
Research Article
Constrained Dynamic Systems Estimation Based
on Adaptive Particle Filter

Weili Xiong,1,2 Mingchen Xue,2 and Baoguo Xu2

1 Key Laboratory of Advanced Process Control for Light Industry, Jiangnan University, Wuxi Jiangsu 214122, China
2Department of Automation, College of IOT Engineering, Jiangnan University, Wuxi Jiangsu 214122, China

Correspondence should be addressed to Weili Xiong; greenpre@163.com

Received 12 December 2013; Accepted 31 December 2013; Published 11 February 2014

Academic Editor: Shen Yin

Copyright © 2014 Weili Xiong et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For the state estimation problem, Bayesian approach provides the most general formulation. However, most existing Bayesian
estimators for dynamic systems do not take constraints into account, or rely on specific approximations. Such approximations
and ignorance of constraints may reduce the accuracy of estimation. In this paper, a new methodology for the states estimation of
constrained systemswith nonlinearmodel and non-Gaussian uncertainty which are commonly encountered in practice is proposed
in the framework of particles filter. The main feature of this method is that constrained problems are handled well by a sample size
test and two particles handling strategies. Simulation results show that the proposed method can outperform particles filter and
other two existing algorithms in terms of accuracy and computational time.

1. Introduction

With the development of advanced control theory and its
application, more and more information can be obtained
from most industry processes. Therefore the data-driven
based approach has been used to improve the stochastic
system performance and robust fault detection [1]. Bayesian
methods have been studied and applied extensively in many
different stochastic systems, because of their distinct abil-
ity to express uncertainties and performance optimization
[2]. In practical dynamic estimation problems, nonlinear
and non-Gaussian processes with constraints are commonly
encountered. However, most existing Bayesian methods for
such systems either ignore the constraints or rely on the
assumptions of linearity and Gaussianity, such as Extended
Kalman Filter [3]MovingHorizon Estimator [4]. Apparently,
such ignorance of constraints and approximations of model
may cause the loss of the precision of the estimates.

Sequential Monte Carlo (MC) filter that is known as
particle filter (PF) [5] relaxes the assumptions of the non-
linear or the simplification of specific distribution. For the
state estimation problem of nonlinear and non-Gaussian
system, it provides a suboptimum solution conveniently. In
many practical applications, due to the physical laws or

model restrictions, the constraints of states or noise in the
forms of algebraic equality and inequality are normal. There
is also no question that using such constraints may lead
to the improvement of estimation performance. According
to such problems, an accept/reject scheme was proposed
in [6]. This scheme enables the algorithm to accept the
particles only on the constraint surface and all the violated
particles will be discarded, ensuring all the used particles
are generated from the true probability densities. However,
some disadvantages are brought by this scheme. Rejecting
all the particles violating constraints may reduce the number
of particles and yield poor estimation. In addition, for the
systems with poor prior information, all the particles may
locate outside of the constraint region and cause the method
failure. On this basis, paper [7] came up with a constrained
PF algorithm based on hybrid use of acceptance/rejection
and optimization strategies. In this algorithm, the particles
outside the constrained region will be optimized only when
the estimation performance based on the particles inside
the region fails a chi-square test. Although the estimation
performance can be improved due to this scheme, but the
measurement error must be Gaussian distribution in the
chi-square test which is also a similar harsh hypothesis.
Meanwhile, a quantitative criterion of the particles number
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which is a key issue is not considered. It is believed that in
some dynamic systems with poor prior information choosing
the numbers of particles at pleasurewill lead to a consequence
that most particles will fall outside the constrained region
and bringing these particles into the region requires much
computational resource.

In this paper, an adaptive particle filter algorithm which
chooses and optimizes particles heuristically is proposed.The
novelty of this proposed method is that a sample size test is
used to replace the chi-square test raised in [7]. In the sample
size test, the particles outside the region will be chosen to
optimize only when the number of particles in the region is
less than the sampling size which can be determined on line
through the Kullback-Leiler distance (KLD) [8] and other
sampling size adaptive methods, such as Boers’s sampling
[9] and likelihood-based sampling [10]. The constraints and
particles number problem are both treated in the sample size
test in order to obtain a relatively better performance with
least computational cost.

