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This study introduces an improved 𝐴
∗ algorithm for the real-time path planning of Unmanned Air Vehicles (UAVs) in a 3D large-

scale battlefield environment to solve the problem that UAVs require high survival rates and low fuel consumption. The algorithm
is able to find the optimal path between two waypoints in the target space and comprehensively takes factors such as altitude,
detection probability, and path length into account. It considers the maneuverability constraints of the UAV, including the safety
altitude, climb rate, and turning radius, to obtain the final flyable path. Finally, the authors test the algorithm in an approximately
2,500,000 squaremeter area containing radars, no-fly zones, and extreme weather conditions tomeasure its feasibility, stability, and
efficiency.

1. Introduction

With the development of various modern high-maneuver-
ability air defense weapons and increasingly perfected air
defense system, the capability of vehicles to break through
enemy defenses at medium and high altitudes has decreased.
Modern military low-altitude penetration is primarily per-
formed by UAVs. The key lies in the path planning for UAVs
[1]. Research in this area has been ongoing for many years,
and several algorithms were developed for this problem.

The artificial potential field method was developed by
Khatbi to plan the trajectory for the robots. This algorithm
is intelligible in its mathematical description and has been
widely used for real-time obstacle avoidance and smooth
trajectory control [2]. However, the method has its inherent
limits when applied to UAV path planning [3]; for example,
in complex mountainous terrains, there are often multiple
obstacles near the target point; it would result in a greater
repulsion than attraction for the UAV.Thus, the UAV cannot
reach the target [4]. Some researchers hoped to establish
a unified potential function to solve this problem [5];
unfortunately, it still requires regular obstacle to avoid huge
calculation requirements, which is nearly intolerable for real-
time path planning.

Some researchers have attempted to find the solution in
intelligent optimization algorithms, such as genetic algorithm
(GA) [6, 7] and ant colony algorithm (ACA) [8, 9]. The
former has good global searching maneuverability and can
quickly find all of the solutions without falling into local opti-
mal [7]. The latter is highly robust and good at searching for
better solution [8], and their experimental results present the
feasibility to solve this problem. However, these algorithms
have common limits that are difficult to avoid in solving large-
scale UAV path planning problems. For example, genetic
algorithm is weak for local search with low efficiency in the
later periods and easily reaches premature convergence [6].
Ant colony algorithm is sensitive to the initial parameters.
An inappropriate setting decreases the search rate and yields
poor results [9]. Furthermore, the real-time path planning of
UAVs requires high efficiency and accuracy; these algorithms
may not be proper solutions.

Graph search algorithms have been developed to find
the optimal trajectory between two nodes on connected
graphs.The greatest advantage of these algorithms, including
Dijkstra, Bellman-Ford, and 𝐴

∗ algorithms, is their straight-
forward implementation and low computational cost to get
the optimal path, which makes it the most suitable method
in theory [1]. The 𝐴

∗ solver is one of the most widely used
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algorithms among them. It was developed to analyze more
effectively the domain in order to avoid distributed obstacles,
which is largely applicable to robotics, space exploration,
and video games [10]. Though maturely used in 2D graph
searching, the 𝐴

∗ algorithm still faces some challenges in the
UAV path planning in a 3D complex battlefield environment
[11, 12], and previous research results may have problems
as follows: (1) most experimental space was simple artificial
topographies. The obstacles were few and regular, and com-
plex threats such as radars and extreme weather conditions
were not considered [13–15]; therefore, they did not verify
their feasibility, efficiency, and convergence in large-scale
complex space. (2) Some path planning is essentially per-
formed in a 2Dplane [16–18]. Some researchers use 2D spatial
partitioning methods, like Voronoi map, to divide the target
space into several sections to construct connected network
graph. (3) The algorithms did not obtain a flyable path; most
searching results are break lines or smoothing curves [14–17].
Themaneuverability of theUAV, including the turning radius,
safety altitude, climb rate, minimum step size, and fuel con-
sumption, should be considered to get a flyable path, which is
a fundamental difference from general robot path planning.

In light of the limitations above, the paper proposed an
improved 𝐴

∗ algorithm for the UAV path planning in a 3D
large-scale battlefield. This space is composed of real terrain
data, radars, no-fly zones, and extreme weather conditions.
The algorithm considers terrain following, threat avoidance,
and fuel consumption to obtain a flyable path that follows
the maneuverability constraints of a UAV. Meanwhile, an
assessment algorithmwas designed to evaluate the final path.
Finally, the algorithm was compared with ACA and GA to
present its advantage.

