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For nonlinear discrete-time stochastic systems, a fuzzy controller design methodology is developed in this paper subject to state
variance constraint and passivity constraint. According to fuzzy model based control technique, the nonlinear discrete-time
stochastic systems considered in this paper are represented by the discrete-time Takagi-Sugeno fuzzy models with multiplicative
noise. Employing Lyapunov stability theory, upper bound covariance control theory, and passivity theory, some sufficient conditions
are derived to findparallel distributed compensation based fuzzy controllers. In order to solve these sufficient conditions, an iterative
linearmatrix inequality algorithm is applied based on the linearmatrix inequality technique. Finally, the fuzzy stabilization problem
for nonlinear discrete ship steering stochastic systems is investigated in the numerical example to illustrate the feasibility and validity
of proposed fuzzy controller design method.

1. Introduction

The nonlinear control systems have gained more and more
research attention, and lots of results have been published
[1–5]. When analyzing and designing nonlinear dynamical
systems, there are a wide range of nonlinear analysis tools,
among which the most common and wildly used is lin-
earization because of the powerful tools we know for linear
systems. On the other hand, due to the wide appearance
of the stochastic phenomena in almost every aspect of our
daily life, stochastic systems which have found successful
applications in many branches of science and engineering
practice have stirred quite a lot of research interests during
the past few decades; see [1, 2, 6, 7] and the references therein.
Therefore, the control problems for nonlinear stochastic
systems have been studied extensively so as to meet ever-
increasing demand toward systems with both nonlinearities
and stochasticity. As far as nonlinear systems are concerned,
the multiple performance constrained control problem has
gained some research interests, for example, mixed 𝐻

2
/𝐻
∞

control [8–10]. However, the 𝐻
2
/𝐻
∞

controllers minimize
a linear quadratic performance index without guaranteeing

the variance constraints with respect to individual system
states. In order to deal with the individual state variance
constrained control problem, the extending approach of
covariance control theory [1, 2, 11, 12] is investigated in this
paper subject to passivity performance constraint.

The performance constraints considered in this paper
include individual state variance constraint and passivity
performance constraint. The covariance control theory [1, 2,
11, 12] has provided a more direct methodology for achieving
the individual variance constraints than the Linear Quadratic
Gaussian (LQG) control theory. It has been shown that the
covariance control approach is capable of solvingmultiobjec-
tive design problems, which has found applications in dealing
with transient responses, round off errors in digital control,
residence time/probability in aiming control problems, and
stability, robustness in the presence of parameter pertur-
bations [13]. In fact, this type of control that provides the
ability to assign the second moment of the system state offers
many advantages, such as higher performance and improved
robustness. Extending the covariancecontrol theory, the
individual state variance constrainedcontrol problem for the
nonlinear stochastic systems is alsosuccessfully investigated
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based onTakagi-Sugeno (T-S) fuzzymodels [14, 15].However,
the difficulty of covariance control methods [1, 2, 11–15] is
that the designers should assign a suitable state covariance
matrix to achieve the Lyapunov equation conditions. In
order to improve the covariance control approach, this paper
tries to derive novel sufficient conditions that can be solved
by Linear Matrix Inequality (LMI) technique.

In addition to individual state variance constraint, the
passivity constraint is also considered in this paper. In
recent years, the theory of passive systems,c which plays
an important role in system and control areas, has been
attracting a great deal of research interests and many results
have been reported so far; see [16–25]. In [16, 17], an LMI
method was used to design the state feedback controller
ensuring both the asymptotic stability and strictlyquadratic
passivity. In [18], the passive control problem hasbeen solved
for time-delay systems. For nonlinear controlsystems with
multiplicative noises, the passivity constrained control was
studied in [21, 22] via T-S fuzzy models. The passive theory
provides us a useful tool for the analysis of systems with
multiple performance criteria. However, few literatures have
been concerned with the multiobjective design problem for
nonlinear stochastic systems. So far, the variance-constrained
controller design problem with passivity constraint has not
yet been studied adequately for nonlinear discrete-time
stochastic systems.

It is worth mentioning that fuzzy control of nonlinear
discrete-time stochastic systems subject to individual state
variance constraint and passivity constraint is still a challeng-
ing problem for the control engineers. Thus, the motivation
of this paper is to investigate the multiple constrained fuzzy
controller design methodology for nonlinear discrete-time
stochastic systems via T-S fuzzy models with multiplicative
noises. T-S fuzzy model is constructed by a set of local linear
subsystems. Then, a model-based fuzzy controller can be
developed to stabilize this T-S fuzzy model [10, 14, 15, 21, 22,
26–28].The advantage of controller synthesis for such a fuzzy
model is that the linear control methods can be used. Based
on the Parallel Distributed Compensation (PDC) technique
[10, 14, 15, 21, 22], some approaches have been developed
to design the fuzzy controllers for manynonlinear systems
via T-S fuzzy models. In addition, fuzzycontrol approach
was also successfully employed to design controllers for
dynamic systemswithMarkov jumps in [29, 30]. Applying the
PDC based fuzzy control, the sufficient conditions derived
in this paper are mostly Bilinear Matrix Inequality (BMI)
problems which are difficult to solve by numerically convex
optimization technique. For this reason, an iterative manner,
which is called Iterative Linear Matrix Inequality (ILMI)
algorithm [31, 32], is applied in this paper to find suitable
fuzzy control gains.

