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Chaotic dynamics of numerous memristor-based circuits is widely reported in literature. Recently, some works have appeared
which study the problem of synchronization control of these systems in a master-slave configuration. In the present paper, the
spontaneous dynamic behavior of two chaotic memristor-based Chua’s circuits, mutually interacting through a coupling resistance,
was studied via computer simulations in order to study possible self-organized synchronization phenomena. The used memristor
is a flux controlled memristor with a cubic nonlinearity, and it can be regarded as a time-varying memductance. The memristor, in
effect, retains memory of its past dynamic and any difference in the initial conditions of the two circuits results in different values
of the corresponding memductances. In this sense, due to the memory effect of the memristor, even if coupled circuits have the
same parameters they do not constitute two completely identical chaotic oscillators. As is known, for nonidentical chaotic systems,
in addition to complete synchronizations (CS) other weaker forms of synchronization which provide correlations between the
signals of the two systems can also occur. Depending on initial conditions and coupling strength, both chaotic and nonchaotic
synchronization are observed for the system considered in this work.

1. Introduction

One of the most important topics of contemporary science
focuses on the study of continuous and discrete dynamical
systems [1–3], analysing their organization as nonlinear
evolving structures [4–6] or as artificial agents in synthetic
environments [7, 8]. Chaos is the most striking feature of
their behaviour. Chaotic systems are nonlinear deterministic
systems that display highly complex dynamic with several
peculiar features such as fractal properties of the motion in
the phase space (strange attractors) and, especially, extraor-
dinary sensitivity to initial conditions and system parameters
variations. This implies that, even for two identical chaotic
systems, a slight difference in the initial conditions grows
exponentially in time resulting in completely different tra-
jectories. Consequently, chaotic systems intrinsically would
seem to defy synchronization. Nonetheless, two coupled
chaotic systems also can exhibit some form of synchroniza-
tion, meaning by that a dynamical state wherein a correlation
exists among a given property of their motion [9, 10].

The synchronization between chaotic systems, either
identical or nonidentical, is a fundamental phenomenon in
nonlinear dynamics, observed in diverse areas of science
and technology. Studies on chaos synchronization are of
great interest, both from a theoretical and applicative point
of view, due to their possible applications, for example,
in cryptography and secure communications [11–13]. The
synchronization of chaotic oscillators is also an important
process in many biological systems [14].

Since the pioneering works of Pecora et al. [9, 15], it has
become known that it is possible to force two chaotic systems
to synchronize, and various methods for chaos control and
synchronization have been developed [16] such as those
based, for example, on sliding-mode control or linear matrix
inequality, just to name a few [17–21].

On the other hand, spontaneous synchronization is also
possible for nonlinear systems. More precisely, depending
on the modalities of interaction between the systems, it is
possible to distinguish between two configurations leading
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to synchronization: unidirectional coupling (drive-response
ormaster-slave configuration) and bidirectional coupling [10,
22].

In the first case, one of the two systems evolves freely
and forces the other system to follow a certain function
of the master dynamic, producing external synchronization.
This approach is affected, in large part, by the point of view
of the dynamics systems control theory. For example, the
synchronization control of memristor-based chaotic systems
in a drive-response configuration has been recently studied
using adaptive control and fuzzy modelling [23, 24].

On the contrary, in the bidirectional coupling configura-
tion spontaneous synchronization is due to the mutual inter-
actions between the chaotic oscillators which self-organize
their dynamics and, in this case, the synchronization is
configured as an emergent phenomenon. In effect, sponta-
neous synchronization is recognized in various areas, ranging
from physics to biology and social sciences [25]. A typical
bidirectional coupling producing synchronization for many
dynamical systems is the so-called “diffusive coupling,” where
the mutually forcing term is proportional to the differences
between the states of the systems [26, 27]. The present work
considers this coupling configuration and, for the first time
as far as the authors’ knowledge is concerned, results of
numerical investigations on the spontaneous dynamics of two
resistively coupled memristor-based Chua’s circuit are pre-
sented. The “memristor” is the so-called fourth elementary
circuit element, theorized by Chua in 1971 [28] in order to
complete the mathematical relations connecting pairs of the
four fundamental circuit variables (current, voltage, charge,
and magnetic flux). It is a two-terminal circuit element
in which the magnetic flux 𝜑 between the terminals is
a nonlinear function of the electric charge 𝑞 that passes
through the device. Formally, a memristor is characterized
by a relation 𝑓(𝜑, 𝑞) = 0, called “the memristor constitutive
relation,” linking charge and flux, and its memductance is
defined as 𝑊(𝜑) = 𝑑𝑞(𝜑)/𝑑𝜑. In the case of nonlinear
constitutive relation, the memductance value depends upon
the history of the device (i.e., taking into account the Lenz’s
law 𝑉 = 𝑑𝜑/𝑑𝑡, the memductance varies according to the
integral over time of the applied voltage). Therefore, the
behavior of thememristor depends on its past history and the
memristor retains memory of its state even when no current
passes through it.

