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This paper applied, for the first time, the Bernstein’s approximation on delay differential equations and delay systems with inverse
delay that models these problems. The direct algorithm is given for solving this problem. The delay function and inverse time
function are expanded by the Bézier curves. The Bézier curves are chosen as piecewise polynomials of degree 𝑛, and the Bézier
curves are determined on any subinterval by 𝑛 + 1 control points. The approximated solution of delay systems containing inverse
time is derived. To validate accuracy of the present algorithm, some examples are solved.

1. Introduction

Delay differential equations (DDEs) differ fromODEs in that
the derivative at any time depends on the solution at prior
times (and in the case of neutral equations on the derivative
at prior times).

DDEs often arise when traditional pointwise model-
ing assumptions are replaced by more realistic distributed
assumptions, for example, when the birth rate of predators
is affected by prior levels of predators or prey rather than by
only the current levels in a predator-prey model.

Because the derivative �̇�(𝑡) depends on the solution at
previous time(s), it is necessary to provide an initial history
function to specify the value of the solution before time 𝑡 =

0. In many common models the history is a constant; but
nonconstant history functions are encountered routinely.

For most problems there is a jump derivative discontinu-
ity at the initial time. In most models, the DDE and the initial
function are incompatible: for some derivative order, usually
the first, the left and right derivatives at 𝑡 = 0 are not equal.
Delay systems containing inverse time are an important class
of systems:

�̇� (𝑡) = 𝑥 (𝑡 − 1) , �̇� (0
+

) = 1, �̇� (0
−

) = 0. (1)

A fascinating property is how such derivative discontinuities
are propagated in time. For the equation and history just
described, for example, the initial first discontinuity is propa-
gated as a second degree discontinuity at time 𝑡 = 1, as a third
degree discontinuity at time 𝑡 = 2, and, more generally, as a
discontinuity in the (𝑛 + 1)st derivative at time 𝑡 = 𝑛.

Delay differential equations are type of differential equa-
tions where the time derivatives at the current time depend
on the solution and possibly its derivatives at previous times
(see [1–4]).

The basic theory concerning the stable factors, for exam-
ple, existence and uniqueness of solutions, was presented in
[1, 3]. Since then, DDEs have been extensively studied in
recent decades and a great number of monographs have been
published including significant works on dynamics of DDEs
by Hale and Lunel [5] and on stability by Niculescu [6]. The
interest in study of DDEs is caused by the fact that many
processes have time delays and have been models for better
representations by systems of DDEs in science, engineering,
economics, and so forth. Such systems, however, are still not
feasible to actively analyze and control precisely; thus the
study of systems of DDEs has actively been conducted over
the recent decades (see [7–10]).
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Wu et al. [11] developed a computational method for
solving an optimal control problem which is governed by
a switched dynamical system with time delay. Kharatishivili
[12] has approached this problem by extending Pontryagin’s
maximum principle to time delay systems. The actual solu-
tion involves a two-point boundary-value problem in which
advances and delays are presented. In addition, this solution
does not yield a feedback controller. Optimal-time control
of delay systems has been considered by Oguztoreli [13]
who obtained several results concerning bang-bang controls
which are parallel to those of LaSalle [14] for nondelay sys-
tems. For a time-invariant system with an infinite upper limit
in the performance measure, Krasovskii [15] has developed
the forms of the controller and the performance measure.
Ross [16] has obtained a set of differential equations for the
unknowns in the forms of Krasovskii. However, Ross’s results
are not applicable to time-varying systems with a finite limit
in the performance measure.

Basin and Perez [17] presented an optimal regulator for
a linear system with multiple state and input delays and a
quadratic criterion. The optimal regulator equations were
obtained by reducing the original problem to the linear-
quadratic regulator design for a system without delays (see
[17, 18]).