The content of this paper is organized as follows. Section 2
presents the constrained state estimation problem. Section 3,
introduces the principles of the Bayesian estimator and
generic particle filter. The main result of this paper is given
in Section 4. Section 5 provides two simulation examples.
Finally, Section 6 concludes this paper.

2. Problem Statement

The dynamic of the state in discrete time is modeled by
𝑥𝑘 = 𝑓𝑘 (𝑥𝑘−1, 𝑤𝑘−1) ,

𝑦𝑘 = ℎ𝑘 (𝑥𝑘, V𝑘) ,
(1)

where 𝑓(⋅) and ℎ(⋅) are nonlinear functions. 𝑥𝑘, 𝑦𝑘, 𝑤𝑘, and
V𝑘 are state, measurements, process noise, and measurement
noise respectively. 𝑤𝑘, V𝑘 and initial state 𝑥0 may all follow
non-Gaussian distribution. All vectors are assumed to be of
appropriate dimensions. Figure 1 shows a typical example
of the constraints imposed on states which occurred regu-
larly in practice. Where the circle means the constraint in
a two-dimensional space, + remarks the particles outside
constrained region, with∗ expressing the inside particles.The
main contents discussed in this paper are how to take full
use of all particles to get more accurate estimation with less
computation.

3. Bayesian Estimator

3.1. The Theorem of Bayesian Estimator. The objective of
Bayesian estimators is to reconstruct the posteriori proba-
bility density function (PDF) with the likelihood function
and priori PDF. For convenience, let 𝑌𝑘 = [𝑦1, 𝑦2, . . . , 𝑦𝑘]

and 𝑋𝑘 = [𝑥1, 𝑥2, . . . , 𝑥𝑘] denote the full state and complete
observations sets for the period of interest. 𝑝(𝑋𝑘 | 𝑌𝑘)

represents the posterior joint PDF of the state𝑋 conditioned
on the measurements 𝑌. Expanding it with Bayes’ rule

𝑝 (𝑋𝑘 | 𝑌𝑘) =

𝑝 (𝑌𝑘 | 𝑋𝑘) 𝑝 (𝑋𝑘)

𝑝 (𝑌𝑘)

, (2)
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Figure 1: An example of the constraint.

where 𝑝(𝑋𝑘) denote the prior PDF of the dynamic system
state which is based on the prior knowledge of the model
function and parameters. If the states follow the Markov
property, we can rewrite 𝑝(𝑋𝑘) as

𝑝 (𝑋𝑘) = 𝑝 (𝑥0)

𝑇

∏

𝑘=1

𝑝 (𝑥𝑘 | 𝑥𝑘−1) . (3)

𝑝(𝑌𝑘 | 𝑋𝑘) is known as the likelihood function. If the
observations are conditional independent given the states𝑋𝑘,
the likelihood function implies

𝑝 (𝑌𝑘 | 𝑋𝑘) =

𝑇

∏

𝑘=1

𝑝 (𝑦𝑘 | 𝑥𝑘) . (4)

𝑝(𝑌𝑘) denotes the marginal PDF of the observations which
can also be expressed as

𝑝 (𝑌𝑘) = ∫

∞

−∞

𝑝 (𝑌𝑘 | 𝑋𝑘) 𝑝 (𝑋𝑘) 𝑑𝑋𝑘. (5)

By (3), (4), and (5), at time 𝑘, (2) becomes

𝑝 (𝑥𝑘 | 𝑌𝑘) =

𝑝 (𝑦𝑘 | 𝑥𝑘) 𝑝 (𝑥𝑘 | 𝑌𝑘−1)

𝑝 (𝑦𝑘 | 𝑌𝑘−1)

. (6)

It is implied that the prior PDF of the state is updated by com-
bining the likelihood function to yield the posterior PDF
which are considered as a synthesis of different sources of
information.