Despite its theorization in 1971, a physical realization
of a memristor only occurred in 2008 in the form of a
nanometer-sized solid-state two-terminal device, realized by
Stan William’s group at the Hewlett-Packard (HP) Labs [29].
After its discovery, studies on the special properties of the
memristor as electric device have received increasing interest
[30, 31]. Many papers focus on the possible technological
applications of the memristor, for example, in order to build
ultra-dense nonvolatile memories [32], or new kinds of
high performance computers [33, 34]. Moreover, the special
properties of the memristor appear useful in the modelling
cognitive process [35, 36] and to emulate the human brain
[37, 38]. The memristor is also of great interest in the field
of chaotic dynamical systems. Due to the nonlinearity of

its constitutive relation, the memristor-based circuits can
generate chaotic dynamics [39–44]. In particular, depending
on the parameters and initial conditions of the memristor, a
chaotic circuit withmemory can produce transient chaos and
intermittence [45–47].

The memristor used in this work is characterized by
a cubic nonlinearity that makes the behavior of the single
circuit chaotic. Since the actual memductance value depends
on the history of the applied voltage, starting from different
initial conditions the memristors in the two circuits have
different memories, which results in different values of the
memductance. In this sense, despite having the same circuit
parameters, the two circuits can be viewed as nonperfectly
identical chaotic oscillators.

It is worth noting that for nonequivalent chaotic oscilla-
tors, and depending on the coupling strength, several kinds of
synchronization exist [10, 15, 48]. In particular, for identical
systems complete synchronization (CS) is possible, and the
trajectories of the two systems overlap perfectly. For example,
it is known that two bidirectional coupledChua’s circuit reach
a state of complete synchronization [49]. A weaker form of
synchronization, also possible for nonidentical systems, is
phase synchronization (PS), where only the phases of the
interacting oscillators are correlated [50]. Other forms of
synchronization are lag synchronizations (LG) [51, 52] and
rhythm synchronization (RS) [53], characterized by a fixed
time lag between the trajectories of two coupled nonidentical
oscillators. A more general synchronization state, that seems
to be the chaos synchrony most frequently found in natural
systems [54], is the generalized synchronization (GS). It
is characterized by a functional relationship between the
trajectories of two coupled systems [55, 56], either identical or
nonidentical. Therefore, generally speaking, chaos synchro-
nization refers to a dynamic process in which two coupled
chaotic systems adjust a given property of their motion to
a common behavior, ranging from complete agreement of
trajectories to a generic relationship between them.

In order to evaluate the presence of synchronization,
the two-dimensional phase portrait between corresponding
signals can be used. When CS occurs, the phase portrait
consists in a straight line at 45∘. Conversely, if two signals
are uncorrelated there will be an isotropic cloud of points
in the diagram. Between these two extremes, any “structure”
in the phase diagram indicates the existence of some kind of
correlation between the signals.

In this work, synchronization states, in the sense dis-
cussed above, were identified by the appearance of patterns
in the phase portraits. This paper is organized as follows.
In Section 2, the single memristor based Chua’s circuit is
presented. The diffusive coupling schema and the equations
for the coupled circuits are derived in Section 3. Results of
numerical simulations are presented in Section 4. Finally our
main conclusions are summarized in Section 5.