This paper aims at solving delay systems containing
inverse time of the following form:

ẋ (𝑡) = 𝐴 (𝑡) x (𝑡) + 𝐶 (𝑡) (𝑥
1
(𝑡 − 𝜏
1
) ⋅ ⋅ ⋅ 𝑥

𝑝
(𝑡 − 𝜏
𝑝
))

𝑇

+ 𝐷 (𝑡) (𝑥
1
(𝑡
𝑓
− 𝑡) ⋅ ⋅ ⋅ 𝑥

𝑝
(𝑡
𝑓
− 𝑡))

𝑇

+ 𝐺 (𝑡) u (𝑡) ,

x (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏max, 𝑡0] ,

(2)

where x(𝑡) = (𝑥
1
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑝
(𝑡))
𝑇

∈ R𝑝, u(𝑡) = (𝑢
1
(𝑡) ⋅ ⋅ ⋅

𝑢
𝑚
(𝑡))
𝑇

∈ R𝑚 are, respectively, state and control functions
while 𝜙(𝑡) = (𝜙

1
(𝑡) ⋅ ⋅ ⋅ 𝜙

𝑝
(𝑡))
𝑇 is known vector function and

𝜏
𝑖
’s (𝑖 = 1, 2, . . . , 𝑝) are nonnegative constant time delays,

and 𝜏max = max{𝜏
𝑖
, 1 ≤ 𝑖 ≤ 𝑝}. We assume the matrices

𝐴(𝑡) = [𝑎
𝑖𝑗
(𝑡)]
𝑝×𝑝

, 𝐶(𝑡) = [𝑐
𝑖𝑗
(𝑡)]
𝑝×𝑝

, 𝐷(𝑡) = [𝑑
𝑖𝑗
(𝑡)]
𝑝×𝑝

, and
𝐺(𝑡) = [𝑔

𝑖𝑗
(𝑡)]
𝑚×𝑚

are matrix functions. We need to impose
the continuity condition on x(𝑡) and its first derivative where
these constraints appeared in Section 2.

Piecewise polynomial functions are often used to repre-
sent the approximate solution in the numerical solution of
differential equations (see [19–22]). B-splines, due to numer-
ical stability and arbitrary order of accuracy, have become
popular tools for solving differential equations (where Bézier
form is a special case of B-splines).There aremany papers and
books dealing with the Bézier curves or surface techniques.

Harada and Nakamae [23], Nürnberger and Zeilfelder
[24] used the Bézier control points in approximated data
and functions. Zheng et al. [22] proposed the use of control
points of the Bernstein-Bézier form for solving differential
equations numerically and also Evrenosoglu and Somali [25]
used this approach for solving singular perturbed two-point
boundary-value problems. The Bézier curves are used in
solving partial differential equations; as well, Wave and Heat

equations are solved in Bézier form (see [26–29]), the Bézier
curves are used for solving dynamical systems (see [30]), and
also the Bézier control pointsmethod is used for solving delay
differential equation (see [31, 32]).

TheBézier curvesmethodwas presentedwhichwas stated
for solving the optimal control systems with pantograph
delays (see [33]). The method was computationally attractive
and also reduced the CPU time and the computer memory
and at the same time keeps the accuracy of the solution. The
algorithm had been successfully applied to the pantograph
equations. Comparing with other methods, the results of
numerical examples demonstrated that thismethodwasmore
accurate than some existing methods (see [33]).

Using Bezier curve, Ghomanjani et al. [34] had used
least square method for numerical solutions of time-varying
linear optimal control problems with time delays in state and
control.

Some other applications of the Bézier functions and
control points are found in [35–37] that are used in computer
aided geometric design and image compression.

The use of the Bézier curves is a novel idea for solving
delay systems containing inverse time. The approach used in
this paper reduces the CPU time and the computer memory
comparing with existingmethods (see the numerical results).
Although the method is very easy to use and straightforward,
the obtained results are satisfactory (see the numerical
results). We suggest a technique similar to the one used in
[22, 25] for solving delay systems containing inverse time.The
current paper is organized as follows.