2. Materials and Methods

2.1. Modeling of the Battlefield Environment. The target space
in this paper consists of a DEMmap and battlefield plot infor-
mation. Because the modeling methods for the former are
very mature, this paper focuses on modeling the plot infor-
mation, which includes radars, no-fly zones, and extreme
weather.

Radars have been widely used to detect the UAVs in
modern air defense system. This paper does not treat radar
like a normal obstacle but build a detection probabilitymodel,
which distinguishes this research frommost previous studies
[19]. The process for computing the detection probability at
any point in the target space is essentially the inverse of
the radar equation and pattern function [20]. This value is
calculated as follows.

(1) From the target point and radar antenna’s location,
calculate the pitch angle, 𝜃, and use the antenna pattern
formula (1) to calculate the pattern function value 𝐹(𝜃) as
follows:

𝐹 (𝜃) = 𝑒
−2.78𝜃

2
/𝜃
2

𝐵 . (1)

(2) Calculate the range from the target point to the radar
center 𝑅(𝜃), and determine the maximum radar detection
range 𝑅max. Consider

𝑅 (𝜃) = 𝑅max ∗ √𝐹 (𝜃). (2)

(3) Invert the radar equation and the minimum SNR
formula to determine the radar detection probability. The
radar equation is shown in

𝑅max =
4
√

𝑃av𝐺
2

𝑇
𝑚
𝜆
2

𝜎

(4𝜋)
3

𝑘𝑇
0
𝐹
𝑛
𝑡𝐵[𝑆/𝑁]min𝐿

, (3)

where 𝑃av is the average transmitted power, 𝐺 is the antenna
gain, 𝜆 is the wavelength, 𝜎 is the radar cross section, 𝑘 is
the Boltzmann constant, 𝑇

𝑚
is the pulse recurrence period,

𝑡 is the pulse length, 𝑇
0
is the absolute temperature in 𝐾, 𝐹

𝑛

is the noise figure of the receiver, 𝐵 is the noise bandwidth
of the receiver, 𝐿 is the system loss factor, and [𝑆/𝑁]min is
the minimum SNR based on single pulse detection, which is
defined as follows:

[
𝑆

𝑁
]
min

= 𝐴 + 0.12𝐴𝐵 + 1.7𝐵,

𝐴 = ln[
0.62

𝑃
𝑓

] ,

𝐵 = ln [
𝑃
𝑑

1 − 𝑃
𝑑

] ,

(4)

where𝑃
𝑑
is the detection probability, and𝑃

𝑓
is the false alarm

probability. We can obtain the detection probability 𝑃
𝑑
from

formulas (3) and (4).
(4) Because modern radar normally adopts the standard

of “𝑀 detections in 𝑁 scans” [20], the detection probability,
𝑃, of any point must satisfy the following formula:

𝑝
𝑑
=

𝑁

∑

𝑀

𝑁!

𝐾! (𝑁 − 𝐾)!
𝑝
𝐾

(1 − 𝑝)
𝑁−𝐾

. (5)

This formula is nonlinear, so we can use the more
efficient Newton iterationmethod [21] to determine the radar
detection probability at any point in the target space.

Furthermore, we should also consider the influence of
the terrain on the signal propagation; see Figure 1. Point O
is the center of the radar antenna. If AB is the first mountain
section, the area below BC is a blind zone because the beam is
blocked by AB, and the final detection region in this section
is the blue area between OABCDO. Figure 2 shows the radar
coverage area ignoring the effect of terrain, while Figure 3
shows the real detection area. The real detection probability
at any point is given by the following:

𝑝 = {
Newton (𝑝

𝑑
(𝑥, 𝑦, 𝑧)) , (𝑥, 𝑦, 𝑧) ∈ 𝑍

𝑅
,

0, (𝑥, 𝑦, 𝑧) ∉ 𝑍
𝑅
,

(6)

where 𝑍
𝑅
is the radar coverage and Newton is the Newton

iteration method.
Extreme weather, including thunderstorms, blizzards,

hails, hazes, and strong airstreams, poses a significant threat
to the flight of UAVs. The climate threat model is divided
into 2D and 3D zones based on its sphere of action. The
former are described using a closed curve {𝑃

𝑖
(𝑥, 𝑦)}, where

𝑥 and 𝑦 represent the longitude and latitude, respectively,
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Figure 1: Radar signal propagation graph.