By employing PDC technique, the first contribution of
this paper is to develop a fuzzy control approach for nonlinear
discrete-time stochastic systems such that individual state
variance constraint and passivity constraint are all satisfied.
For the practical nonlinear stochastic systems represented by
the T-S fuzzy models with multiplicative noises, the second
contribution of this paper is to develop an ILMI algorithm

to solve the derived BMI sufficient conditions that achieve
individual state variance constraint and passivity constraint,
simultaneously. In order to illustrate the applicability and effi-
ciency of proposed fuzzy controller design approach, a non-
linear discrete ship steering stochastic system is considered
in this paper. Based on the T-S fuzzy modeling technique,
the fuzzy controller design methods for the nonlinear dis-
crete ship steering system have been developed in [33, 34].
Considering the nonlinear discrete ship steering system in
[33, 34], a fuzzy controller designmethodology is investigated
in the numerical example to achieve the above multiple
performance constraints.

2. Performance Constraint Descriptions
and Problem Statements

Consider a nonlinear discrete ship steering stochastic system,
which is constructed by a discrete-time T-S fuzzy model with
multiplicative noise as follows.

Rule 𝑖:

IF 𝑧
1
(𝑘) is 𝑀

𝑖1
and ⋅ ⋅ ⋅ and 𝑧

𝑞
(𝑘) is 𝑀

𝑖𝑞

then 𝑥 (𝑘 + 1)

= [A
𝑖
+

𝑚

∑

𝑒=1

N
𝑒𝑖
V
𝑒𝑖
(𝑘)] 𝑥 (𝑘) + B

𝑖
𝑢 (𝑘) +D

𝑖
𝑤 (𝑘)

(1a)

𝑦 (𝑘) = C
𝑖
𝑥 (𝑘) +H

𝑖
𝑤 (𝑘) , (1b)

where 𝑧
1
(𝑘), . . . , 𝑧

𝑞
(𝑘) are the premise variables, 𝑀

𝑖𝑞
is the

fuzzy set, 𝑞 is the premise variable number, 𝑟 is the number
of fuzzy rules, 𝑥(𝑘) ∈ R𝑛𝑥 is the state vector, 𝑢(𝑘) ∈ R𝑛𝑢

is the input vector, 𝑦(𝑘) ∈ R𝑛𝑦 is the output vector, and
the processes 𝑤(𝑘) ∈ R𝑛𝑤 and V

𝑒𝑖
(𝑡) ∈ R are mutu-

ally independent zero-meanGaussianwhite noise with inten-
sities W (W > 0) and 1, respectively. It is assumed that
𝐸{𝑤(𝑡)} = 0, 𝐸{V

𝑒𝑖
(𝑡)} = 0, 𝐸{𝑥(𝑡)𝑤(𝑡)} = 𝐸{𝑥(𝑡)}𝐸{𝑤(𝑡)} = 0,

𝐸{𝑥(𝑡)V
𝑒𝑖
(𝑡)} = 𝐸{𝑥(𝑡)}𝐸{V

𝑒𝑖
(𝑡)} = 0, and 𝐸{𝑤(𝑡)V

𝑒𝑖
(𝑡)} =

𝐸{𝑤(𝑡)}𝐸{V
𝑒𝑖
(𝑡)} = 0. The matrices A

𝑖
∈ R𝑛𝑥×𝑛𝑥 , B

𝑖
∈ R𝑛𝑥×𝑛𝑢 ,

D
𝑖
∈ R𝑛𝑥×𝑛𝑤 ,N

𝑒𝑖
∈ R𝑛𝑥×𝑛𝑥 ,C

𝑖
∈ R𝑛𝑦×𝑛𝑥 , andH

𝑖
∈ R𝑛𝑦×𝑛𝑤 are

constant.
Given the pair (𝑥(𝑘), 𝑢(𝑘)), the overall fuzzymodel can be

described as follows:

𝑥 (𝑘 + 1) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘))

× {[A
𝑖
+

𝑚

∑

𝑒=1

N
𝑒𝑖
V
𝑒𝑖
(𝑘)]

× 𝑥 (𝑘) + B
𝑖
𝑢 (𝑘) +D

𝑖
𝑤 (𝑘) } ,

(2a)

𝑦 (𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘)) {C

𝑖
𝑥 (𝑘) +H

𝑖
𝑤 (𝑘)} , (2b)
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where ℎ
𝑖
(𝑧(𝑘)) = 𝜔

𝑖
(𝑧(𝑘))/∑

𝑟

𝑖=1
𝜔
𝑖
(𝑧(𝑘)),𝜔

𝑖
(𝑧(𝑘)) = ∏

𝑞

𝑗=1
𝑀
𝑖𝑗

(𝑧
𝑗
(𝑘)), ℎ

𝑖
(𝑧(𝑘)) ≥ 0, and ∑𝑟

𝑖=1
ℎ
𝑖
(𝑧(𝑘)) = 1.

Applying PDC technique, the fuzzy controller is designed
to share the same IF part of the T-S fuzzy model (1a) and
(1b). The corresponding fuzzy controller can be represented
as follows.

Rule 𝑖:

IF 𝑧
1
(𝑘) is 𝑀

𝑖1
and . . . and 𝑧

𝑞
(𝑘) is 𝑀

𝑖𝑞

THEN 𝑢 (𝑘) = F
𝑖
𝑥 (𝑘)

(3)

or

𝑢 (𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘)) {F

𝑖
𝑥 (𝑘)} . (4)

Substituting (4) into (2a), the closed-loop T-S fuzzy model
can be obtained as follows:

𝑥 (𝑘 + 1) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘))

× [(A
𝑖
+

𝑚

∑

𝑒=1

N
𝑒𝑖
V
𝑒𝑖
(𝑘) + B

𝑖
F
𝑗
)

× 𝑥 (𝑘) +D
𝑖
𝑤 (𝑘) ] .

