, and
Binghambody,which candescribe elastic deformation, creep,
elastic aftereffect, and viscous flow comprehensively, such as
Figure 1. When a constant external pressure 𝜎 was given, the
stress and strain of the model can be written as follows:

𝜎 = 𝜎
𝑒

= 𝜎
V𝑒
= 𝜎

V𝑝
, (1a)

𝜀 = 𝜀
𝑒

+ 𝜀
V𝑒
+ 𝜀

V𝑝
. (1b)

In the above equation, 𝜎𝑒, 𝜎V𝑒, 𝜎V𝑝 denote the stress of
Hooke body, Kelvin body, and Bingham body, respectively;
𝜀, 𝜀𝑒, 𝜀V𝑒, 𝜀V𝑝 denote the total strain, the strain of Hooke body,
Kelvin body, and Bingham body, respectively.

Substituting the stress-strain relationship of Kelvin body
and Bingham body into (1a) and (1b), the constitutive equa-
tion of one-dimensional Nishihara model can be obtained as
follows:

𝜀 =

𝜎

𝐸
0

+

𝜎

𝐸
1

(1 − 𝑒
−(𝐸
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/𝜂
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where 𝐸
0
denotes the elastic modulus of Hooke body, 𝐸

1

and 𝜂
1
denote the elastic modulus and viscosity coefficient

of Kelvin body, 𝜂
2
and 𝜎

𝑠
denote the viscosity coefficient

and yield stress of Bingham body, ⟨𝜎 − 𝜎
𝑠
⟩ denotes a switch

function, which can be defined as follows:

⟨𝑓⟩ = {

0 (𝑓 ≤ 0)

𝑓 (𝑓 > 0) .

(3)

Equation (2) contains the first two stages of creep, which
are often called primary creep stage and steady creep stage. In
fact, for complex stress state, (2) cannot be used to calculate
the deformation of soil, it is necessary to extend (2) to three
dimensional, so some hypotheses can be presented as follows:

(1) the soil material is isotropic;

(2) the volume deformation is just caused by spherical
stress, and it is unrelated to shearing stress;

(3) the Poisson’s ratio of soil is constant and does not
change with the stress or time.

𝜎 𝜎

𝜎s

𝜂2𝜂1
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Figure 1: Sketch of Nishihara model.

Based on the above hypotheses, the stress-strain relation-
ship of Hooke body is given as

𝜀
𝑒

𝑖𝑗
=

𝐼
1

9𝐾

𝛿
𝑖𝑗
+

𝑠
𝑖𝑗

2𝐺
0

, (4)

where 𝐼
1
is the first stress invariant and 𝐾 and 𝐺

0
denote the

bulk modulus and shear modulus of Hooke body.
For Kelvin body, the stress-strain relationship is given as
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where 𝐺
1
and𝐻

1
denote the shear modulus and 3D viscosity

coefficient of Kelvin body, in which𝐻
1
= 2(1+𝜇)/𝜂

1
, 𝜇 is the

Poisson’s ratio of soil.
For Bingham body, the stress-strain relationship is given

as

̇𝜀
V𝑝
𝑖𝑗
=

1

𝐻
2

⟨𝜙 (𝑓)⟩

𝜕𝑄

𝜕𝜎
𝑖𝑗

. (6)

In (6), 𝐻
2
denotes 3D viscosity coefficient of Bingham

body, and ⟨𝜙(𝑓)⟩ is a switch function to judge whether plastic
yield is occurring and whether the amplitude of the plastic
yield occurred, 𝑄 is the plastic potential function, when the
associated flow rule is adopted, 𝑄 = 𝐹, where 𝐹 is the yield
function. 𝜙(𝑓) can be defined as follows:

𝜙 (𝑓) = (

𝑓 − 𝑓
0

𝑓
0

)

𝑁

, (7)

where 𝑓 is the current yield function, 𝑓
0
is the initial yield

function, and 𝑁 is a constant derived from experiments;
according to the work of Wei [13], the value of 𝑁 can be
assigned to 1.0 approximately for soft clay.