Figure 2: Sector radar coverage.

Figure 3: Terrain influence on radar coverage.

Figure 4: 2D climate threat model.

Figure 5: 3D climate threat model.

and are shown in Figure 4. The latter are described using
polygonal prisms ({𝑃

𝑖
(𝑥, 𝑦)},𝐻min, 𝐻max).𝐻min and𝐻max are

the altitude limits, respectively, and are shown in Figure 5.
No-fly zones are described similarly to the 2D climate model.

2.2. Path Planning Strategies

2.2.1. Target Space Partition. The 3D area described by the
DEM and DOM is a continuous raster space; therefore, there
is no node-edge graph network present in traditional path
searching, and spatial partitioning can solve this problem.

Some researchers used a Voronoi diagram to partition
the space at a certain altitude [22]. Because UAVs change
altitude during flight, thismethod is only applicable to certain
flight missions in flat areas with small section changes at
different altitudes. However, for mountainous terrain, this
method cannot obtain a valuable optimal path. In addition,
some researchers tried to use regular 3D boxes for the space
partitioning [14]. It means that there are at least 26 nodes to
expand during the searching process, which requires a large
amount of time and memory to obtain an optimal solution,
especially, in large space. This paper recommends a 2.5D
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Figure 6: Space partition model.

partition model to solve this problem. The model is actually
a surface partition model, which logically divides the DEM
data into a series of independent rectangular grids in some
accuracy. The terrain information in a grid is represented by
its center. Each center point records the longitude, latitude,
and altitude, as shown in Figure 6(a). The centers form a
routing network needed in the routing process. This model
has only 8 directions to expand for each node, which makes
it more efficient than the 3D grid partition method.

To further improve the convergence rate and efficiency
of the algorithm, some researchers recommend considering
the maneuverability constraints of UAVs [14, 17], including
the minimum step size and turning radius, in nodes expan-
sion. Satisfying the minimum step size requirement means
increase of the grid size, which does improve the search speed
to somedegree, but it causes an excessive loss of terrain details
andmay greatly decrease the accuracy of the searching result.
Considering the limits to the UAV’s speed, slope, and turning
angle may decrease expansion directions, but some global
optimal nodes may be missed due to the fact that the grid
points are not the final waypoints. However, this method can
be applied in local searching to filter out directions that the
angle to the global direction is too large (e.g., >150∘) as shown
in Figure 6(b). In addition, this method can also filter out
nodes in the no-fly zone and extreme climate threat as shown
in Figure 6(c).

2.2.2. Initial Path Based on the Improved 𝐴
∗ Algorithm. The

𝐴
∗ algorithm cost function should be defined to evaluate the

cost of the expansion nodes and obtain the node-edge list of
the optimal path. The function is as follows:

𝑓 (𝑛) = 𝑔 (𝑛) + ℎ (𝑛) , (7)

where 𝑛 is the node being expanded, 𝑔(𝑛) is the actual cost
to from the initial node to node 𝑛, and ℎ(𝑛) is the estimated
cost from node 𝑛 to the target node. The heuristic function
𝑔(𝑛) is the main factor affecting the search result, and a

reference formula was made [23] to plan a terrain following
path. Consider

𝐽 = ∫

𝑡
𝑓

0

(𝜔
1
𝑐
2

𝑡
+ 𝜔
2
ℎ
2

+ 𝜔
3
𝑓TA) 𝑑𝑡, (8)

where 𝑐
𝑡
is the distance from a specified route, ℎ is the altitude,

𝑓TA is the threat value, and 𝜔
1
, 𝜔
2
, and 𝜔

3
are their weights,

respectively.
This heuristic function may have some problems when

applied to the subject of this paper. First, 𝑐
𝑡
is a relative

distance, but ℎ is an absolute altitude, and they have differing
magnitudes. The distance to the center of the threat, 𝑓TA, is
positively correlatedwith the cost function, and the lower this
value is the better it is. However, 𝑐

𝑡
and ℎ run counter to this

value, which makes it not easy to assign a reasonable weight
to each factor. Second, the threat of radar should bemeasured
as a probability rather than a relative distance. Thus, it is
several orders of magnitude lower than the other factors and
the function would be too insensitive to 𝜔

1
, 𝜔
2
, and 𝜔

3
,

which makes finding three values to develop a meaningful
cost function for determining the optimal path difficult.