2. The Memristor-Based Chua’s Circuit

Thememristor-based chaotic circuit considered in this work
was proposed and described byMuthuswamy [57]. It consists
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Figure 1: The memristor-based Chua’s circuit: the Chua’s diode is replaced by a flux-controlled active memristor.
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Figure 2: 3D projection of the double-scroll type attractor generated by (3a)–(3d) for initial conditions [−24.33, −12480, −7294, 2.948] and
corresponding state variables 𝑥, 𝑦, 𝑧, and 𝑤 as a function of the time.
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Figure 3: Peaks of the signal 𝑤(𝑡) vs 𝑤(0) for initial conditions [0, 23000, 1250, 𝑤(0)]. The arrows indicate progression of the dynamics
described in the text. The zoom-in at the top shows a particular of the map with a period doubling scenario.
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Figure 4: 3D projection of the Chua’s spiral-type attractor generated by (3a)–(3d) for initial conditions [0.0 23000 1250 1], and
corresponding time series of state variables 𝑥, 𝑦, 𝑧, and 𝑤.
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Figure 5: 3D projection of the one-period limit cycle attractor generated by (3a)–(3d) for initial conditions [112.4047, 27015, 9360, −4.0542],
and corresponding nonchaotic pseudosinusoidal oscillations of higher amplitude with respect to the chaotic dynamic.

of a Chua’s circuit with the diode replaced by a flux-controlled
active memristor (Figure 1) characterized by a cubic contin-
uous nonlinearity for the 𝑞 − 𝜑 constitutive relation:

𝑞 (𝜑) = 𝛼𝜑 + 𝛽𝜑
3

, (1)

where 𝛼 = −0.667 ⋅ 10
−3 and 𝛽 = 0.029 ⋅ 10

−3. The
memductance is given by

𝑊(𝜑) = 𝛼 + 3𝛽𝜑
2

. (2)

Note that the memductance is negative for 𝜑 ∈

(−√−𝛼/(3𝛽), √−𝛼/(3𝛽)), therefore the considered memris-
tor is an active element on this interval of magnetic flux
[39, 57].

By applying the Kirchhoff ’s laws to the memristor-based
Chua’s circuit of Figure 1, the following state equations are
obtained:

𝑑𝑥

𝑑𝑡
= −

𝑦

𝐿
, (3a)
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Figure 6: The system of two memristor-based Chua’s circuits
bidirectionally coupled via a resistor.
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Figure 7: Plot of state variables 𝑧 for both the coupled circuits with
𝑅
12

= 17000 (chaotic-chaotic initial conditions). Zoom is shown
for both the regions of chaotic (box at the top) and more regular
pseudosinusoidal oscillations (box at the bottom).

𝑑𝑦

𝑑𝑡
=

1

𝐶
2

(
𝑧 − 𝑦

𝑅
+ 𝑥) , (3b)

𝑑𝑧

𝑑𝑡
=

1

𝐶
1

(
𝑦 − 𝑧

𝑅
− 𝑖
𝑀
) , (3c)

𝑑𝑤

𝑑𝑡
= 𝑧, (3d)

where 𝑥 is the current through the inductor 𝐿, 𝑦 and
𝑧 represent the voltages across the capacitor 𝐶

2
and 𝐶

1
,

respectively, 𝑤 is the magnetic flux and 𝑖
𝑀

= 𝑊(𝜑) ⋅ 𝑉
1
is

the current through the memristor.
Note that (3a)–(3c) are formally identical to ones reported

in the literature for the Chua’s circuit [58] with the only
difference that the current of the diode is replaced by
the current through the memristor. Moreover, due to the
presence of a new equation for the magnetic flux (or for
the charge in the case of charge-controlled memristor), the
substitution of the Chua’s diode with a memristor augments
the dimension of the equation set describing the original
circuit. To obtain chaotic dynamic, the circuit parameters are
set to 𝐿 = 18mH, 𝐶

2
= 68 nF, 𝐶

1
= 6.8 nF, and 𝑅 = 2000Ω

in original paper describing this circuit [57], and a chaotic
attractor is found by numerical simulation of (3a)–(3d)
starting from the following initial conditions: 𝑥(0) = 0,

𝑦(0) = 0.11, 𝑧(0) = 0.11, and 𝑤(0) = 0. In order to
study the dynamics of the memristor-based Chua’s circuits,
the MATLAB function ode45 implementing an explicit 4th
and 5th order Runge-Kutta formula based on the Dormand-
Prince method [59] is used in this work.

A chaotic dynamics was also found for initial conditions
[−24.33, −12480, −7294, 2.948]. Figure 2 shows a 3D projec-
tion of the attractor with corresponding time series of the
signals.