In Section 2, Function approximation will be introduced.
Convergence analysis will be stated in Section 3. In Section 4,
some numerical examples are solved which show the effi-
ciency and reliability of the method. Finally, Section 5 will
give a conclusion briefly.

2. Function Approximation

Divide the interval [𝑡
0
, 𝑡
𝑓
] into a set of grid points such that

𝑡
𝑖
= 𝑡
0
+ 𝑖ℎ, 𝑖 = 0, 1, . . . , 𝑘, (3)

where ℎ = (𝑡
𝑓
− 𝑡
0
)/𝑘 and 𝑘 is a positive integer. Let 𝑆

𝑗
=

[𝑡
𝑗−1

, 𝑡
𝑗
] for 𝑗 = 1, 2, . . . , 𝑘. Then, for 𝑡 ∈ 𝑆

𝑗
, delay

systems containing inverse time (2) can be decomposed to
the following problem:

ẋ
𝑗
(𝑡) = 𝐴 (𝑡) x

𝑗
(𝑡)

+ 𝐶 (𝑡) (𝑥
−𝑘
1

1
+𝑗

1
(𝑡 − 𝜏
1
) ⋅ ⋅ ⋅ 𝑥

−𝑘
𝑝

1
+𝑗

𝑝
(𝑡 − 𝜏
𝑝
))

𝑇

+ 𝐷 (𝑡) (𝑥
𝑘
2
−𝑗

1
(𝑡
𝑓
− 𝑡) ⋅ ⋅ ⋅ 𝑥

𝑘
2
−𝑗

𝑝
(𝑡
𝑓
− 𝑡))

𝑇

+ 𝐺 (𝑡) u
𝑗
(𝑡) ,

x
𝑗
(𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−𝜏max, 𝑡0] ,

(4)

where x
𝑗
(𝑡) = (𝑥

𝑗

1
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑗

𝑝
(𝑡))
𝑇 and u

𝑗
(𝑡) = (𝑢

𝑗

1
(𝑡) ⋅ ⋅ ⋅ 𝑢

𝑗

𝑚
(𝑡))
𝑇

are, respectively, vectors of x(𝑡) and u(𝑡)which are considered



Mathematical Problems in Engineering 3

in 𝑡 ∈ 𝑆
𝑗
. We mention that 𝑥−𝑘

𝑖

1
+𝑗

𝑖
(𝑡 − 𝜏
𝑖
), 1 ≤ 𝑖 ≤ 𝑝, is the 𝑖th

component of (𝑥−𝑘
1

1
+𝑗

1
(𝑡−𝜏
1
) ⋅ ⋅ ⋅ 𝑥

−𝑘
𝑝

1
+𝑗

𝑝
(𝑡−𝜏
𝑝
))
𝑇where (𝑡−𝜏

𝑖
) ∈

[𝑡
−𝑘
𝑖

1
+𝑗−1

, 𝑡
−𝑘
𝑖

1
+𝑗
], and 𝑥

𝑘
2
−𝑗

𝑖
(𝑡
𝑓

− 𝑡), 1 ≤ 𝑖 ≤ 𝑝, is the 𝑖th
component of (𝑥𝑘2−𝑗

1
(𝑡
𝑓
− 𝑡) ⋅ ⋅ ⋅ 𝑥

𝑘
2
−𝑗

𝑝
(𝑡
𝑓
− 𝑡))
𝑇 where (𝑡

𝑓
− 𝑡) ∈

[𝑡
𝑘
2
−𝑗−1

, 𝑡
𝑘
2
−𝑗
]. Also

𝑘
𝑖

1
=

{
{
{

{
{
{

{

𝜏
𝑖

ℎ

,

𝜏
𝑖

ℎ

∈ N,

([

𝜏
𝑖

ℎ

] + 1) ,

𝜏
𝑖

ℎ

∉ N,

1 ≤ 𝑖 ≤ 𝑝,

𝑘
2
=

{
{
{
{

{
{
{
{

{

𝑡
𝑓

ℎ

,

𝑡
𝑓

ℎ

∈ N,

([

𝑡
𝑓

ℎ

] + 1) ,

𝑡
𝑓

ℎ

∉ N,

(5)