(5)

The first performance constraint considered in this paper
is the passivity constraint. Via different definitions of supply
function of passivity theory, the systems can be stabilized for
achieving different types of attenuation performance with
requirement energy. In general, the strictly input passive
type constraint is usually used to constrain the disturbance
effect and to study the stability of fuzzy systems. The strictly
input passive constraint can be introduced in the following
definition.

Definition 1 (see [19]). The system (5) with external distur-
bance𝑤(𝑘) and output 𝑦(𝑘) is said to be strictly input passive
if the following inequality is achieved:

𝐸

{

{

{

2

𝑘
𝑞

∑

𝑘=0

𝑦
𝑇
(𝑘) 𝑤 (𝑘)

}

}

}

> 𝐸

{

{

{

𝑘
𝑞

∑

𝑘=0

𝛾𝑤
𝑇
(𝑘) 𝑤 (𝑘)

}

}

}

(6)

for all 𝛾 ≥ 0 and 𝑘
𝑞
is a positive integer that denotes terminal

sampled time of control.

Considering each subsystem of the T-S fuzzy model (5),
the steady state covariance matrix of the state vector 𝑥(𝑡) has
the following form:

X
𝑖
= X𝑇
𝑖
> 0, (7)

where X
𝑖
= lim
𝑘→∞

𝐸[𝑥(𝑘)𝑥
𝑇
(𝑘)] and X

𝑖
is the unique solu-

tion of the following Lyapunov equation for each rule [35]:

(A
𝑖
+ B
𝑖
F
𝑖
)X
𝑖
(A
𝑖
+ B
𝑖
F
𝑖
)
𝑇

− X
𝑖

+D
𝑖
WD𝑇
𝑖
+

𝑚

∑

𝑒=1

N
𝑒𝑖
X
𝑖
N𝑇
𝑒𝑖
= 0,

𝑖 = 1, 2, . . . , 𝑟.

(8)

The second performance constraint considered in this paper
is the state variance constraint that is defined as follows:

[X
𝑖
]
𝑘𝑘
≤ 𝜎
2

𝑘
, (9)

where [⋅]
𝑘𝑘

denotes the kth diagonal element of matrix [⋅]
and 𝜎

𝑘
, 𝑘 = 1, 2, . . . , 𝑛

𝑥
, denote the root-mean-squared

constraints for the variance of system states.
The following lemma is useful for the derivations of the

subsequent theorem that provides sufficient conditions to
achieve the stability, passivity constraint (6), and individual
state variance constraint (9) for the closed-loop system (5).

Lemma 2 (see [36]). Given constant matrices E
1
, E
2
, and E

3
,

where E
1
= E𝑇
1
and E

2
= E𝑇
2
> 0, then E

1
+ E
3
E−1
2
E𝑇
3
< 0 if

and only if

[
E
1

E𝑇
3

E
3
−E
2

] < 0 𝑜𝑟 𝑒𝑞𝑢𝑖V𝑎𝑙𝑒𝑛𝑡𝑙𝑦 [
−E
2
E
3

E𝑇
3

E
1

] < 0. (10)

The purpose of this paper is to find feedback gains F
𝑖

that can be used to construct the PDC-based fuzzy controller
(4) such that the passivity constraint (6) and individual state
variance constraint (9) are all satisfied, simultaneously.

3. Condition Derivation for Achieving
Multiple Performance Constraints

In this section, the sufficient conditions are derived to guaran-
tee the stability, individual variance constraint, and passivity
constraint of closed-loop T-S fuzzymodel withmultiplicative
noises. These sufficient conditions are derived based on the
Lyapunov theory and passivity theory. Improving the covari-
ance control theory, the sufficient conditions are derived in
the following theorem by assigning a common upper bound
matrix of the state covariance matrices for all fuzzy rules.

Theorem 3. If there exist positive definite matrices X > 0,
P > 0, feedback gains F

𝑖
, and dissipative rate 𝛾 satisfying the

following sufficient conditions, then the closed-loop system (5)
is asymptotically stable, strictly input passive and [X

𝑖
]
𝑘𝑘
≤ 𝜎
2

𝑘
:

[
Q
𝑖𝑗
Γ
𝑇

𝑖

Γ
𝑖
Ω
] < 0, (11)

X < diag (𝜎2
1
, . . . , 𝜎

2

𝑛
𝑥

) , (12)

where
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Q
𝑖𝑗
=

[
[
[
[
[
[
[
[

[

−X +D
𝑖
WD𝑇
𝑖
+

𝑚

∑

𝑒=1

N
𝑒𝑖
XN𝑇
𝑒𝑖

G
𝑖𝑗

0 0 0

G𝑇
𝑖𝑗

−P −C𝑇
𝑖

0 G𝑇
𝑖𝑗

0 −C
𝑖
D𝑇
𝑖
PD
𝑖
+ 𝛾I −H

𝑖
−H𝑇
𝑖

D𝑇
𝑖
P 0

0 0 PD
𝑖

−I 0

0 G
𝑖𝑗

0 0 −I

]
]
]
]
]
]
]
]

]

,

Γ
𝑖
=
[
[

[

0 N
1𝑖
0 0 0

...
...