As is well known, however, chaotic systems are very
sensitive to the changes of the initial conditions and different
initial values can generate totally different behavior. In order
to describe the diverse dynamics of the system (3a)–(3d)
produced to vary the initial conditions, the peaks of the flux
𝑤(𝑡) as a function of its initial values 𝑤(0) was calculated
for initial conditions [0, 23000, 1250, 𝑤(0)]. The resulting
bifurcation diagram is shown in Figure 3 (peaks of 𝑤(𝑡) were
recorded after transient).

Coexistence of multiple attractors in the phase space is
evident, and a very interesting progression of the dynamics
with varying 𝑤(0) appears. For example, a scenario with
Hopf-like bifurcations and period doubling bifurcations is
evident between points 𝑎 and 𝑏 of Figure 3, with limit cycles
of increasing period (a zoom-in image of this area is shown
in the box at the top). For lower 𝑤(0) values up to the point
𝑐, there is an area of fully developed chaos with Chua’s spiral-
type attractor (Figure 4).Windows of 𝑛-order limit cycles and
trivial fixed points (0, 0, 0, 𝑤 = const) corresponding to the
damping of the system also appear.

Between positions 𝑑 and 𝑒, the expansion of points
indicates the birth of a double-scroll type attractor (such
as that shown in Figure 2). Finally, the straight lines at
lower values of 𝑤(0) indicate the saturation of the systems
to a period one orbit, with nonchaotic pseudosinusoidal
oscillations of higher amplitude.

Therefore, in addition to the chaotic behaviour and
depending on the initial conditions of the circuit, nonchaotic
oscillations and damped oscillations are also identified for
the system (3a)–(3d). In particular, for initial conditions
[112.4047, 27015, 9360, −4.0542] and [−178.1619, −66031,
−16762, 4.5430] the system produces nonchaotic and pseu-
dosinusoidal oscillations, with a limit cycle of period 1 in
the phase space (Figure 5). This dynamics corresponds to
the saturation described above. For initial conditions [22,
10000, 0.15, 0.2] and [−20, −10000, 50000, −2] the circuit
is damped, and a sink appears in the phase space. These
values are just some of the initial conditions that have been
considered in order to obtain a coarse characterization of
the basins of attraction for the system (3a)–(3d). Further
investigations are needed to adequately describe these basins
of attraction but it is beyond the scope of the present work.
However, the initial conditions indicated above produce the
whole dynamic behaviors observed for the single circuit.They
result in distant areas of the single circuit phase space and
were used to simulate the coupling of circuits starting from
significantly different initial conditions, as described in the
following section.
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Figure 8: Phase portraits between corresponding signals of the two coupled circuits during the steady state of nonchaotic oscillation (C-C
initial conditions) for different coupling strength. From top: 𝑅

12

= 100, 10000, 40000.

3. The Coupling Scheme

In this study, two memristor-based Chua’s circuits described
above are mutually coupled through a resistor 𝑅

12
as shown

in Figure 6.
The equations describing the dynamic of the system are:

𝑑𝑥
1

𝑑𝑡
= −

𝑦
1

𝐿
, (4a)

𝑑𝑦
1

𝑑𝑡
=

1

𝐶
2

(
𝑧
1
− 𝑦
1

𝑅
+ 𝑥
1
) , (4b)

𝑑𝑧
1

𝑑𝑡
=

1

𝐶
1

(
𝑦
1
− 𝑧
1

𝑅
− (

𝑧
1
− 𝑧
2

𝑅
12

) −𝑊(𝑤
1
) ⋅ 𝑧
1
) , (4c)

𝑑𝑥
2

𝑑𝑡
= −

𝑦
2

𝐿
, (4d)

𝑑𝑦
2

𝑑𝑡
=

1

𝐶
2

(
𝑧
2
− 𝑦
2

𝑅
+ 𝑥
2
) , (4e)

𝑑𝑧
2

𝑑𝑡
=

1

𝐶
1

(
𝑦
2
− 𝑧
2

𝑅
+ (

𝑧
1
− 𝑧
2

𝑅
12

) −𝑊(𝑤
2
) ⋅ 𝑧
2
) , (4f)

𝑑𝑤
1

𝑑𝑡
= 𝑧
1
, (4g)

𝑑𝑤
2

𝑑𝑡
= 𝑧
2
, (4h)

where symbols have the same meaning as in (3a)–(3d), and
subscripts refer to the two circuits.