According to the work of Adachi and Oka [6] and Yin
et al. [8, 9], we define a static yield criterion 𝑓

0
, which

represents a reference yield surface for the material, such
as Figure 2. Its initial shape depends on the consolidation
pressure 𝑝𝑠

𝑐
. The expansion of the static yield surface, which

describes the hardening of the material, is expressed by the
variation of the consolidation pressure due to the inelastic
volumetric strain 𝜀V𝑝V as follows:

𝑝
𝑠

𝑐
= 𝑝
0
⋅ exp(

1 + 𝑒
0

𝜆 − 𝜅

𝜀
V𝑝
V ) . (8)
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Figure 2: Yield criterion of model.

In (8), 𝑝
0
is the intercept of initial static yield surface in

the 𝑝󸀠 axis, for soft clay, it can be assigned to the biggest
consolidation stress in history; 𝜆 is the slope of normal
consolidation curve in 𝑒 ∼ ln𝑝󸀠 plane; 𝜅 is the slope of
recompression curve in 𝑒 ∼ ln𝑝󸀠 plane.

A dynamic yield criterion 𝐹
𝑑
is defined to describe the

current state of stress as follows:
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=
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From (8) and (9), the 𝑓 and 𝑓
0
in (7) can be written as
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So, we can write (7) as follows:
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Combining (6)∼(11), (6) can be written as follows:
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From (4), (5), and (12), when the stress is constant, the
total strain of the presented model can be written as follows:

𝜀
𝑖𝑗
=

𝐼
1

9𝐾

𝛿
𝑖𝑗
+

𝑠
󸀠

𝑖𝑗

2𝐺
0

+

𝑠
󸀠

𝑖𝑗

2𝐺
1

(1 − 𝑒
−(𝐸
1
/𝜂
1
)𝑡

)

+

1

𝐻
2

⟨𝜙 (𝑓)⟩(

3𝑠
󸀠

𝑖𝑗

𝑀
2
+ (2𝑝

󸀠

− 𝑝
𝑑

𝑐
)

𝛿
𝑖𝑗

3

) 𝑡.

(13)

3. Experiments and Computation

3.1. Test Program. In order to verify the presentedmodel, lab-
oratory triaxial rheological tests were performed to observe
themechanical behavior of soft clay under long-term loading.

Table 1: Property of testing material.

Property Value
Embedded depth (m) 3.5∼4.5
Specific gravity 2.67
Moist unit weight (kN/m3) 17.3
Water content (%) 40.4
Void ratio 1.08
Liquid limit (%) 42.5
Plastic limit (%) 24.9
Plasticity index 17.6
Slope of the critical state line 0.898
Slope of compression curve 0.102
Slope of the recompression curve 0.015

The soil investigated in the experiments is Ningbo soft clay,
which is a kind of problematic soil for low strength, high
compressibility, and time-dependent behavior and deposits
in Hangzhou Bay, China.The basic properties of the soil were
summarized in Table 1. Bothmoisture content andmoist unit
weight of this material are significantly less than those of
typical natural sedimentary deposits.

The experimental equipment was refitted on the platform
of strain controlled triaxial apparatus, the original strain
loading method was changed to stress loading method, while
the confining pressure system, the back pressure loading
system, and the measurement system were reserved. The
soil was cut into replicate specimens with a diameter of
39.8mm and a height of 80.0mm and placed in the triaxial
test apparatus. Both soil specimens were consolidated 24
hours under a confining pressure of 100 kPa and 200 kPa,
respectively; then, keep the confining pressure as constant
and apply the deviatoric stress increment until the specimens
were damaged or the total strain exceeds 15%. In the whole
process, the free drainage conditions were kept. Table 2
showed the different loading rates applied in the experiments.
In order to make sure that the creep deformation can be fully
developed, each load increment lasted no less than 7 days
until the deformation of the specimen is lower than 0.01mm
within 24 h.

3.2. Experimental Results. The experimental results were
presented to observe the rheological behavior of the soft
clay. It is considered that deformation occurs during the
whole process, but only the deformation that occurs after
the dissipation of the excessive pore water pressure can be
regarded as creep only.The full shearing process stress-strain-
time curve of each specimen is illustrated in Figure 3, and the
mutistage strain-time curves of each specimen are illustrated
in Figure 4. The figures show that the creep process under
triaxial loading exhibits attenuation characteristics when the
deviatoric stress is small, which contains two stages of creep:
primary stage and steady stage; while when the deviatoric
stress is large, itmay exhibit accelerated characteristics, which
contains three stages of creep: primary stage, steady stage and
accelerated stage, such as the last load increment of specimen
2.
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Table 2: Loading scheme of triaxial rheological tests.