...
...

...
0 N
𝑚𝑖
0 0 0

]
]

]

,

Ω = diag(−X
𝑚
, . . . , −

X
𝑚
) .

(13)

In addition, G
𝑖𝑗
= A
𝑖
+ B
𝑖
F
𝑗
, P = X−1, and diag(𝜎2

1
, . . . , 𝜎

2

𝑛
𝑥

)

denotes a diagonal matrix with the diagonal elements
𝜎
2

1
, 𝜎
2

2
, . . ., and 𝜎2

𝑛
𝑥

.

Proof. In order to analyze the stability of the closed-loop
T-S fuzzy system (5), a Lyapunov function is chosen as

𝑉(𝑥(𝑘)) = 𝑥
𝑇
(𝑘)P𝑥(𝑘), where P = P𝑇 > 0. The expected

value of differential of the Lyapunov function 𝑉(𝑥(𝑘)) along
the trajectories of (5) is given as follows:

𝐸 {Δ𝑉 (𝑥 (𝑘))}

= 𝐸 {𝑥
𝑇
(𝑘 + 1)P𝑥 (𝑘 + 1) − 𝑥𝑇 (𝑘)P𝑥 (𝑘)}

= 𝐸

{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑟

∑

𝑘=1

𝑟

∑

𝑙=1

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘)) ℎ

𝑘
(𝑧 (𝑘)) ℎ

𝑙
(𝑧 (𝑘))

× {[(A
𝑖
+

𝑚

∑

𝑒=1

N
𝑒𝑖
V
𝑒𝑖
(𝑘) + B

𝑖
F
𝑗
)𝑥 (𝑘) +D

𝑖
𝑤 (𝑘)]

𝑇

P

× [(A
𝑘
+

𝑚

∑

𝑔=1

N
𝑔𝑖
V
𝑔𝑖
(𝑘) + B

𝑘
F
𝑙
)𝑥 (𝑘) +D

𝑘
𝑤 (𝑘)] − 𝑥

𝑇
(𝑘)P𝑥 (𝑘)}

}

}

}

≤ 𝐸

{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘))

× {[(A
𝑖
+

𝑚

∑

𝑒=1

N
𝑒𝑖
V
𝑒𝑖
(𝑘) + B

𝑖
F
𝑗
)𝑥 (𝑘) +D

𝑖
𝑤 (𝑘)]

𝑇

P
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×[(A
𝑖
+

𝑚

∑

𝑔=1

N
𝑔𝑖
V
𝑔𝑖
(𝑘) + B

𝑖
F
𝑗
)𝑥 (𝑘) +D

𝑖
𝑤 (𝑘)] − 𝑥

𝑇
(𝑘)P𝑥 (𝑘)}

}

}

}

= 𝐸

{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘))

× {𝑥
𝑇
(𝑘) (A

𝑖
+ B
𝑖
F
𝑗
)
𝑇

P (A
𝑖
+ B
𝑖
F
𝑗
) 𝑥 (𝑘)

− 𝑥
𝑇
(𝑘)P𝑥 (𝑘) + 𝑥𝑇 (𝑘) (A

𝑖
+ B
𝑖
F
𝑗
)
𝑇

PD
𝑖
𝑤 (𝑘)

+ 𝑤
𝑇
(𝑘)D𝑇
𝑖
P (A
𝑖
+ B
𝑖
F
𝑗
) 𝑥 (𝑘)

+ 𝑤
𝑇
(𝑘)D𝑇
𝑖
PD
𝑖
𝑤 (𝑘) +

𝑚

∑

𝑔=1

𝑥
𝑇
(𝑘) (A

𝑖
+ B
𝑖
F
𝑗
)
𝑇

PN
𝑔𝑖
V
𝑔𝑖
(𝑘) 𝑥 (𝑘)

+

𝑚

∑

𝑒=1

𝑥
𝑇
(𝑘) V𝑇
𝑒𝑖
(𝑘)N𝑇
𝑒𝑖
P (A
𝑖
+ B
𝑖
F
𝑗
) 𝑥 (𝑘) +

𝑚

∑

𝑔=1

𝑤
𝑇
(𝑘)D𝑇
𝑖
PN
𝑔𝑖
V
𝑔𝑖
(𝑘) 𝑥 (𝑘)

+

𝑚

∑

𝑒=1

𝑥
𝑇
(𝑘) V𝑇
𝑒𝑖
(𝑘)N𝑇
𝑒𝑖
PD
𝑖
𝑤 (𝑘) +

𝑚

∑

𝑒=1

𝑚

∑

𝑔=1

𝑥
𝑇
(𝑘) V𝑇
𝑒𝑖
(𝑘)N𝑇
𝑒𝑖
PN
𝑔𝑖
V
𝑔𝑖
(𝑘) 𝑥 (𝑘)}

}

}

}

= 𝐸

{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘))

× {𝑥
𝑇
(𝑘) (A

𝑖
+ B
𝑖
F
𝑗
)
𝑇

P (A
𝑖
+ B
𝑖
F
𝑗
) 𝑥 (𝑘)

− 𝑥
𝑇
(𝑘)P𝑥 (𝑘) + 𝑥𝑇 (𝑘) (A

𝑖
+ B
𝑖
F
𝑗
)
𝑇

PD
𝑖
𝑤 (𝑘)