Accurate numerical integration of (4a)–(4h) was per-
formed for different values of the coupling resistor 𝑅

12

in order to investigate the occurrence of self-induced
synchronization phenomena during the free evolution of
the system. Since, depending on the initial conditions, the
behavior of the single memristor-based circuit can be chaotic
(C), oscillating with pseudosinusoidal (PS) dynamics, and
damped (D); there are 6 qualitatively different choices for
the initial conditions of the two coupled circuits: C-C,
C-D, C-PS, D-D, D-PS, and PS-PS. All of these cases were
examined using the initial conditions given above. The range
of variation for the coupling resistor was initially set to 𝑅

12
∈

{0.1, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 15.0, 20.0,
25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.00}⋅
10
3. Note that the presence of the resistor 𝑅 = 1000 in the

circuit fixes a natural length scale for the resistances, and the
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Figure 9: Pair of time series of the two mutually coupled circuits, for C-C initial conditions and 𝑅
12

= 20000. Signals are out of phase with
different amplitudes, and some kind of AS is observed.

investigated range for the coupling factor 𝑅
12

correspond to
∼10
−1

𝑅 ≤ 𝑅
12

≤ ∼ 10
2

𝑅, that is, a variation of a few orders
of magnitude with respect to 𝑅. Numerical simulations were
carried out for 𝑡 ∈ [0, 1] s. Additional values of 𝑅

12
and

longer integration times were investigated when deemed
necessary, as detailed below.

4. Simulation Results

The results obtained in the C-C and C-D cases qualita-
tively reproduce the entire phenomenology observed in all
the simulations performed for this study, and only these two
cases will be presented below in detail.

4.1. Chaotic-Chaotic (C-C) Initial Conditions. For high cou-
pling (low 𝑅

12
) nonchaotic synchronization occurs. In more

details, for 𝑅
12

∈ [100, 40000] and 𝑅
12

̸= 20000, after an
initial transient during which the two circuits oscillate in a
chaotic and uncorrelatedway, they reach a state of nonchaotic
synchronization. In Figure 7 the time series of the variables𝑦

1

and𝑦
2
in the case of𝑅

12
= 17000 are depicted.The qualitative

trend of other signals is similar to the presented one.
It is evident that an initial state of chaotic behavior exists,

with a double-scroll type attractor such as that shown in
Figure 2, followed by a situation in which the two circuits
oscillate with larger amplitude in a pseudosinusoidalmanner.
In this latter case the trajectories of the two coupled circuits
are limit cycles of order 1 in their respective phase space, as
shown in Figure 4.

The existence of some kind of synchronization in this
state of nonchaotic oscillation is evidenced by the appear-
ance of well-defined curves in the phase portraits between
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Figure 10: 3D projection (𝑦, 𝑧, 𝑤) of the attractors (a) of the two coupled circuits for the case of C-C initial conditions and 𝑅
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2D projection (𝑦 versus 𝑧) of the Chua’s spiral type attractor is depicted.
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Figure 14: Phase diagrams for chaotic-chaotic initial conditions and 𝑅
12

= 9000. The signals are considered on a time interval of 0.02 s.

corresponding signals of the two coupled circuits (Figure 8).
In particular, for 𝑅

12
= 100 the signals are practically

coincident except for a constant bias for the flux, and a
straight line appears in the phase diagrams (Figure 8(a)).
For the other investigated values of 𝑅

12
, the curves in the

phase diagrams assume the form of a hysteresis-like loop
with a single pinch (Figures 8(b) and 8(c))). It is worthy
to note that during this steady state of pseudosinusoidal
oscillation, the corresponding signals present a periodic
phase shift.The amplitude difference between the signals and
the initial phase shift change as 𝑅

12
varies, and this deter-

mines the different aspect of the phase diagrams shown in
Figure 8.

For 𝑅
12

= 20000 the behavior of the system is quite
different. After a chaotic and uncorrelated transient, the
two coupled circuits achieve a steady state in which the
corresponding signals are completely out of phase (Figure 9).

Somekind of antisynchronization [60] (AS)with significantly
different amplitudes is observed in this case. Moreover, as
shown in Figure 10, phase trajectories of the two systems
evolve on different attractors; in particular, the circuit 2 is on
a Chua’s spiral-type attractor.