To solve the above problems, the cost function is
improved as follows:

𝐽 (𝑛) =

𝑛

∑

1

(𝜔
1
𝑐
𝑖
+ 𝜔
2
𝑝
𝑖
+ 𝜔
3
ℎ
𝑖
) . (9)

In this formula, 𝑐
𝑖
is the surface distance from node 𝑖 to

node 𝑖 − 1, which is the penalty for the route length. 𝑝
𝑖
is the

detection probability between nodes 𝑖 and 𝑖 − 1 and is aimed
at increasing the survival rate of the UAV. ℎ

𝑖
is the weighted

average altitude between nodes 𝑖 and 𝑖 − 1.
These three cost function factors all push in the same

direction; that is, the solution requires a reduced route length,
altitude, and detection probability. However, these factors
are not on the same magnitude, and the penalty factors
should be normalized. The key to adopting a 0-1 scale is
to determine the maximum and minimum values for each
factor. We cannot directly determine the maximum and
minimum distance because it varies for each route segment
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due to the salient relief; however, regardless of the real or
artificial terrain data, the maximum and minimum altitude
is either already known or can be calculated from the data.
Once ℎmax and ℎmin are determined, we can find the max and
min of 𝑐

𝑖
; see as shown in Figure 7. Consider

𝑐max = √Δ𝑑
2

+ (ℎmax − ℎmin)
2

∗ (𝑛
𝑖
− 1) ,

𝑐min = √𝑑
2

𝑖
− Δℎ
2

𝑖
,

(10)

where 𝑛
𝑖
= ⌈√𝑑

2

𝑖
− Δℎ
2

𝑖
/Δ𝑑⌉ is the number of interpolation

points between nodes 𝑖 and 𝑖 − 1 and 𝑑
𝑖
, Δℎ
𝑖
, and Δ𝑑 are the

Euclidean distance, altitude difference, and sampling interval,
respectively.

𝑝
𝑖
is the radar detection probability between nodes 𝑖 and

𝑖 − 1 and should be considered as the sum of all radars in the
space. The corresponding formula is shown as follows:

𝑝
𝑖
=

𝑚

∑

𝑖

𝑝 (𝑅
𝑖
) −

𝑚

∑

1≤𝑖≤𝑗≤𝑚

𝑝 (𝑅
𝑖
𝑅
𝑗
) +

𝑚

∑
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1
𝑅
2
⋅ ⋅ ⋅ 𝑅
𝑚
) ,

(11)

where 𝑝(𝑅
𝑗
) is the weighted average probability of detection

by the 𝑗th radar between nodes 𝑖 and 𝑖 − 1 for 𝑛
𝑖
interpolation

points; the detection probability of each interpolation point
can be calculated from formula (6). The normalization of
these three factors is shown as follows:

𝐶
𝑖
=

(𝑐
𝑖
− 𝑐min)

(𝑐max − 𝑐min)
,

𝐻
𝑖
=

(ℎ
𝑖
− ℎmin)

(ℎmax − ℎmin)
,

𝑃
𝑖
= 𝑝
𝑖
.

(12)

Formula (13) is the new cost function using these nor-
malizations. In this formula, 𝜔

1
+ 𝜔
2

+ 𝜔
3

= 1. Because
the route length, altitude, and detection probability were
normalized, the user can more directly assign the respective
weights according to the planning objective. Consider

𝑔 (𝑛) =

𝑛

∑

1

(𝜔
1
𝐶
𝑖
+ 𝜔
2
𝐻
𝑖
+ 𝜔
3
𝑃
𝑖
) . (13)

In formula (7), ℎ(𝑛)was defined as the Euclidean distance
from node 𝑛 to the target point, which helps node 𝑛 to
approach the target point. Consider

ℎ (𝑛) =
(𝑑
𝑛
− 𝑑min)

(𝑑max − 𝑑min)
. (14)

In this formula, 𝑑
𝑛
, 𝑑max, and 𝑑min are the Euclidean,

maximum, andminimumdistances from node 𝑛 to the target
point as calculated using a similar formula to (10). However,
it is worth mentioning that the sampling interval, Δ𝐷, is
generally greater than Δ𝑑 to increase the efficiency of ℎ(𝑛).
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Figure 7: Computation of 𝑐max and 𝑐min.