+ 𝑤
𝑇
(𝑘)D𝑇
𝑖
P (A
𝑖
+ B
𝑖
F
𝑗
) 𝑥 (𝑘)

+𝑤
𝑇
(𝑘)D𝑇
𝑖
PD
𝑖
𝑤 (𝑘) +

𝑚

∑

𝑒=1

𝑚

∑

𝑔=1

𝑥
𝑇
(𝑘)N𝑇
𝑒𝑖
PN
𝑔𝑖
𝑥 (𝑘)}

}

}

}

≤ 𝐸

{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘))

× {𝑥
𝑇
(𝑘) (A

𝑖
+ B
𝑖
F
𝑗
)
𝑇

P (A
𝑖
+ B
𝑖
F
𝑗
) 𝑥 (𝑘)

− 𝑥
𝑇
(𝑘)P𝑥 (𝑘) + 𝑥𝑇 (𝑘) (A

𝑖
+ B
𝑖
F
𝑗
)
𝑇

(A
𝑖
+ B
𝑖
F
𝑗
) 𝑥 (𝑘)

+ 𝑤
𝑇
(𝑘)D𝑇
𝑖
PPD
𝑖
𝑤 (𝑘)

+𝑤
𝑇
(𝑘)D𝑇
𝑖
PD
𝑖
𝑤 (𝑘) + 𝑚

𝑚

∑

𝑒=1

𝑥
𝑇
(𝑘)N𝑇
𝑒𝑖
PN
𝑒𝑖
𝑥 (𝑘)}

}

}

}
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= 𝐸

{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘))

× {[
𝑥 (𝑘)

𝑤 (𝑘)
]

𝑇

×
[
[

[

(A
𝑖
+ B
𝑖
F
𝑗
)
𝑇

P (A
𝑖
+ B
𝑖
F
𝑗
) − P + (A

𝑖
+ B
𝑖
F
𝑗
)
𝑇

(A
𝑖
+ B
𝑖
F
𝑗
) + 𝑚

𝑚

∑

𝑒=1

N𝑇
𝑒𝑖
PN
𝑒𝑖

0

0 D𝑇
𝑖
PPD
𝑖
+D𝑇
𝑖
PD
𝑖

]
]

]

× [
𝑥 (𝑘)

𝑤 (𝑘)
]}

}

}

}

.

(14)

It is obvious that if condition (11) is satisfied, one has

[
[

[

−X +D
𝑖
WD𝑇
𝑖
+

𝑚

∑

𝑒=1

N
𝑒𝑖
XN𝑇
𝑒𝑖

A
𝑖
+ B
𝑖
F
𝑖

(A
𝑖
+ B
𝑖
F
𝑖
)
𝑇

−P

]
]

]

< 0. (15)

Using Lemma 2, one can obtain the following inequality
by assigning X = P−1:

(A
𝑖
+ B
𝑖
F
𝑖
)X(A

𝑖
+ B
𝑖
F
𝑖
)
𝑇

− X +D
𝑖
WD𝑇
𝑖
+

𝑚

∑

𝑒=1

N
𝑒𝑖
XN𝑇
𝑒𝑖
< 0.

(16)

Subtracting (7) from (16), one has

(A
𝑖
+ B
𝑖
F
𝑖
) (X − X

𝑖
) (A
𝑖
+ B
𝑖
F
𝑖
)
𝑇

− (X − X
𝑖
)

+

𝑚

∑

𝑒=1

N
𝑒𝑖
(X − X

𝑖
)N𝑇
𝑒𝑖
< 0.

(17)

Because the conditions (16) is satisfied, one can obtain that the
closed-loop system (5) is stable and the closed-loop system
matrix (A

𝑖
+ B
𝑖
F
𝑖
) is stable. In this case, it can be concluded

that X − X
𝑖
≥ 0 via the inequality (17). From condition (12)

and X ≥ X
𝑖
, one has

[X
𝑖
]
𝑘𝑘
≤ [X]

𝑘𝑘
≤ 𝜎
2

𝑘
. (18)

Thus, the individual state variance constraint (9) can be
achieved.

In order to achieve the passivity constraint defined in
Definition 1, let us define a performance function such as

𝐸

{

{

{

𝑘
𝑞

∑

𝑘=0

(𝛾𝑤
𝑇
(𝑘) 𝑤 (𝑘) − 2𝑦

𝑇
(𝑘) 𝑤 (𝑘))

}

}

}

≤ 𝐸

{

{

{

𝑘
𝑞

∑

𝑘=0

(𝛾𝑤
𝑇
(𝑘) 𝑤 (𝑘) − 2𝑦

𝑇
(𝑘) 𝑤 (𝑘)) + 𝑉 (𝑥 (𝑘))

}

}

}

= 𝐸

{

{

{

𝑘
𝑞

∑

𝑘=0

(𝛾𝑤
𝑇
(𝑘) 𝑤 (𝑘) − 2𝑦

𝑇
(𝑘) 𝑤 (𝑘))

+

𝑘
𝑞

∑

𝑘=0

Δ𝑉 (𝑥 (𝑘))

}

}

}

= 𝐸

{

{

{

𝑘
𝑞

∑

𝑘=0

(𝛾𝑤
𝑇
(𝑘) 𝑤 (𝑘) − 2𝑦

𝑇
(𝑘) 𝑤 (𝑘) + Δ𝑉 (𝑥 (𝑘)))

}

}

}

≜ 𝐸 {𝐾 (𝑥, 𝑤, 𝑘)} ,

(19)

where

𝐾 (𝑥, 𝑤, 𝑘)

≜

𝑘
𝑞

∑

𝑘=0

(𝛾𝑤
𝑇
(𝑘) 𝑤 (𝑘) − 2𝑦

𝑇
(𝑘) 𝑤 (𝑘) + Δ𝑉 (𝑥 (𝑘))) .