The phase diagrams are now more complex (Figure 11),
but they still indicate the presence of some kind of synchro-
nization [53].

The steady state behavior for 𝑅
12

= 20000 with the
signals out of phase seems to be peculiar. Indeed, simula-
tions carried out for 𝑅

12
∈ {19.1, 19.2, 19.5, 19.9, 19.999,

c20.001, 20.01, 20.1, 20.2}⋅103 have produced results in accor-
dance with that previously reported for 𝑅

12
≤ 40000 and

𝑅
12

̸= 20000 (in-phase pseudosinusoidal oscillations).
For 𝑅

12
= 40000, the system presents a new feature: the

duration of the chaotic and uncorrelated transient is different
for the two coupled circuits (Figure 12). Only after both
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circuits enter into high-amplitude pseudosinusoidal oscilla-
tion synchronization occurs, with characteristics similar to
cases of R

12
̸= 20000. In particular, the attractors of the two

circuits are limit cycles of order 1.
Finally, for 𝑅

12
≥ 45000 the two circuits are practically

uncoupled and the respective signals still remain uncorre-
lated. In more details, after a transient in which both circuits
oscillate chaotically, only one circuit begins to oscillate
in nonchaotic way with pseudosinusoidal oscillations and
greater amplitude for 𝑅

12
= 45000. This uncorrelated coexis-

tence of order and chaos remained unchanged in simulations
of the dynamics of the system up to 80 s. For 𝑅

12
≥ 50000 the

two circuits remain in chaotic and uncorrelated oscillation.

4.2. Chaotic-Damped (C-D) Initial Conditions. Similarly as
discussed above, a synchronization state with pseudosinu-
soidal oscillations is also observed in this case for low
coupling. Moreover, a situation of chaotic oscillations with
strong correlation between signals is also found at high
coupling for 𝑅

12
≤ 9000.

In more detail, for 𝑅
12

= 100 (Figure 13(a)) the phase
portraits indicate a condition of CS, but as 𝑅

12
increases the

correlation between the signals rapidly decreases (Figures
13(b) and 13(c)). In effect, the phase diagrams contain points
whose dispersion around the diagonal depends on the value
of 𝑅
12
. For the lowest investigated value of 𝑅

12
, trajectories in

the phase portraits remain most of the time on the diagonal,
and the synchronization is easy to recognize. As𝑅

12
increases,

the duration of periods of desynchronization, that is, the
amount of points far from the diagonal, increases and itmasks
possible “structures” indicating correlation.

In order to highlight this behavior, in Figure 14 the
phase diagrams are plotted for a time interval of 0.02 s with
𝑅
12

= 9000. Despite the cloud-like shape of the corre-
sponding phase diagram in Figure 13(c), from Figure 14 it

is clear that the system passes through a sequence of phase-
synchronized states. In effect, observing the signals of the two
circuits (Figure 15) it is possible to note a rapid alternation of
situations inwhich the signals are uncorrelated and situations
in which the signals oscillate in phase, and a deconstruction
and recomposition of the state of phase synchronization
happen.

For 10000 ≤ 𝑅
12

≤ 20000 the two circuits reach a
state of nonchaotic synchronization with pseudosinusoidal
oscillations. More precisely, as reported in Figure 16(a) for
𝑅
12

= 10000, after a chaotic transient the circuits have
a behavior similar to that shown in Figure 7, with high-
amplitude pseudosinusoidal oscillations that result strongly
correlated.The attractors of the synchronized circuit are limit
cycles of order 1 (such as that shown in Figure 5).

For 𝑅
12

∈ [15000, 20000] the chaotic transient disappears
and systems immediately synchronize with nonsaturated
oscillations (phase diagrams depicted in Figures 16(b) and
16(c)). The attractors are limit cycles of periods 1 and 2,
respectively, which result similar to the attractors displayed
by the single system (3a)–(3d) during the period doubling
bifurcations described in section 2. The amplitude of the
oscillations for the circuit starting from damping initial
condition is an order of magnitude lower than the other
circuit.

Finally, for 𝑅
12

≥ 25000 both the two systems remain in
chaotic oscillation at different amplitudes evolving on Chua’s
spiral like attractors. The phase portraits for this case, shown
in Figure 17, indicate very weak or null correlation. Unlike
what happens for 𝑅

12
≤ 9000, also at smaller time scale,

coherent substructures do not emerge in the phase diagrams.