Once the target space and cost function are set, the stand-
ard 𝐴

∗ path searching process can begin. Open and closed
lists were defined to store the expanded nodes, which were
implemented with the minimum binary heap and linear lists
to increase the efficiency.

Furthermore, to compare the searching result in different
parameters, formula (15) is designed to evaluate the final path
as follows:

𝑉 = 𝜀
1

(𝐶 − 𝐶min)

(𝐶max − 𝐶min)
+ 𝜀
2

(𝐻 − 𝐻min)

(𝐻max − 𝐻min)
+ 𝜀
3
𝑃, (15)

where 𝐶 is the route length, 𝐻 is the mean altitude, and 𝑃 is
the detection probability.𝐶max and𝐻max are themaximum of
𝐶 and 𝐻, respectively, and 𝐶min and 𝐻min are the minimum.
𝜀
1
, 𝜀
2
, and 𝜀

3
are the weights of 𝐶, 𝐻, and 𝑃. Similar to the

formula of 𝑔(𝑛), a smaller value of 𝑉 indicates a better path.

2.2.3. The Path Optimization Algorithms. The search results
from Section 2.2.2 may not satisfy the UAV maneuverability
constraints, such as minimum step size, turning radius, turn-
ing angle, climb rate, and safety altitude.Therefore, a series of
algorithms are developed to obtain the final flyable path.

Theminimum step size and turning radius are constraints
on the top view. The former requires the length of each route
segment to be above a certain value 𝑆min, while the latter
requires every segment to be long enough for two continuous
turns; therefore, we have to compress the initial route. To
satisfy the two constraints, in this paper, the FFP algorithm is
used for the data compression [24], and the longest rectilinear
trend can be furthest preserved to avoid frequent turning of
the UAV. In addition, the turning angle constraint requires
every segment angle to be below a critical value, 𝐶min. A
potential field algorithm can be developed to solve this
problem [5]. As UAVs cannot fly along a broken line, some
researchers recommend various curve smoothing methods
such as the B-spline curve [25]. However, these methods
obviously conflict with the minimum step size constraint. In
fact, UAVs generally turn by escribing or flyby [26].

The climb rate and safety altitude are constraints on
the vertical view. UAVs tend to maintain posture without
frequent turns or climbs. If the altitude of two waypoints,
A and B, is different, the UAV does not fly directly from A
to B but first climbs to O from A at a certain climb rate
before flying horizontally to B as shown in Figure 8.The safety
altitude is the minimum distance from the ground to ensure
safe flight. Because of various factors, like strong turbulence
and automatic-control error, a UAV usually deviates from the
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A
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Figure 8: UAV climbing model.

predefined path.Therefore, the algorithm should consider the
safety altitude across the entire deviation area. This area is
the safety corridor of the path, and its mathematical model
is shown in Figure 9 [26]. This corridor is divided into the
primary and secondary areas with the former providing the
entire safety altitude ℎ and the latter providing safety between
0 and ℎ. The safety altitude, Δℎ, at any point is calculated as
follows:

Δℎ = ℎ ∗ (1 − 2 ∗
Δ𝐿

𝐿
) , (16)

where ℎ is the safety altitude, Δ𝐿 is the distance between the
target point and the predefined path, and 𝐿 is the width of the
safety corridor.

Based on the mathematic models above, we propose the
following algorithm to meet the safety altitude constraint
between waypoint A and waypoint B.

(1) Divide AB into AO and OB, and O is the level-flight
point calculated from the climb rate at A.

(2) Calculate the minimum signed altitude difference,
Δ𝐻
1
, for the OB segment. Begin the spatial interpola-

tion for OB to obtain a series of interpolated points,
{𝑃
𝑖
}. Divide the cross section of 𝑃

𝑖
into a primary

area and two secondary areas, and calculate the
corresponding minimum signed heights. Consider

(Δ𝐻
1
)
𝑖
= min (min (ℎB − Δℎ − ℎ

𝑗
) ,min (ℎB − ℎ − ℎ

𝑘
)) ,

(17)

where (Δ𝐻
1
)
𝑖
is the minimum signed height differ-

ence for cross section 𝑃
𝑖
, ℎ
𝐵
is the altitude of the OB

segment, ℎ is the entire safety altitude, Δℎ is the safety
altitude of the secondary areas as calculated from
formula (16), ℎ

𝑗
is the altitude of the interpolation

point 𝑗 in the primary area, and ℎ
𝑘
is the altitude of

the interpolation point 𝑘 in the secondary area. The
minimum (Δ𝐻

1
)
𝑖
value can be obtained by traversing

{𝑃
𝑖
}.