(20)

Using inequality (14), one has

𝐸 {𝐾 (𝑥, 𝑤, 𝑘)}

= 𝐸

{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘)) [

𝑥 (𝑘)

𝑤 (𝑘)
]

𝑇
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×
[
[

[

G𝑇
𝑖𝑗
PG
𝑖𝑗
− P + G𝑇

𝑖𝑗
G
𝑖𝑗
+ 𝑚

𝑚

∑

𝑒=1

N𝑇
𝑒𝑖
PN
𝑒𝑖

−C𝑇
𝑖

−C
𝑖

D𝑇
𝑖
PPD
𝑖
+D𝑇
𝑖
PD
𝑖
+ 𝛾I −H

𝑖
−H𝑇
𝑖

]
]

]

× [
𝑥 (𝑘)

𝑤 (𝑘)
]

}

}

}

.

(21)

Due to D
𝑖
WD𝑇
𝑖
≥ 0 and ∑𝑚

𝑒=1
N
𝑒𝑖
XN𝑇
𝑒𝑖
> 0, it is obvious that

condition (11) implies

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−X G
𝑖𝑗

0 0 0 0 ⋅ ⋅ ⋅ 0

G𝑇
𝑖𝑗
−P −C𝑇

𝑖
0 G𝑇

𝑖𝑗
N𝑇
1𝑖
⋅ ⋅ ⋅ N𝑇

𝑚𝑖

0 −C
𝑖
D𝑇
𝑖
PD
𝑖
+ 𝛾I −H

𝑖
−H𝑇
𝑖

D𝑇
𝑖
P 0 0 ⋅ ⋅ ⋅ 0

0 0 PD
𝑖

−I 0 0 ⋅ ⋅ ⋅ 0

0 G
𝑖𝑗

0 0 −I 0 ⋅ ⋅ ⋅ 0

0 N
1𝑖

0 0 0 −
X
𝑚
⋅ ⋅ ⋅ 0

...
...

...
...

...
... d

...

0 N
𝑚𝑖

0 0 0 0 ⋅ ⋅ ⋅ −
X
𝑚

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0. (22)

Using inequality (22) and Lemma 2, one has

[
[

[

G𝑇
𝑖𝑗
PG
𝑖𝑗
− P + G𝑇

𝑖𝑗
G
𝑖𝑗
+ 𝑚

𝑚

∑

𝑒=1

N𝑇
𝑒𝑖
PN
𝑒𝑖

−C𝑇
𝑖

−C
𝑖

D𝑇
𝑖
PPD
𝑖
+D𝑇
𝑖
PD
𝑖
+ 𝛾I −H

𝑖
−H𝑇
𝑖

]
]

]

< 0. (23)

If condition (23) holds, then one can obtain 𝐸{𝐾(𝑥, 𝑤, 𝑘)} <
0. From (20), the inequality 𝐸{𝐾(𝑥, 𝑤, 𝑘)} < 0 implies

𝐸

{

{

{

2

𝑘
𝑞

∑

𝑘=0

𝑦
𝑇
(𝑘) 𝑤 (𝑘)

}

}

}

> 𝐸

{

{

{

𝑘
𝑞

∑

𝑘=0

𝛾𝑤
𝑇
(𝑘) 𝑤 (𝑘)

}

}

}

. (24)

From Definition 1, it can be thus concluded that if condition
(11) is satisfied, then the closed-loop system (5) is strictly
input passive.

Remark 4. In conditions (11) and (12) of Theorem 3, the
variablesX,P, andK

𝑖
are needed to be found.With increasing

the number of fuzzy rules, the number of inequality
conditions is increasing such that the difficulty of finding the
desired variables is also increased. Thus, the computational
complexity of the proposed approach will be increased when
the number of fuzzy rules is arisen. For reducing the compu-
tational complexity, the nonlinear system is recommended to
be modeled by T-S fuzzy model as less fuzzy rules as possible.

In Theorem 3, the conditions simultaneously include
variables P andX (i.e., P−1) such that the conditions are not a
strictly LMI problem. In order to apply the LMI technique
to solve conditions of Theorem 3, the ILMI algorithm is
employed to solve the nonlinear minimization problem of
(11) and (12). The ILMI algorithm has been applied to solve
the fuzzy controller design problem for the affine T-S fuzzy
systems [31, 32]. In this paper, a modified ILMI algorithm is
developed to solve the proposed nonlinear matrix inequal-
ity conditions subject to multiple performance constraints.
According to conditions (11) and (12), the modified ILMI
algorithm is described as follows.

Algorithm 5 (modified ILMI algorithm)

Step 1. Find the feasible solutions P0 and X0 for satisfying
(11)-(12).Then the initial variables can be obtained as {P0,X0}.
Set 𝑡 = 1 and go to Step 2.
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Set t = 1

Set t = t + 1

Check

Check

Find P0 and X0

Find Pt−1 and Xt−1 from

Yes

Yes

No

No

The feasible solutions

The feasible solution

are obtained

Stop

Stop

cannot be found

subject to (12)-(13) and [Pt I
I Xt] ≥ 0

minimize trace {PtXt−1
+ XtPt−1

}

from (12) and (13)

Pt
,Xt‖PtXt

− I‖ ≤ 𝜀1

‖PtXt
− Pt−1Xt−1

‖ ≤ 𝜀2

Fi, and 

Figure 1: Flowchart of ILMI algorithm for finding control gains.