Obviously, the Bayesian filer for stochastic system
involves high dimensional integration. When the system is
unconstrained linear models with independent Gaussian
errors, Kalman filter has been a common practice, but for
constrained systemswith nonlinearmodel and non-Gaussian
uncertainty, it is impossible to get an optimal solution
through Kalman filter as in linear Gaussian model, and some
other suboptimal methods rely on crude approximations of
the model or probability distributions are resorted to.
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3.2. Generic Particle Filter. In recent years, Bayesianmethods,
especially Bayesian estimation of dynamic system through
particle filter, have attracted attention of many researchers
[11–14]. Comparing with other Bayesian estimators, particle
filter is able to approximate posterior PDF by a finite number
of samples and associated weights without relying on a fixed
functional form of the posterior. At time 𝑘, if we are able to
sample𝑁 random samples {𝑥𝑖, 𝑖 = 1, . . . , 𝑁} from𝑝(𝑋𝑘 | 𝑌𝑘),
MC estimate of this distribution would be given by

𝑝 (𝑋𝑘 | 𝑌𝑘) =

1

𝑁

𝑁

∑

𝑖=1

𝛿 (𝑥
𝑖
) 𝑑𝑋𝑘,

(7)

where 𝛿(⋅) is the Dirac delta function. Unfortunately, it is
unavailable to sample efficiently from the true posterior PDF.
The main alternative solution to this problem is defining an
importance sampling distribution 𝜋(𝑥) [15] and generating
particles from 𝜋(𝑥); then the 𝐸𝑁(𝜑(𝑋)) can be depicted as

𝐸𝑁 (𝜙 (𝑋)) = ∫

𝑝 (𝑥)

𝜋 (𝑥)

𝜙 (𝑥) 𝜋 (𝑥) 𝑑𝑥 ≈

1

𝑁

𝑁

∑

𝑖=1

𝜙 (𝑥
𝑖
) 𝑞 (𝑖) ,

(8)

where the importance weight is equal to

𝑞 (𝑖) =

𝑝 (𝑥
𝑖
)

𝜋 (𝑥
𝑖
)

. (9)

Normalized the importance weights, (9) is given by

𝐸𝑁 (𝜑 (𝑋)) =

𝑁

∑

𝑖=1

𝜑 (𝑥
𝑖
) 𝑞 (𝑖) . (10)

The importance weights are computed in the following form:

𝑞 (𝑖) =

𝑞 (𝑖)

∑
𝑁

𝑗=1
𝑞 (𝑗)

. (11)

In practice, 𝜋(𝑥) must be selected as close as possible to
the target distribution 𝑞(𝑥). For dynamic system, article
[16] has proposed and proved that the optimal importance
distribution is

𝜋 (𝑥𝑘 | 𝑋𝑘−1, 𝑌𝑘) = 𝑝 (𝑥𝑘 | 𝑋𝑘−1, 𝑌𝑘) . (12)

Hence, the important weight can be updated recursively as

𝑞𝑘 (𝑖) = 𝑞𝑘−1 (𝑖)

𝑝 (𝑦𝑘 | 𝑥
𝑖

𝑘
) 𝑝 (𝑥

𝑖

𝑘
| 𝑥
𝑖

𝑘−1
)

𝜋 (𝑥
𝑖

𝑘
| 𝑋
𝑖

𝑘−1
, 𝑌𝑘)

. (13)

It has been proved that in the entire filtering process
there may exist many particles with small weights which
contribute little to the estimation performance butwastemost
computational resource and cause the particles degeneracy
problem [17]. To such problem the common solution is
increasing a resampling step after the importance sampling.
Thus, the estimation of the state can be expressed as

𝑥𝑘 =

𝑁

∑

𝑖=1

𝑞𝑘 (𝑖) 𝑥
𝑖

𝑘
, (14)

where 𝑞𝑘(𝑖) = 1/𝑁. Owing to the above analysis, the steps
of the generic particle filter algorithm are summarized as
follows.