(3) Calculate the minimum signed height difference,
Δ𝐻
2
, of the AO segment. First, get the interpolation

points, {𝑄
𝑖
}, between AO by spatial interpolation,

h

L

L/2L/4 L/4

Δh

ΔL

A

Figure 9: Route safety altitude model.

and the minimum signed height difference for cross
section 𝑖 of 𝑄

𝑖
is calculated by

(Δ𝐻
2
)
𝑖
= min (min (ℎ

𝑖
− Δℎ − ℎ

𝑗
) ,min (ℎ

𝑖
− ℎ − ℎ

𝑘
)) ,

(18)

where ℎ
𝑖
= ℎA + AO ∗ (ℎO − ℎA)/A𝑄

𝑖
, and Δ𝐻

2
can

be calculated by traversing {𝑄
𝑖
}.

(4) Adjust the altitude of O and B to ℎB + Δ𝐻
1
and the

altitude of A to ℎA + Δ𝐻
2
. Create a radial through

A using the climb rate and calculate the intersection
with OB, which is the new level-flight point O.

3. Results and Discussion

The test space was about 2,500,000Km2 between Linzhi in
Tibet and Chengdu in Sichuan province and was constructed
with SRTM terrain and LANDSAT image data in 30m
accuracy. The area is a mountainous district that can verify
the feasibility and adaptability of the algorithms in this paper.
The algorithms were developed with C# and Direct 3D, and
they have been successfully used for a 3DGIS platform, Gaea
Explorer [27]. The hardware environment was as follows:
CPU: Intel Core2 Duo E8200, memory: Kinston 1G, video
card: ATI Radeon HD 2600XT.

To prove the feasibility of the algorithms in this paper,
we developed the parameters in Table 1. Before searching, we
defined the UAV parameters in Table 2.

In Figure 10, (a) shows the initial search result, (b) shows
the compression results, (c) shows the smoothing results, (d)
shows the results that consider the climb rate, (e) shows the
safety corridor result, (f) shows the results that consider the
safety altitude, and both (g) and (h) show the local features of
the safety corridor from the top and front views, respectively.
To prove the safety of the final path, we calculated the profile
at ±𝐿/4 and ±𝐿/2, as shown in Figure 11. From these results,
we determined that the algorithms were effective for low-
altitude UAV path planning.

In Table 3, four experimental groups were designed to
show the adaptability, convergence, and efficiency of the
algorithm at various distances and grid sizes. Table 4 shows
the parameters to evaluate the final path, where 𝐻aver is the
average altitude of the starting point and target point.
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Table 1: The algorithm parameters.

Starting point (∘, ∘, M) Target point (∘, ∘, M) Surface distance (KM) Grid size (∘) 𝜔
1
: 𝜔
2
: 𝜔
3

93.832779 94.372746
59.783 0.01 1 : 2 : 129.127954 29.31984

2949.2 2923.6

Table 2: UAV maneuverability parameters.

Speed (KM/H) Slope (∘) Climb rate (M/S) Turning method Safety altitude (M) Safety corridor width (NM)
300 20 120 Escribing 300 2

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Algorithms results.
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Table 3: Four control groups.

Starting point (∘, ∘, M) Target point (∘, ∘, M) Surface distance (KM) Grid size (∘) 𝜔
1
: 𝜔
2
: 𝜔
3

93.832779 94.372746
59.783

0.005

1 : 2 : 1

29.127954 29.31984 0.01
2949.2 2923.6 0.02
90.739257 94.835207

419.073
0.005

29.292307 29.506482 0.01
3606.3 2915.5 0.02
87.631027 94.816805

729.349
0.005

29.130563 29.463092 0.01
3985.1 2914.9 0.02
93.562434 105.587785

1236.916
0.005

29.168065 30.119375 0.01
2976.5 399.4 0.02

Table 4: Assessment parameters.

Minimum length (KM) Maximum length (KM) Minimum altitude (M) Maximum altitude (M) 𝜀
1
: 𝜀
2
: 𝜀
3

Surface distance 2 ∗ surface distance 𝐻aver 4500 1 : 1 : 1

Table 5 shows that the algorithm can quickly determine
the optimal path for various distances and grid sizes, which
means that the algorithm is stable, convergent, and efficient.
The time cost is proportional to the distance and inversely
proportional to the grid size. Furthermore, the assessment
value is smaller when the space partition grid is 0.01∘ rather
than 0.005∘ or 0.02∘.