Specimen number Confining pressure (kPa) Loading scheme (kPa)
1 100 30-60-90-12-150-180-210-240
2 200 40-80-120-160-200-240-280-320
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Figure 3: Full-process press-strain-time curve.
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Figure 4: Mutistage strain-time curves.

3.3. Computation and Curve Fitting. For triaxial rheological
tests, 𝐼

1
= 𝜎
1
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= 3𝑝
󸀠, 𝑠󸀠
11
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can be written as follows:
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where, 𝑃
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𝑑

𝑐
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Use (14) to fit the experimental data, the results were
showed in Figures 5 and 6, in which the parameters SSE
and 𝑅2 denote the residual sum of squares and squares of
correlation coefficient, respectively. From Figures 5 and 6, we
can see that the model fits testing data of primary creep stage
and steady creep stage very well, while for the accelerated
creep stage, it needs further study. According to the value of
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Figure 5: Continued.
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Table 3: Model parameters of specimen 1 (𝜎
3
= 100 kPa).

𝜎
1
− 𝜎
3
(kPa) 𝐸

0
(MPa) 𝐸

1
(MPa) 𝜂

1
(MPa⋅s) 𝜂

2
(GPa⋅s)

30 2.49 18.56 501.60 16073
60 2.51 10.69 189.93 17950
90 2.49 11.69 181.98 21297
120 2.47 11.58 145.44 24253
150 2.36 10.49 104.97 25049
180 2.36 10.18 98.91 22046
210 2.35 9.45 120.32 26240

Table 4: Model parameters of specimen 2 (𝜎
3
= 200 kPa).

𝜎
1
− 𝜎
3
(kPa) 𝐸

0
(MPa) 𝐸

1
(MPa) 𝜂

1
(MPa⋅s) 𝜂

2
(GPa⋅s)

40 10.75 18.04 138.81 12223
80 9.03 18.70 258.62 11747
120 8.34 16.94 299.47 12591
160 7.63 16.92 300.57 12704
200 6.60 17.29 261.18 11732
240 6.04 18.31 274.81 12823
280 5.08 16.02 281.65 11589

𝑃
1
, 𝑃
2
, 𝑃
3
, and 𝑃

4
, the value of the model parameters 𝐸

0
, 𝐸
1
,

𝜂
1
, and 𝜂

2
can be determined easily, such as in Tables 3 and 4.

3.4. Discussion. Table 3 shows that the model parameters of
specimen 1 (𝜎

3
= 100 kPa) change slightly with the change

of deviatoric stress except the first stage; Table 4 shows
that the model parameters of specimen 2 (𝜎

3
= 200 kPa)

change slightly with the change of deviatoric stress except
𝐸
0
. Compared with the model parameters of specimen 1 and

specimen 2, it can be found that both 𝐸
0
and 𝐸

1
increase

notably with the increase of 𝜎
3
, which means that the elastic

strain reduces when 𝜎
3
increases, and 𝜂

1
increases notably

Table 5: Percentage of strain components of specimen 1 (𝜎
3
=

100 kPa, 𝑡 = 7 d).

𝜎
1
− 𝜎
3
(kPa) 𝜀

𝑒

11
(%) 𝜀

𝑣𝑒

11
(%) 𝜀

𝑣𝑝

11
(%)

30 92.06 5.56 2.38
60 85.30 12.02 2.68
90 84.83 12.21 2.96
120 82.98 12.72 4.30
150 81.51 13.76 4.73
180 81.09 14.48 4.43
210 80.41 15.73 3.85

Table 6: Percentage of strain components of specimen 2 (𝜎
3
=

200 kPa, 𝑡 = 7 d).

𝜎
1
− 𝜎
3
(kPa) 𝜀

𝑒

11
(%) 𝜀

𝑣𝑒

11
(%) 𝜀

𝑣𝑝

11
(%)

40 77.03 16.53 6.45
80 67.74 16.83 15.43
120 66.77 19.71 13.53
160 67.13 19.81 13.06
200 69.51 18.37 12.12
240 70.96 16.86 12.17
280 73.97 17.40 8.63

while 𝜂
2
is reduced notably with the increase of 𝜎

3
, which

means that the viscoelastic strain rate and viscoplastic strain
rate change significantly when 𝜎

3
increases. For the lack

of more experiment data, the further variation of model
parameters was unable to find out, which needed further
study.