Step 2. Use obtained variables {P𝑡−1,X𝑡−1} to solve the follow-
ing LMI problem for desired variables {P𝑡,X𝑡}:

minimize trace {P𝑡X𝑡−1 + X𝑡P𝑡−1}

subject to (11) - (12) , [
Pt I
I Xt] ≥ 0.

(25)

Step 3. If condition (26) is satisfied, then the feasible solutions
P𝑡, X𝑡, and F

𝑖
are obtained and the algorithm can be stopped.

Otherwise, go to Step 4:


P𝑡X𝑡 − I


< 𝜀
1
, (26)

where 𝜀
1
> 0 is a small scalar.

Step 4. If condition (27) is satisfied, then this algorithm
cannot find feasible solutions and one can quit the algorithm.

Otherwise, set 𝑡 = 𝑡 + 1 and go to Step 2:


P𝑡X𝑡 − P𝑡−1X𝑡−1


< 𝜀
2
, (27)

where 𝜀
2
> 0 is a small scalar.

Applying Algorithm 5 to solve conditions (11) and (12),
the design process for the proposed fuzzy controller design
method can be referred to the flowchart described in Figure 1.
By finding variables of X, P, and K

𝑖
via the design process

described in Figure 1, the PDC-based fuzzy controller can be
obtained to achieve individual state variance constraint and
passivity constraint for the nonlinear discrete-time T-S fuzzy
models with multiplicative noise. In the following section,
a fuzzy controller design problem for the nonlinear discrete
ship steering systems is studied to demonstrate the effective-
ness and applicability of proposedmultiple constrained fuzzy
control approach.
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4. Fuzzy Controller Design for Nonlinear
Discrete Ship Steering Systems

In this section, the fuzzy control problem for a nonlinear
discrete ship steering system is studied to illustrate the appli-
cability of proposed multiple constrained fuzzy controller
design method. Referring to [34], the Norrbin nonlinear ship
steering equations of motion can be described as follows:

𝑇�̈� + 𝛼
1
�̇� + 𝛽

1
𝜐
1
�̇� + 𝛽

2
𝜐
2
�̇� + 𝛼
3
�̇�
3
= 𝐾𝛿 + 𝜔, (28)

where 𝜓 is yaw angle, 𝑟 is angular velocity, 𝑢 is rudder angle,
and 𝜐 is noise. Selecting 𝑥

1
(𝑡) = 𝜓, 𝑥

2
(𝑡) = �̇� = 𝑟, 𝑢(𝑡) = 𝛿,

V
1
(𝑡) = 𝜐

1
, V
2
(𝑡) = 𝜐

2
, and 𝑤(𝑡) = 𝜔, one has

�̇�
1
(𝑡) = 𝑥

2
(𝑡) , (29a)

�̇�
2
(𝑡) = −

𝛼
1

𝑇
𝑥
2
(𝑡) −

𝛼
3

𝑇
𝑥
3

2
(𝑡) −

𝛽
1

𝑇
𝑥
2
(𝑡) V
1
(𝑡)

−
𝛽
2

𝑇
𝑥
2
(𝑡) V
2
(𝑡) +

𝐾

𝑇
𝑢 (𝑡) +

1

𝑇
𝑤 (𝑡) .

(29b)

Applying discretizing technique, it is obvious that the state
equations (29a) and (29b) imply

𝑥
1
(𝑡 + Δ𝑡) − 𝑥

1
(𝑡)

Δ𝑡
= 𝑥
2
(𝑡) , (30a)

𝑥
2
(𝑡 + Δ𝑡) − 𝑥

2
(𝑡)

Δ𝑡
= −
𝛼
1

𝑇
𝑥
2
(𝑡) −

𝛼
3

𝑇
𝑥
3

2
(𝑡) −

𝛽
1

𝑇
𝑥
2
(𝑡) V
1
(𝑡)

−
𝛽
2

𝑇
𝑥
2
(𝑡) V
2
(𝑡) +

𝐾

𝑇
𝑢 (𝑡) +

1

𝑇
𝑤 (𝑡) .

(30b)

It is assumed that the sampling time Δ𝑡 = 0.2; then one has

𝑥
1
(𝑘 + 1) = 𝑥

1
(𝑘) + 𝑥

2
(𝑘) Δ𝑡, (31a)

𝑥
2
(𝑘 + 1)

= (1 −
𝛼
1
Δ𝑡

𝑇
)𝑥
2
(𝑘) −

𝛼
3
Δ𝑡

𝑇
𝑥
3

2
(𝑘) −

𝛽
1
Δ𝑡

𝑇
𝑥
2
(𝑘) V
1
(𝑘)

−
𝛽
2
Δ𝑡

𝑇
𝑥
2
(𝑘) V
2
(𝑘) +

𝐾Δ𝑡

𝑇
𝑢 (𝑘) +

Δ𝑡

𝑇
𝑤 (𝑘) .

(31b)

By referring to reference [37], the parameters of the nonlinear
ship steering system are represented as 𝑇 = 261.73 s,
𝐾 = 0.42 s−1, 𝛼

1
= 1, and 𝛼

3
= 30. Considering the

nonlinear discrete ship steering system (31a) and (31b), its
corresponding T-S fuzzy model can be described as follows
with three fuzzy rules.