Step 1. From time 𝑘 = 1, sampling 𝑁 particles from a priori
distribution 𝑝(𝑥0).

Step 2. Sampling 𝑥
𝑖−

𝑘
from importance sampling distribution

𝑝(𝑥
𝑖

𝑘
| 𝑥
𝑖

𝑘−1
), where the priori particles are 𝑥

𝑖−

𝑘
, compute and

normalize the weights by (13) and (11).

Step 3. In accordance with the rules of resampling, obtain the
posterior particle.

Step 4. The estimation of the state can be obtained through
(14) based on the posterior particles.

4. Constrained Adaptive Particle Filter

4.1. Determine the Number of Particles. It is apparent that
increasing the particles number will improve the estimation
performance. However, especially in real time application,
blindly increasing particles does not necessarily provide
greater profit to the estimated accuracy. These uncertainties
are expressed in the following aspects. To increase the
particles is bound to bringing greater computational burden,
paying more time cost. At the same time, it may introduce
more random errors which bring a negative impact to affect
the estimation accuracy. Therefore, automatically determin-
ing the number of sampling particles is not only essential for
reducing unnecessary computation and increasing the com-
putational efficiency, but also useful in improving the estima-
tion performance. In this section, the principles of determin-
ing the sampling size through Kullback-Leiler distance will
be introduced. The K-L distance is defined to measure the
difference between two probability distributions 𝑝 and 𝑞:

𝐾(𝑝, 𝑞) = ∑

𝑥

𝑝 (𝑥) log
𝑝 (𝑥)

𝑞 (𝑥)

. (15)

This variable is always positive and equal to zero only when
the distributions are identical. Suppose the true posterior
distribution is the discrete multinomial distribution.
𝑋 = (𝑋1, . . . , 𝑋𝑘) can be used to denote the number of
samples drawn from 𝑘 different subspaces with the true
probability 𝑝 = (𝑝1, . . . , 𝑝𝑘). The maximum likelihood
estimation of 𝑝 can be specified as 𝑝 = 𝑛

−1
𝑋, and the

logarithm of the likelihood ratio is given by

log 𝜆𝑛 =
𝑘

∑

𝑖=1

𝑋𝑖 log
𝑝𝑖

𝑝𝑖

, (16)

where𝑋𝑖 = 𝑛𝑝𝑖 then we have

log 𝜆𝑛 = 𝑛𝐾 (𝑝, 𝑝) . (17)

Let 𝑝(𝐾(𝑝, 𝑝)) ≤ 𝜀 means the probability that the KLD
between the true distribution and the maximum likelihood
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estimation base on samples is less or equal to 𝜀. One can
easily get the following derivation:

𝑝 (𝐾 (𝑝, 𝑝) ≤ 𝜀) = 𝑝 (2 log 𝜆𝑛 ≤ 2𝑛𝜀) = 𝑝 (𝜒
2

𝑘−1
≤ 2𝑛𝜀) .

(18)

The quantile of a chi-square distribution can be defined as:

𝑝 (𝜒
2

𝑘−1
≤ 𝜒
2

𝑘−1,1−𝛿
) = 1 − 𝛿. (19)

If we choose 𝑛 send 2𝑛𝜀 equal to 𝜒
2

𝑘−1,1−𝛿
which can be

written as:

𝑛 =

1

2𝜀

𝜒
2

𝑘−1,1−𝛿
. (20)

Combining (18) and (19), we get

𝑝 (𝐾 (𝑝, 𝑝) ≤ 𝜀) = 1 − 𝛿. (21)

Approached (20) by Wilson-Hilferty transformation [18],
which yields

𝑛 =

𝑘 − 1

2𝜀

[1 −

2

9 (𝑘 − 1)

+ √

2

9 (𝑘 − 1)

𝑧1−𝛿]

3

, (22)

where 𝑧1−𝛿 is the upper quantile at (1 − 𝛿) of the standard
normal distribution. To summarize, (22) gives the number
of particles 𝑛 that guarantees with probability 1 − 𝛿 that KLD
is less than 𝜀.