To present the influence on the searching result of the
changes of 𝜔

1
: 𝜔
2

: 𝜔
3
, the four groups in Table 4 were

compared at the ratio of the weight factors 𝜔
1
, 𝜔
2
, and 𝜔

3

being equal to 2 : 1 : 1, 1 : 2 : 1, or 1 : 1 : 1. The result in Table 6
shows that the time cost is proportional to the weight of the
route length and inversely proportional to the weight of the
route altitude. A higher weight of the length results in faster
approach to the target point, but the UAVs would be more
likely to be detected by enemies because higher nodes may
be chosen in nodes extension. Considering the survival rate
of the UAVs, a higher weight of the altitude may be more
reasonable, and it was seemingly backed up by Table 6, which
shows that the assessment value is the smallest when the
weight ratio is 1 : 2 : 1 rather than 1 : 1 : 1 or 2 : 1 : 1.

Figures 12(a)–12(d) show the results of the four compari-
son groups at a grid size of 0.01∘ and a weight ratio of 1 : 2 : 1.

We created a battlefield environment of approximately
2,500,000Km2, as shown in Figure 13, to demonstrate the
algorithm’s adaptability and convergence for large-scale com-
plex situations including no-fly zones, extreme weather, and
radars.

Table 7 shows the search results for the four groups at a
grid size of 0.01∘.The results prove that the algorithm is stable
and convergent even for a complex battlefield environment.
By comparing with the results shown in Table 4, we can see
that the search time and route altitude increased slightly.
Figure 14(a) shows the searching results for the first group;
Figure 14(b) shows the local features.The other images are the
results for the other three groups. These results indicate that

the algorithm can effectively avoid no-fly zones and extreme
weather while automatically searching for blind zones in
radars network to accomplish a low-altitude penetration.

To present the advantages of the algorithm in solving the
problem, we compared it with the ACA and the GA using the
same parameters as in Table 3. The grid size is 0.001, and the
iteration of ACS and GA is 2000.

The comparison results in Table 8 show that our algo-
rithm has greater advantage in time efficiency than the other
two algorithms, especially, in large scales, which is quite
important in real-time path planning. On the surface, the
advantage in the searching result is not so obvious, but the
stability and convergence to get the optimal path still have
comparative preponderance.

4. Conclusions

An improved 𝐴
∗ algorithm was developed for the path

planning in large-scale 3D battlefields. The paper recom-
mended a 2.5D spatial partition method for the 3D raster
space, proposed a probability calculation model for radars
network, and improved the 𝐴

∗ cost function to get an
optimum route by considering the route length, the altitude,
and the detection probability. A series of path optimization
algorithms were developed to follow the maneuverability
constraints of UAVs to obtain a final flyable path, and an
assessment algorithm was designed to evaluate the path. The
experimental results show that the improved 𝐴

∗ algorithm
is stable, convergent, and efficient, and the comparison with
ACA and GA shows its great advantage.

However, some issues should be further discussed. First,
it is not so clear to quantify the planning goal to the optimal
parameters, which is the key focus of decision makers. It was
indicated that a comparatively good result was obtained at a
grid size of 0.01∘ and a weight ratio of 1 : 2 : 1, but it is not easy
to determine the exact optimal value of them.Table 6 presents
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Table 5: The comparison results.

Assessment value Route length (KM) Detection probability Mean altitude (M)

Total calculation time (S)

Initial path Compress and
smoothen

Altitude
adjusting

0.133043 60.4 0 3542.2 0.169
0.012 0.121 0.036

0.129928 60.611 0 3528.9 0.129
0.004 0.086 0.039

0.207789 59.932 0 3907.2 0.104
0.002 0.065 0.037

0.346597 487.291 0 4347.6 4.462
3.19 0.941 0.331

0.207219 441.867 0 3963.8 1.51
0.271 0.952 0.287

0.395662 427.289 0 4707.4 1.138
0.086 0.774 0.278

0.450168 853.568 0 4689.2 13.063
9.916 2.693 0.454

0.273318 805.585 0 4201.2 3.268
0.543 2.241 0.484

0.328756 778.665 0 4414.6 2.202
0.068 1.684 0.45

0.323873 1591.054 0 3615.2 52.065
44.584 6.538 0.788

0.27795 1521.588 0 3385.6 11.488
3.63 6.915 0.943

0.294937 1399.922 0 3808.5 7.251
0.79 5.763 0.698

(a) (b) (c) (d)

Figure 12: Algorithms results at grid size of 0.01∘.