Based on the parameters in Tables 3 and 4, the com-
ponents of elastic strain, viscoelastic strain, and viscoplastic
strain at any time can be calculated with (13). Tables 5 and 6
show 𝜀

𝑒

11
, 𝜀V𝑒
11
, and 𝜀V𝑝

11
of all loading levels when 𝑡 = 7 d; it can
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Figure 7: Development of computed viscous strain (VES: viscoelastic strain; VPS: viscoplastic strain).

be found that the elastic strain accounted for the major part
of the total strain, but the viscoelastic strain and viscoplastic
strain increase with the increase of 𝜎

3
, which takes about

15%∼30% for each loading increment of the total and cannot
be neglected.

Figure 7 shows several typical curves of the development
of computed viscoelastic strain and viscoplastic strain of
specimen 1 and specimen 2. It can be found that the
viscoelastic strain increases quickly in the early stage and
then reaches steady in a short time (about 30 hours), while
the viscoplastic strain increases the whole process, which
indicates that the long-term deformation after consolidation

of soft clay foundation is mainly caused by the viscoplasticity
rather than viscoelasticity

4. Derivation and Verification of UMAT

4.1. Derivation of UMAT. ABAQUS is a FEM software which
has powerful computing capabilities of strongly nonlinear
problems. A user material subroutine (UMAT) is coded
for the proposed model on the platform of ABAQUS to
study the elastic-viscoplastic consolidation properties of soft
clay. According to ABAQUS, the stiffness coefficient matrix
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(Jacobian matrix) and the equation to update the stress and
strain should be defined in the UAMT. The Jacobian matrix
D is defined as follows:

D =

𝜕Δ𝜎

𝜕Δ𝜀

, (15)

where Δ𝜎 and Δ𝜀 denote the stress increment matrix and
strain increment matrix, respectively.

For the proposedmodel, (4)∼(6) can be written as follows
in 2D or 3D problems:

𝜀
𝑒

𝑛
=

𝜇

𝐸
0

A𝜎
𝑛
, (16a)

𝜀̇
V𝑒
𝑛
=

1

𝜂
1

A𝜎
𝑛
−

𝐺
1

𝜂
1

𝜀
V𝑒
𝑛
, (16b)

𝜀̇
V𝑝
𝑛
=

1

𝜂
2

⟨𝜙 (𝐹)⟩

𝜕𝐹

𝜕𝜎

. (16c)

In (16a), (16b), and (16c) 𝜎
𝑛
, 𝜀
𝑛
, 𝜀V𝑒
𝑛
, and 𝜀V𝑝

𝑛
denote the

Voigt matrix form of stress and strain component tensors; A
denotes the flexibilitymatrix, for plane strain problem and 3D
problems, and it can be written as follows:

A =

[
[
[

[

1 −𝜇 −𝜇 0

−𝜇 1 −𝜇 0

−𝜇 −𝜇 1 0

0 0 0 2 (1 + 𝜇)

]
]
]

]

, (17a)

A =

[
[
[
[
[
[
[

[

1 −𝜇 −𝜇 0 0 0

−𝜇 1 −𝜇 0 0 0

−𝜇 −𝜇 1 0 0 0

0 0 0 2 (1 + 𝜇) 0 0

0 0 0 0 2 (1 + 𝜇) 0

0 0 0 0 0 2 (1 + 𝜇)

]
]
]
]
]
]
]

]

. (17b)

Suppose that the time step of the 𝑛th increment is Δ𝑡
𝑛
, so

the viscoelastic strain increment in the increment step can be
written as follows:

Δ𝜀
V𝑒
𝑛
= Δ𝑡
𝑛
[(1 − Θ) 𝜀̇

V𝑒
𝑛
+ Θ𝜀̇

V𝑒
𝑛+1
] , (18)

where Θ is differential coefficient, 0 ≤ Θ ≤ 1. Suppose that
𝐵
𝑛
= 1/(1 + ΘΔ𝑡

𝑛
𝐸
1
/𝜂
1
), C
𝑛
= 𝐵
𝑛
ΘΔ𝑡
𝑛
A/𝜂
1
; (18) can be

written as follows:

Δ𝜀
V𝑒
𝑛
= 𝐵
𝑛
𝜀̇
V𝑒
𝑛
Δ𝑡
𝑛
+ C
𝑛
Δ𝜎
𝑛
. (19)

The viscoplastic strain increment in the increment step
can be written as follows:

Δ𝜀
V𝑝
𝑛
= Δ𝑡
𝑛
[(1 − Θ) 𝜀̇

V𝑝
𝑛
+ Θ𝜀̇

V𝑝
𝑛+1
] . (20)

In order to calculate the viscoplastic strain rate at the
end of the 𝑛th increment, apply the Taylor series expansion
and ignore the second order trace; then we can obtain the
following equation:

𝜀̇
V𝑝
𝑛+1

= 𝜀̇
V𝑝
𝑛
+

𝜕𝜀̇
V𝑝
𝑛

𝜕𝜎

𝜕𝜎

𝜕𝑡

Δ𝑡
𝑛
. (21)

Suppose thatH
𝑛
= 𝜕𝜀̇

V𝑝
𝑛
/𝜕𝜎; (21) can be written as

𝜀̇
V𝑝
𝑛+1

= 𝜀̇
V𝑝
𝑛
+H
𝑛
Δ𝜎
𝑛
. (22)

Substituting (22) into (21), we can obtain the following
equation:

Δ𝜀
V𝑝
𝑛
= Δ𝑡
𝑛
𝜀̇
V𝑝
𝑛
+ ΘΔ𝑡

𝑛
H
𝑛
Δ𝜎
𝑛
. (23)

From (16c),H
𝑛
can be written as

H
𝑛
=

1

𝜂
2

[⟨𝜙 (𝐹)⟩

𝜕a𝑇

𝜕𝜎

+

𝜕 ⟨𝜙 (𝐹)⟩

𝜕𝐹

aa𝑇] , (24)

where a = 𝜕𝐹/𝜕𝜎. According to (9), a can be written as
follows:

a = 𝜕𝐹

𝜕𝜎

= 𝐶
1
a
1
+ 𝐶
2
a
2
, (25)

where 𝐶
1
= 2𝑞/𝑀

2, 𝐶
2
= 2𝑝 − 𝑝

0
, a
1
= 𝜕𝑞/𝜕𝜎, a

2
= 𝜕𝑝/𝜕𝜎.

From (25), the following equation can be derived:

𝜕a𝑇

𝜕𝜎

=

𝜕𝐶
1

𝜕𝑞

a
1
a𝑇
1
+ 𝐶
1

𝜕a𝑇
1

𝜕𝜎

+

𝜕𝐶
2

𝜕𝑝

a
2
a𝑇
2
, (26)

where (𝜕a𝑇
1
/𝜕𝜎) = (3/2𝑞)M

1
−(9/4𝑞

3

)M
2
, a
1
a𝑇
1
= (9/4𝑞

2

)M
2
,

a
2
a𝑇
2
= (1/9)M

3
. M
1
, M
2
, and M

3
are matrices written as

follows:

M
1
=

[
[
[
[
[
[
[

[

2/3 −1/3 −1/3 0 0 0

−1/3 2/3 −1/3 0 0 0

−1/3 −1/3 2/3 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

]
]
]
]
]
]
]

]

,

M
2
=

[
[
[
[
[
[

[

𝑆
2

11
𝑆
11
𝑆
22

𝑆
11
𝑆
33

2𝑆
11
𝑆
12

2𝑆
11
𝑆
23

2𝑆
11
𝑆
13

𝑆
11
𝑆
22

𝑆
2

22
𝑆
22
𝑆
33

2𝑆
22
𝑆
12

2𝑆
22
𝑆
23

2𝑆
22
𝑆
13

𝑆
11
𝑆
33

𝑆
22
𝑆
33

𝑆
2

33
2𝑆
33
𝑆
12

2𝑆
33
𝑆
23

2𝑆
33
𝑆
13

2𝑆
11
𝑆
12

2𝑆
22
𝑆
12

2𝑆
33
𝑆
12

4𝑆
2

12
4𝑆
12
𝑆
23

4𝑆
12
𝑆
13

2𝑆
11
𝑆
23

2𝑆
22
𝑆
23

2𝑆
33
𝑆
23

4𝑆
12
𝑆
23

4𝑆
2

23
4𝑆
23
𝑆
13

2𝑆
11
𝑆
13

2𝑆
22
𝑆
13

2𝑆
33
𝑆
13

4𝑆
12
𝑆
13

4𝑆
23
𝑆
13

4𝑆
2

13

]
]
]
]
]
]

]

,

M
3
=

[
[
[
[
[
[
[

[

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]
]
]
]
]
]
]

]

.