where [𝜏
𝑖
/ℎ] and [𝑡

𝑓
/ℎ] denote the integer part of 𝜏

𝑖
/ℎ and

𝑡
𝑓
/ℎ, respectively.
Our strategy is to use Bézier curves to approximate the

solutions x
𝑗
(𝑡) and u

𝑗
(𝑡) by k

𝑗
(𝑡) and w

𝑗
(𝑡), respectively,

where k
𝑗
(𝑡) and w

𝑗
(𝑡) are given below. Individual Bézier

curves that are defined over the subintervals are joined
together to form the Bézier spline curves. For 𝑗 = 1, 2, . . . , 𝑘,
define the Bézier polynomials of degree 𝑛 that approximate,
respectively, the actions of x

𝑗
(𝑡) and u

𝑗
(𝑡) over the interval

[𝑡
𝑗−1

, 𝑡
𝑗
] as follows:

k
𝑗
(𝑡) =

𝑛

∑

𝑟=0

a𝑗
𝑟
𝐵
𝑟,𝑛

(

𝑡 − 𝑡
𝑗−1

ℎ

) ,

w
𝑗
(𝑡) =

𝑛

∑

𝑟=0

b𝑗
𝑟
𝐵
𝑟,𝑛

(

𝑡 − 𝑡
𝑗−1

ℎ

) ,

(6)

where

𝐵
𝑟,𝑛

(

𝑡 − 𝑡
𝑗−1

ℎ

) = (

𝑛

𝑟
)

1

ℎ
𝑛
(𝑡
𝑗
− 𝑡)

𝑛−𝑟

(𝑡 − 𝑡
𝑗−1

)

𝑟

(7)

is the Bernstein polynomial of degree 𝑛 over the interval
[𝑡
𝑗−1

, 𝑡
𝑗
], a𝑗
𝑟
and b𝑗

𝑟
are, respectively, 𝑝 and 𝑚 ordered vectors

from the control points (see [22]). By substituting (6) in (4),
𝑅
1,𝑗

(𝑡) for 𝑡 ∈ [𝑡
𝑗−1

, 𝑡
𝑗
] can be defined as follows:

𝑅
1,𝑗

(𝑡) = k̇
𝑗
(𝑡) − 𝐴 (𝑡) k

𝑗
(𝑡)

− 𝐶 (𝑡) (V−𝑘
1

1
+𝑗

1
(𝑡 − 𝜏
1
) ⋅ ⋅ ⋅ V−𝑘

𝑝

1
+𝑗

𝑝
(𝑡 − 𝜏
𝑝
))

𝑇

− 𝐷 (𝑡) (V𝑘2−𝑗
1

(𝑡
𝑓
− 𝑡) ⋅ ⋅ ⋅ V𝑘2−𝑗

𝑝
(𝑡
𝑓
− 𝑡))

𝑇

− 𝐺 (𝑡)w
𝑗
(𝑡) .

(8)

Let k(𝑡) = ∑
𝑘

𝑗=1
𝜒
1

𝑗
(𝑡)k
𝑗
(𝑡) and w(𝑡) = ∑

𝑘

𝑗=1
𝜒
2

𝑗
(𝑡)w
𝑗
(𝑡)

where𝜒1
𝑗
(𝑡) and𝜒

2

𝑗
(𝑡) are, respectively, characteristic function

of k
𝑗
(𝑡) and w

𝑗
(𝑡) for 𝑡 ∈ [𝑡

𝑗−1
, 𝑡
𝑗
]. Beside the boundary

conditions on k(𝑡), at each node, we need to impose the
continuity condition on each successive pair of k

𝑗
(𝑡) to

guarantee the smoothness.