4.2. The Discard and Optimization Scheme

4.2.1. The Discard Scheme. All the particles violating the
constraint region are rejected in this scheme. Let 𝑆𝑘 denote
the constraints which can be imposed onto state or noise.The
notation 𝛼(𝜃) defined as

𝛼 (𝜃) = {

1, 𝜃 ∈ 𝑆𝑘

0 𝜃 ∉ 𝑆𝑘

(23)

denotes the indicator function of the region 𝑆𝑘. The function
is equal to unity when the state or noise at time 𝑘 is in
the region 𝑆𝑘 and zero otherwise. Hence, the formula of the
weights based on (13) in this scheme becomes

𝑞𝑘 (𝑖) = 𝑞𝑘−1 (𝑖) 𝛼 (𝜃) 𝑝 (𝑦𝑘 | 𝑥
𝑖

𝑘
) . (24)

The weights of outside particles are equal to zero when
the number of particles passes the sample size test which
will be introduced in the following section. With using this
mechanism, all unnecessary particles will be effectively aban-
doned and enable us to reduce the computational resource
remarkably.

4.2.2.TheOptimization Scheme. By the basis of Shao et al. [7],
an equation as

min− log (𝑝𝑥𝑒
𝑘

(𝑥
𝑖−

𝑘
− 𝑥
𝑖−

𝑘
)) − log (𝑝V̂

𝑘

(𝑦𝑘 − ℎ𝑘 (𝑥
𝑖

𝑘
))) (25)

is used to move the deviating particles to the most likely
place inside the region, where 𝑥

𝑖−

𝑘
, 𝑥𝑖−
𝑘
, respectively denotes

the optimized particles and prior particles. 𝑝(𝑥𝑒
𝑘
) and 𝑝(V𝑘)

are estimated error distribution and measurement error
distribution. Inmost application cases, truncatedGaussian or
Gaussian mixtures are generally chosen to depict 𝑝(𝑥𝑒

𝑘
) and

𝑝(V𝑘) [19, 20].

4.3. A Sample Size Test. In the above section, a method used
to determine the particle number through the KLD has been
briefly descripted. However, it must be recognized that the
KLD is not the only way to choose the number of particles
on line. For different requirements, different methods can be
applied; one can refer to [21] for more detail.

In this section, a sample size test that combines with
the generic particle filter will be introduced to handle the
constraints as well as particles number problem.The particles
number determined through KLD is denoted as 𝑛1, and then
the sample size 𝑛 is chosen as 𝑛 = 𝑎𝑛1, where 𝑎 is the
reserve capacity determined by the user. In most situations,
𝑎 = 1.1∼1.2. The test can be expressed as follows: first, decide
whether the sample particles fall into the restricted area,
the statistical number of particles within the restricted area
is recorded as 𝑁1; if 𝑁1 ≥ 𝑛; means that the estimation
accuracy based on the particles within the region meets the
requirements, particles outside the region can be discarded
without hesitation. Otherwise, 𝑁2 = 𝑛 − 𝑁1 particles
outside the region with relatively large weights are selected
to optimize. The novelty of this test is that the number of
particles is selected as the threshold, which determines which
proposed scheme will be effective. Due to this threshold, the
test not only solves the problem of determining the particles
number, but also avoids the optimization of large numbers of
particles which may bring with enormous computing load.

4.4. Adaptive Constrained Particle Filter. So far we have
explained how to handle the constraints existing in the
dynamic system by a sample size test. The adaptive con-
strained particle filter for dynamic system can now be
summarized as follows.

Step 1. Set 𝑘 = 0 and generate the initial particles 𝑥𝑖
0
∼ 𝑝(𝑥0),

𝑖 = 1, 2, . . . , 𝑁0, where𝑁0 is the initial particles number.