(27)

Combining the above equations, the value of H
𝑛
can

be derived. Substituting H
𝑛
into (22), the viscoplastic strain

increment Δ𝜀V𝑝
𝑛

is obtained.
For current increment, Δ𝜎

𝑛
is calculated by (28) as

follows:

Δ𝜎
𝑛
= D𝑒Δ𝜀𝑒

𝑛
. (28)

Substituting (19) and (23) into (28), we can obtain the
following equation:

Δ𝜎
𝑛
= D (Δ𝜀

𝑛
− 𝐵Δ𝑡

𝑛
𝜀̇
V𝑒
𝑛
− Δ𝑡
𝑛
𝜀̇
V𝑝
𝑛
) . (29)
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Table 7: Material parameters of verification model.
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Figure 8: Sketch of verification model.

Equation (29) is the relationship between stress incre-
ment and strain increment, in which matrix D is defined as
follows:

D = [(D𝑒)−1 + C
𝑛
+ ΘΔ𝑡

𝑛
H
𝑛
]

−1

. (30)

Based on the above equations, a user material subroutine
was coded for the proposed constitutive model on the
platform of ABAQUS.

4.2. Verification of UMAT. In order to verify the validity of
the UMAT, we study a soil column of triaxial compression
such as Figure 8, the size of the column is 0.1m × 0.1m ×

0.2m. Supposing that 𝜎
1
= 100 kPa, 𝜎

2
= 𝜎
3
= 50 kPa,

and the model parameters are given in Table 7. The column
was cut into one element, the element type is C3D8, and the
consolidation effect was not considered here. Embedding the
UMAT coded in this paper on the platform of ABAQUS, we
calculated the triaxial compression property of the column;
the results were summarized in Figure 9∼Figure 10.

From Figure 9(a), we can see the deformation of the
column exhibits apparent rheology, the rheological deforma-
tion takes about 37% of the whole deformation. Figure 9(b)
shows that the static yield surface gradually expanded with
the time until it reached steady state, when it coincided with
the dynamic yield surface. From Figures 9(c) and 9(d), we
can see that the viscoelastic strain and the viscoplastic strain
both gradually increased with time until they reached their
steady state; accordingly, the viscoelastic strain rate and the
viscoplastic strain rate were gradually deduced to nearly zero.
The above results fit the property of Nishihara model and
the hardening law of modified Cambridge model very well,
which proved the correctness of the UMAT.

In the proposed model, 𝜂
1
, 𝜂
2
, and 𝑝

0
are the most

important parameters; Figure 10 showed the sensitivity of
these parameters. From Figures 10(a) and 10(b), we can see
the final viscous deformation is a constant regardless of the
different values of 𝜂

1
, 𝜂
2
, but the time when it reaches steady

varies greatly, so, the accuracy of 𝜂
1
and 𝜂
2
is directly related

to the accuracy of computed displacement in the rheological
process. Figure 10(c) shows that the value of 𝑝

0
has a great

influence on the viscoplastic strain: the smaller 𝑝
0
is, the

more rapidly the viscoplastic strain develops and the larger
the final viscoplastic strain occurs, and so, the accuracy of
𝑝
0
is not only directly related to the accuracy of computed

displacement in the rheological process, but also affected the
final displacement, which needs to be paid more attention.

5. Analysis on Rheological Consolidation of
Soft Clay

5.1. Computed Model. Consolidation problems can be classi-
fied as small strain theory and finite strain theory according
to the difference of geometric assumption. Small strain
theory assumed that the strain is little, but the consolida-
tion deformation is usually very large for deep soft clay
foundation. Take dredger fill for example, the deformation
may exceed 80%, for which the small strain theory is no
longer suitable [14, 15]. As the pioneer researchers studied
on finite strain consolidation theory, Mikasa [16] and Gib-
son et al. [17] derived their one-dimensional finite strain
consolidation equations, respectively, in 1960s, and many
scholars developed further research on the topic in the
following decades. Because of strong nonlinearity, most of
existing researches on finite strain consolidation adopted
some simplified assumptionswithout considering rheological
characteristics. By means of ABAQUS, this paper studied the
rheological consolidation of soft clay considering finite strain
effect.