Since the differential equation is of first order, the conti-
nuity of x (or k) and its first derivative gives

k(𝑠)
𝑗

(𝑡
𝑗
) = k(𝑠)
𝑗+1

(𝑡
𝑗
) , 𝑠 = 0, 1, 𝑗 = 1, 2, . . . , 𝑘 − 1, (9)

where k(𝑠)
𝑗
(𝑡
𝑗
) is the 𝑠th derivative k

𝑗
(𝑡) with respect to 𝑡 at

𝑡 = 𝑡
𝑗
.

Thus, the vector of control points a𝑗
𝑟
(𝑟 = 0, 1, 𝑛 − 1, 𝑛)

must satisfy (see the Appendix)

a𝑗
𝑛
(𝑡
𝑗
− 𝑡
𝑗−1

)

𝑛

= a𝑗+1
0

(𝑡
𝑗+1

− 𝑡
𝑗
)

𝑛

,

(a𝑗
𝑛
− a𝑗
𝑛−1

) (𝑡
𝑗
− 𝑡
𝑗−1

)

𝑛−1

= (a𝑗+1
1

− a𝑗+1
0

) (𝑡
𝑗+1

− 𝑡
𝑗
)

𝑛−1

.

(10)

According to the definition of the 𝑡
𝑖
= 𝑡
0
+ 𝑖ℎ we get that

𝑡
𝑗
− 𝑡
𝑗−1

= ℎ. Therefore,

a𝑗
𝑛
= a𝑗+1
0

,

(a𝑗
𝑛
− a𝑗
𝑛−1

) = (a𝑗+1
1

− a𝑗+1
0

) .

(11)

One may recall that a𝑗
𝑟
is a 𝑝 ordered vector. This approach is

called the subdivision scheme (or ℎ-refinement in the finite
element literature). This method is based on the control-
point-based method.

Remark 1. By considering the 𝐶1 continuity of w, the follow-
ing constraints will be added to constraints in (10):

b𝑗
𝑛
(𝑡
𝑗
− 𝑡
𝑗−1

)

𝑛

= b𝑗+1
0

(𝑡
𝑗+1

− 𝑡
𝑗
)

𝑛

,

(b𝑗
𝑛
− b𝑗
𝑛−1

) (𝑡
𝑗
− 𝑡
𝑗−1

)

𝑛−1

= (b𝑗+1
1

− b𝑗+1
0

) (𝑡
𝑗+1

− 𝑡
𝑗
)

𝑛−1

,

(12)

where the so-called b𝑗
𝑟
(𝑟 = 0, 1, 𝑛 − 1, 𝑛) is an 𝑚 ordered

vector.
Now, the residual function can be defined in 𝑆

𝑗
as follows:

𝑅
𝑗
= ∫

𝑡
𝑗

𝑡
𝑗−1






𝑅
1,𝑗

(𝑡)







2

𝑑𝑡, (13)

where ‖ ⋅ ‖ is the Euclidean norm (recall that 𝑅
1,𝑗

(𝑡) is a 𝑝

vector where 𝑡 ∈ 𝑆
𝑗
).

Our aim is to solve the following problem over 𝑆 =

⋃
𝑘

𝑗=1
𝑆
𝑗
:

min
𝑘

∑

𝑗=1

𝑅
𝑗

s.t. a𝑗
𝑛
= a𝑗+1
0

,

(a𝑗
𝑛
− a𝑗
𝑛−1

) = (a𝑗+1
1

− a𝑗+1
0

) , 𝑗 = 1, 2, . . . , 𝑘 − 1.