Step 2. Consider 𝑘 = 𝑘 + 1. To meet the estimation
accuracy defined by user, (22) and other sample size adaptive
algorithms can be used to determine the number of particles
within the regions. We choose the true sampling size as
𝑁 = 1.2𝑛, and then generate prior particles {𝑥𝑖−

𝑘
}
𝑁

𝑖=1
from the

important sampling distribution.

Step 3. Evaluate the importance weights for every particles
using (24) and then normalize the importance weights.

Step 4. If the number of the particles inside the region 𝑁1

passes the sample size test, the discard scheme is executed to
reject all the outside particles, then jump to Step 5.Otherwise,
jump to Step 5 after the optimization scheme.
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Step 5. In order to avoid the particles degeneracy problem,
some resampling strategies such asmultiply/suppress samples
with high/low normalized important weights are employed.
Based on these strategies, generate the posterior particles.

Step 6. The estimation of the state based on particles is given
by (14). Repeat Step 2∼Step 6 until reaching the end of the
filter process.

It is notable that sometimes in order to ensure the
accuracy of the filtering, aminimumparticles number𝑁min is
employed. When the number of particles 𝑛 calculated by the
algorithms described in Section 4.1 is less than 𝑁min, then 𝑛

will be replaced by𝑁min.

5. Simulation Result

To test the efficacy of our method, two examples are given
in this section. The simulations were carried out in Matlab
2009a on a Pentium IV PC with 2.5GHz CPU and 1G mem-
ory. The root mean square error (RMSE) is defined to assess
the performance of the algorithm; the smaller the value, the
higher the estimation accuracy.The true states and estimated
states in time 𝑘 and 𝑖th are, respectively, corresponding to
𝑥
𝑘

𝑖
and 𝑥

𝑘

𝑖
. Thus, the RMSE based on 𝑀 times Monte-Carlo

simulations is characterized as

RMSE = [

1

𝑀

1

𝑁

𝑀

∑

𝑖=1

𝑁

∑

𝑘=1

(𝑥
𝑘

𝑖
− 𝑥
𝑘

𝑖
)

2

]

1/2

. (26)

The adaptive constrained particle filter (ACPF), generic
particle filter (GPF), Lang’s particle filter (LPF) [6], and con-
strained particle filter (CPF) proposed by [7] were used to
estimate the states and simulated for 30 times with 50 time
steps.

Example 1. The first scenario is a typical nonlinear system
originally taken from [22], where the following systemmodel
is considered:

𝑥𝑘 = 𝑓 (𝑥𝑘−1, 𝑘) +
󵄨
󵄨
󵄨
󵄨
𝑤𝑘

󵄨
󵄨
󵄨
󵄨
,

𝑦𝑘 =

𝑥
2

𝑘

20

+ V𝑘,
(27)

where

𝑓 (𝑥𝑘−1, 𝑘) = 0.5𝑥𝑘−1 +

25𝑥𝑘−1

1 + 𝑥
2

𝑘−1

+ 8 cos 1.2 (𝑘 − 1) . (28)

As in [23], impose a nonnegative constraint on the process
noise. 𝑤𝑘 is zero mean Gaussian noise with covariance 𝑄 =

1 and the measurement noise V𝑘 ∼ 𝑁 (0 0.1
2
). For the

methods of fixed sampling size, 300 particles are used. The
particles number of ACPF is updated by KLD method with
𝜀 = 0.05, confidence interval 1−𝛿 = 98%, and initial particles
number𝑁0 = 100 and𝑁min = 60.

It is clear to see from Figure 2 that compared to GPF
and CPF, the average quantity of samples in ACPF can be
significantly reduced.

Table 1: Comparing the accuracies in Example 1.

Algorithm RMSE CPU time (s)
GPF 3.53 0.224
CPF 2.48 0.448
ACPF 2.33 0.112
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Figure 2: ACPF particles size of Example 1.