The computed model is plane strain problem as shown in
Figure 11. The soil foundation is homogeneous, anisotropic,
saturated, and normally consolidated soft clay with a thick-
ness of 10.0m, and only the top boundary is permeable. In
addition, the semilogarithmic empirical formula proposed by
Tavenas et al. [18] was adopted to consider the variation of
permeability in the process of consolidation as follows:

𝑘V = 𝑘V0 ⋅ 10
(𝑒−𝑒
0
)/𝐶
𝑘
, (31)

where 𝑘V0 is the initial permeability coefficients, and 𝑘V is the
permeability coefficient in the consolidation process; 𝑒

0
is the

initial void ratio, and 𝑒 is the void ratio in the consolidation
process; 𝐶

𝑘
is the permeability index. According to the

above work, themodel parameters are summarized in Table 8
approximately.

5.2. Consolidation Property of Soft Clay. From Figure 12 we
can see the differences of the consolidation process between
finite strain and small strain. Figure 12(a) shows that for any
location the excess pore pressure of finite strain is less than
that of small strain at the same time, and the difference is
increasing with the increase of time in beginning period.
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Table 8: Material parameters of computed model.
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Figure 9: Triaxial compression property of soil column.

Figure 12(b) shows that the displacement of finite strain is
less than that of small strain and the difference increased
significantly if the load is increasing. For example, when 𝑞 =
200 kPa, the differencemay take about 20%while it is nearly 0
when 𝑞= 50 kPa. So, it is essential to consider the error caused
by small strain if the load is large and the compressibility of
the soil is large.

From Figure 13 we can see the influence of rheology
on the consolidation process. Figure 13(a) shows that the
dissipation of excess pore pressure is significantly slower if
the rheological effect is considered; for example, when 𝑡 =
1000 d, the excess pore pressure is nearly 0 if the rheological
effect is not considered, but it is still larger than 20 kPa if
the rheological effect is considered. Figure 13(a) shows that

the displacement is influenced by rheological effect too; for
example, in the early stage (𝑡 ≤ 100 d), the displacement is
nearly the same for two cases, but the final displacement
may have a difference of more than 35%, which indicates
that the displacement in the early stage is mainly caused
by consolidation, while the displacement in the late stage is
mainly caused by rheology.

6. Conclusions

(1) An elastic-viscoplastic model developed to describe
the time-dependent behavior of normally consoli-
dated soft clay was presented in the paper on the
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Figure 10: Sensitivity of model parameters.
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Figure 11: Calculation model and mesh generation.

framework of modified cam-clay elastic plastic model
and Perzyna’s overstress viscoplastic theory.

(2) A series of laboratory triaxial rheological tests of
Ningbo soft clay with different confining pressure and
deviatoric stress are performed; the results show that
the presented constitutive model was suitable for the
rheological characteristic of Ningbo soft clay, and it is
achievable to determine the parameters of presented
model by curve fitting.

(3) The analysis on the model parameters shows that the
value of all parameters is related to confining pressure
and deviatoric stress. It may need further study on the
relationship between parameters and the stress level
so as to use the model conveniently.
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Figure 12: Results comparison of large strain and small strain (SS: small train; FS: finite strain).
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Figure 13: Effects of rheology on calculated results. (NR: rheological effect not considered; R: rheological effect considered).

(4) In the proposed model, the viscoelastic viscosity
coefficient 𝜂

1
, the viscoplastic viscosity coefficient 𝜂

2
,

and the initial yield surface 𝑝
0
are the most important

parameters. 𝜂
1
and 𝜂

2
have important influence on

the time of viscous strain developed, and 𝑝
0
have

important influence on both the viscoplastic strain
rate and the final viscoplastic strain.

(5) The existence of rheology will significantly slow down
the dissipation of the excess pore pressure. Consid-
ering the rheological effect, the total displacement

is larger, and the displacement in the early stage is
mainly caused by consolidation, while in the late stage
it is mainly caused by rheology.

(6) For consolidation problems of high compressibility
soft clay foundation, great error will be caused by
small strain assumption, so finite strain effect should
be considered. When finite strain effect is considered,
the consolidation process is developed more rapidly,
and the computed consolidation displacement will be
less than that of small strain.
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