Figure 13: 3D battlefield environment.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14: Algorithms results for the 3D battlefield environment.

Table 6: The comparison of different weights.

Assessment value Route length (KM) Detection probability Mean altitude (M)

Total calculation time (S)

Initial path Compress and
smoothen

Altitude
adjusting

0.189288 58.95 0 3846.1 0.132
0.004 0.091 0.037

0.130927 60.611 0 3528.9 0.129
0.004 0.086 0.039

0.27982 59.201 0 4264.2 0.135
0.003 0.084 0.042

0.379233 413.297 0 4687.7 1.121
0.103 0.764 0.254

0.207394 441.867 0 3963.8 1.51
0.271 0.952 0.287

0.436574 423.076 0 4872.4 1.364
0.088 0.983 0.293

0.413541 751.683 0 4720.5 2.316
0.261 1.643 0.412

0.273318 805.585 0 4201.2 3.268
0.543 2.241 0.484

0.482125 769.564 0 4910.8 2.58
0.179 1.875 0.526

0.285577 1342.626 0 3856.8 6.137
1.327 4.112 0.698

0.27795 1521.588 0 3385.6 11.488
3.63 6.915 0.943

0.310799 1398.655 0 3942.2 7.743
1.158 5.371 1.214
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Table 7: The results in the battlefield environment.

Waypoints
number Route length (KM) Detection probability Mean altitude (M)

Total calculation time (S)

Initial path Compress and
smoothen

Altitude
adjusting

22 143.436 0.0019 3953.1 0.483
0.093 0.308 0.082

71 513.648 0.0023 4655.4 2.361
0.77 1.264 0.327

111 865.65 0.0017 5133.7 6.048
2.732 2.871 0.445

215 1592.591 0.0011 3750.4 19.146
11.998 6.127 1.021

Table 8: Comparison results of different algorithms.

Algorithm
type Assessment value Route length (KM) Detection probability Mean altitude (M)

Total calculation time (S)

Initial path Compress and
smoothen

Altitude
adjusting

Improved A∗ 0.130927 60.611 0 3528.9 0.129
0.004 0.086 0.039

ACS 0.133615 61.678 0 3513.6 90.715
110.265 110.265 110.265

GA 0.134115 59.898 0 3562.5 110.265
110.142 0.092 0.031

Improved A∗ 0.207394 441.867 0 3963.8 1.51
0.271 0.952 0.287

ACS 0.231413 446.073 0 4041.3 1396.646
1394.478 1.957 0.211

GA 0.223132 450.576 0 3997.2 1769.705
1766.738 2.732 0.235

Improved A∗ 0.273318 805.585 0 4201.2 3.268
0.543 2.241 0.484

ACS 0.27901 793.658 0 4236.3 3652.089
3643.819 7.717 0.553

GA 0.285504 799.532 0 4248.3 2944.994
2931.554 12.793 0.647

Improved A∗ 0.27795 1521.588 0 3385.6 11.488
3.63 6.915 0.943

ACS 0.280544 1496.949 0 3463.5 11541.301
10848.625 31.539 1.137

GA 0.297615 1588.795 0 3398.7 7645.141
7570.303 73.15 1.688

that the path is better when the value of 𝜔
1
: 𝜔
2
: 𝜔
3
is 1 : 2 : 1

rather than 1 : 1 : 1 or 2 : 1 : 1, but the assessment still depends
on the parameters in Table 4.

Second, since the final path cannot be directly obtained by
the 𝐴

∗ process as mentioned in Section 2.2.1., the searching
result after the optimization process may no longer be the
optimal solution. Although we adjusted the algorithms to

locally optimize the route segments, globally optimizing the
entire path is still to be solved.

Finally, the comparison of the improved 𝐴
∗ algorithm

with ACA and GA shows its great superiority in time
efficiency, but the advantage is not so obvious in the planning
result, and more iterations of ACA or GA may even obtain
better result than 𝐴

∗ algorithm. However, considering the
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internal limitations of the latter, like their stability (sensitive
to initial parameters), convergence, and efficiency, they need
to be further studied to be used in the UAV path planning.
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