Rule 1:
IF 𝑥

2
(𝑘) is about 0

THEN 𝑥 (𝑘 + 1) = [A
1
+

2

∑

𝑒=1

N
𝑒1
V
𝑒1
(𝑘)]

× 𝑥 (𝑘) + B
1
𝑢 (𝑘) +D

1
𝑤 (𝑘)

𝑦 (𝑘) = C
1
𝑥 (𝑘) +H

1
𝑤 (𝑘) .

(32)

x2(k)

Rule 2 Rule 2Rule 3 Rule 3Rule 1

−3 −1.5

0

0 1.5 3

1

Figure 2: The membership functions of 𝑥
2
(𝑘).

Rule 2:
IF 𝑥

2
(𝑘) is about ±1.5

THEN 𝑥 (𝑘 + 1) = [A
2
+

2

∑

𝑒=1

N
𝑒2
V
𝑒2
(𝑘)]

× 𝑥 (𝑘) + B
2
𝑢 (𝑘) +D

2
𝑤 (𝑘)

𝑦 (𝑘) = C
2
𝑥 (𝑘) +H

2
𝑤 (𝑘) .

(33)

Rule 3:
IF 𝑥

2
(𝑘) is about ±3

THEN 𝑥 (𝑘 + 1) = [A
3
+

2

∑

𝑒=1

N
𝑒3
V
𝑒3
(𝑘)]

× 𝑥 (𝑘) + B
3
𝑢 (𝑘) +D

3
𝑤 (𝑘)

𝑦 (𝑘) = C
3
𝑥 (𝑘) +H

3
𝑤 (𝑘) ,

(34)

where

A
1
= [
1 0.2

0 0.999
] , A

2
= [
1 0.2

0 0.948
] ,

A
3
= [
1 0.2

0 0.793
] ,

N
11
= N
12
= N
13
= [
0 0

0 0.00023
] ,

N
21
= N
22
= N
23
= [
0 0

0 0.00031
] ,

B
1
= B
2
= B
3
= [

0

0.00032
] ,

D
1
= D
2
= [

0

0.00076
] ,

C
1
= C
2
= [0 1] ,

H
1
= H
2
= 1.

(35)

The membership function for the state 𝑥
2
(𝑘) is given in

Figure 2.
Employing the PDC technique, the corresponding fuzzy

controller can be constructed as follows.
Rule 1:

IF 𝑥
2
(𝑘) is about 0

THEN 𝑢 (𝑘) = F
1
𝑥 (𝑘) .

(36)
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Rule 2:

IF 𝑥
2
(𝑘) is about ± 1.5

THEN 𝑢 (𝑘) = F
2
𝑥 (𝑘) .

(37)

Rule 3:

IF 𝑥
2
(𝑘) is about ± 3

THEN 𝑢 (𝑘) = F
3
𝑥 (𝑘) .

(38)

For starting analyzing and designing, let us select the
supply rate 𝛾 = 0.6, S = I with compatible dimension and
assign the variance constraints as 𝜎2

1
= 0.2, 𝜎2

2
= 0.1. Solving

conditions (11) and (12) of Theorem 3 by Algorithm 5, the
matrix X and F

𝑖
can be obtained as follows:

X = [ 0.0442 −0.0042

−0.0042 0.0372
] , (39)

F
1
= [−289.2 −3174.1] , (40a)

F
2
= [−289.2 −3014.7] , (40b)

F
3
= [−289.2 −2530.3] . (40c)

In the simulations, the external disturbances are all
chosen as zero-mean white noises with variance one. The
final responses of states are shown in Figures 3 and 4 with
initial condition 𝑥(0) = [1 0]𝑇. From the simulation results,
the effect of the external disturbance 𝑤(𝑡) on the controlled
system can be criticized as follows:

𝐸 {2∑
𝑘
𝑞

𝑘=0
𝑦
𝑇
(𝑘) 𝑤 (𝑘)}

𝐸 {∑
𝑘
𝑞

𝑘=0
𝑤𝑇 (𝑘) 𝑤 (𝑘)}

= 1.995. (41)

The ratio value of (41) is bigger than determined dissipation
rate 𝛾 = 0.6; one can find that condition (6) of Definition 1
is satisfied. Besides, the variances of states 𝑥

1
(𝑡) and 𝑥

2
(𝑡) are

0.0477 and 3.3144 × 10−4, respectively. It is obvious that the
individual state variance constraints are all satisfied.

5. Conclusions

In this paper, a multiple constrained fuzzy control method-
ology has been developed for nonlinear discrete ship steering
stochastic systems. Applying T-S fuzzymodel to represent the
nonlinear discrete ship steering stochastic system, a PDC-
based fuzzy controller was developed to achieve passivity
constraint and individual state variance constraint. The suffi-
cient conditions derived in this paper are nonstrict LMI con-
ditions that cannot be solved by numerical convex optimal
programming algorithm. Thus, a modified ILMI algorithm
was provided in this paper to solve the proposed nonlinear
matrix inequality conditions. From the control simulations
of nonlinear discrete ship steering stochastic systems, one can
find that the proposed fuzzy controller design methodology
can provide an effective scheme to control nonlinear discrete
stochastic systems subject to passivity constraint and individ-
ual state variance constraint, simultaneously.
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