5. Conclusion

In this paper the problem of spontaneous self-
synchronization of two mutually coupled memristor-based
Chua’s circuits is investigated via numerical simulations. The
great sensitivity of the single circuit on initial conditions
was here investigated by means of a bifurcations diagram
for the maxima of the flux 𝑤(𝑡) as a function of its initial
values 𝑤(0). A complex progression of the dynamics with
varying initial conditions is evident. Beside chaotic (C)
dynamics, pseudosinusoidal (PS) oscillations, and damped
(D) oscillations were also identified for the single memristor
based circuit.

A diffusive coupling between two of these circuits was
realized with a resistor 𝑅

12
and accurate numerical simu-

lations were performed for various values of the coupling
resistor and for different initial conditions. Synchronization
states were identified by the appearance of patterns in the
phase portraits of the system which indicate correlation
between the signals of the two circuits.

It was found that, depending on the initial conditions and
on the coupling strength, both nonchaotic and chaotic syn-
chronization is possible for the coupled circuits. Nonchaotic
synchronization with positive correlation between signals
seems to be the most frequent situation for the investigated
system, and it was observed for all the initial conditions
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Figure 16: Phase diagram during the pseudosinusoidal oscillations of the two coupled circuits starting from chaotic-damped initial
conditions. From top: 𝑅

12

= 10000, 15000, 20000.

examined and for a wide range of 𝑅
12
values. In this case the

circuits exhibit pseudosinusoidal waveform oscillations with
a small periodic phase shift between corresponding signals
of the two coupled circuits. This results in curves forming a
hysteresis-like loop in the phase portraits.

Chaotic synchronization was found only for C-D initial
conditions at high coupling (small values of 𝑅

12
) and it is

produced by a rapid succession of uncorrelated and phase-
correlated oscillations. Phase portraits show points scattered
around the diagonal line, with positive correlation.The dura-
tion of the period during which the signals are uncorrelated
increases with 𝑅

12
and more smeared phase portraits occur.

With respect to the whole numerical results obtained in
this study, a peculiar situation was detected for C-C initial
conditions at 𝑅

12
= 9000. In this case the oscillations of the

two circuits are completely out of phase andwith significantly
different amplitudes. Phase portraits show complex patterns
with negative correlation that clearly indicate some kind of
synchronization.

Moreover, numerical integrations showed that transient
chaos, already reported in literature for single memristor-
based systems, also is possible for the coupled circuits

examined in this work. In fact, chaotic and uncorrelated
oscillations may precede for a significant time the onset of
pseudosinusoidal synchronization.

Finally, computer simulations also indicate the possibility
of uncorrelated coexistence of chaos and order. In partic-
ular, this situation can be a transient state which precedes
nonchaotic synchronization or, for low coupling strength, a
stationary state of the coupled circuits.

Therefore, the two mutually coupled memristor-based
chaotic circuits studied in this work display a complex
dynamic with a great variety of both chaotic and nonchaotic
synchronisms. A possible interpretation for this can be that,
due to the presence of the memory effect of the memristor
that results in different memductances values for the circuits,
the two considered dynamical systems are not completely
identical, and various kinds of synchronization are expected.
In effect, if complete synchronization appears only at high
coupling strength, some form of phase synchronization or
generalized synchronization seems to be more suitable for
interpreting most of the numerical results obtained in this
work, which could provide new insights for further study
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Figure 17: Phase diagram during the chaotic oscillations of the two circuits starting from chaotic-damped initial conditions and coupled with
high values of 𝑅

12

. From top: 𝑅
12

= 25000, 40000, 100000.

to better understand the spontaneous dynamic of coupled
memristor-based chaotic systems. In particular, although
the results presented here are not directly generalizable to
the case of multiple mutually coupled oscillators, because
emergent phenomena can occur in the case of collective
dynamics, they may be a useful reference for studying
multiple systems. For example, the spontaneous dynam-
ics of multiple memristor-based Chua’s circuits diffusively
coupled in a ring geometry has been investigated in our
recent paper [61]. In addition to chaotic and nonchaotic
synchronization, also emerging chaotic steady waves and
quasi-periodic traveling waves along the ring have been
observed.
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