FromTable 1 and Figure 3, CPF and ACPF yield improve-
ments in estimation performance significantly over GPF
due to considering the constraints in the estimation process
which is consistent with the analysis. At the same time,
relative toCPF, theCPU time ofACPF can be notably reduced
for almost the same level of performance which is attributed
to the sample size test.

Example 2. In order to compare conveniently, consider a bath
reactor system as

𝑥̇𝐴 = −𝑘1𝑥𝐴 + 𝑘2𝑥𝐵,

𝑥̇𝐵 = 𝑘1𝑥𝐴 − (𝑘2 + 𝑘3) 𝑥𝐵,

𝑥̇𝐶 = 𝑘3𝑥𝐵, 𝑦 = [𝑥𝐴 𝑥𝐵]
𝑇
+ V𝑘,

(29)

where [𝑘1, 𝑘2, 𝑘3] = [0.06, 0.03, 0.001]. The states are con-
strained according to

0 ≤ 𝑥𝑖 ≤ 1, ∑𝑥𝑖 = 1. (30)

Define the initial condition 𝑥0 = [1, 0, 0]
𝑇; the measurement

noise V ∼ 𝑁(0, 0.02
2
𝐼2) and the process noise 𝑤𝑘 are zero

mean Gaussian noise with covariance matrix

𝑄 = diag [0.12, 0.012, 0.0012] . (31)

The initial guess is far from the true value which is expressed
as 𝑥0 = [0.8 0.1 0.1]

𝑇 means poor prior information of this
system. LPF and CPF are simulated with the sample size𝑁 =

500.
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Figure 3: Simulation result of Example 1.

Table 2: Comparing the accuracies in Example 2.

Algorithm RMSE of 𝑥𝑎 RMSE of 𝑥𝑏 RMSE of 𝑥𝑐 CPU time (s)
LPF Fail Fail Fail Fail
GCF 0.206 0.025 0.004 0.451
CPF 0.103 0.012 0.002 0.768
ACPF 0.101 0.009 0.002 0.212

From the simulation results we found, LPF is inappro-
priate for this system due to the stringency of the restricted
area which, leading to the number of particles, is almost equal
to zero. Figures 4, 5, 6, and 7 compare the estimations of
three different algorithms. It is revealed that since without
considering the constraints, the performance of GPF is worse
than ACPF and CPF. From Table 2, under the same number
of particles, the RMSE of CPF is smaller than GPF, but the
incremental accuracy is at the expense of a large amount of
computing time, as also clearly reflected in Table 2. It shows
that the ACPF overcomes the drawbacks of CPF with using
a sample size test to get better estimation performance with
less time cost.

As summarized, results of the two examples are con-
firmed that compared with GPF, the existence of two kinds of
particles processing mechanisms results in the improvement
of the estimation accuracy and robustness of the poor prior
information.The using of sample size test in ACPFmakes the
algorithm avoid numerous computational loads brought by
the optimizationmechanism in the poor priori circumstance.
According to the two simulations, the proposed algorithm
reaches the comparative estimation accuracy of CPF with
only 1/4 of its computation time, making the new method
more suitable for real-time application.

6. Conclusion

In this paper, a practical approach to particle filter based on
Bayesian estimation to the estimation process of dynamic
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Figure 4: ACPF particles size of Example 2.
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Figure 7: State of 𝑥𝑐.

system is described. The key idea of this method is that some
adaptive sample size algorithms and two particles handling
strategies are simultaneously used to solve the constrained
problem and improve the performance of estimation. The
simulation results show that the proposedmethod overcomes
the drawback of computational complexity by a sample size
test. Using the discard and optimization scheme not only
ensures all the samplings representing the true distribu-
tion which contributes to estimation performance, but also
increases the robustness of this algorithm to the poor prior
information. Another significant advantage of this algorithm
is that different adaptive sample size algorithms can be
chosen for different requirements of estimation accuracy
and computing consumption. For the constrained dynamic
systems, the practical value of the raisedmethod is enormous.
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