(14)

The mathematical programming problem (14) can be solved
by many subroutine algorithms. Here, we used Maple 12 to
solve this optimization problem.
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Remark 2. Consider the following boundary value problem:

ẏ (𝑡) = 𝑅 (𝑡) y (𝑡) + 𝑄 (𝑡) y (𝑡 − 𝛼) + 𝑆 (𝑡) z (𝑡) + a (𝑡) ,

ż (𝑡) = 𝑉 (𝑡) y (𝑡) + 𝐾 (𝑡) z (𝑡 + 𝛼) + 𝑊 (𝑡) z (𝑡) + b (𝑡) ,

y (𝑡
0
) = y
0
,

y (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝛼, 𝑡
0
) ,

z (𝑡
𝑓
) = z
0
,

z (𝑡) = 𝜓 (𝑡) , 𝑡 ∈ (𝑡
𝑓
, 𝑡
𝑓
+ 𝛼] ,

(15)

where y(𝑡), z(𝑡), a(𝑡), b(𝑡), 𝜙(𝑡), and 𝜓(𝑡) are the vectors
of appropriate dimensions. 𝑅(𝑡), 𝑄(𝑡), 𝑆(𝑡), 𝑉(𝑡), 𝐾(𝑡), and
𝑊(𝑡) are the matrices of appropriate dimensions, and 𝛼 is
nonnegative constant time delay.

Let

x (𝑡) = [y(𝑡)𝑇 z(𝑡
𝑓
− 𝑡)

𝑇

]

𝑇

, (16)

where 𝑇 is the transpose; then

ẋ (𝑡) = [ẏ𝑇 (𝑡) −ż𝑇 (𝑡
𝑓
− 𝑡)]

𝑇 (17)

satisfies that

ẋ (𝑡) = 𝐴 (𝑡) x (𝑡) + 𝐶 (𝑡) x (𝑡 − 𝛼)

+ 𝐷 (𝑡) x (𝑡
𝑓
− 𝑡) + u (𝑡) , 𝑡 ∈ [𝑡

0
, 𝑡
𝑓
] ,

x (𝑡
0
) = x
0
= [y𝑇
0

z𝑇
0
]

𝑇

,

(18)

where

𝐴 (𝑡) = 𝐸
(2)

11
⊗ 𝑅 (𝑡) − 𝐸

(2)

22
⊗ 𝑊(𝑡

𝑓
− 𝑡) ,

𝐶 (𝑡) = 𝐸
(2)

11
⊗ 𝑄 (𝑡) − 𝐸

(2)

22
⊗ 𝐾 (𝑡

𝑓
− 𝑡) ,

𝐷 (𝑡) = 𝐸
(2)

12
⊗ 𝑆 (𝑡) − 𝐸

(2)

21
⊗ 𝑉 (𝑡

𝑓
− 𝑡) ,

u (𝑡) = [a𝑇 (𝑡) −b𝑇 (𝑡
𝑓
− 𝑡)]

𝑇

,

(19)

where𝐸(𝑓)
𝑖𝑗

is the𝑓×𝑓matrix with 1 at its entry (𝑖, 𝑗) and zeros
elsewhere and ⊗ is Kronecker product (see, e.g., [4, 38, 39]).

Remark 3. Now, the following delay differential equation can
be considered:

�̇� (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡, 𝑥 (𝑡)))) , 𝑡 ≥ 0 (20)

with initial condition

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜆, 0] , (21)

where 𝜆 ≡ inf{𝑡 − 𝜏(𝑡, 𝑢) : 𝑡 ≥ 0, 𝑢 ∈ R}. In the case when 𝜆 is
not finite, [−𝜆, 0] denotes the interval (−∞, 0].

Furthermore, we assume that

𝜏 (𝑡, 𝑢) ≥ 0, ∀𝑡 ≥ 0, 𝑢 ∈ R; (22)

that is, (20) is a delay differential equation.The existence and
uniqueness of the solution of initial value problem (20)-(21)
was stated in [40].

Equation (20) is converted into a nonlinear programming
problem (NLP) by applying Bézier control points method,
whereas the MATLAB optimization routine FMINCON is
used for solving resulting NLP. Numerical example shows
that the proposed method is efficient and very easy to use.

Remark 4. Now, we limit ourselves to consider the following
nonlinear delay differential equation in the type

𝐿𝑥 (𝑡) = 𝐹 (𝑡, 𝑥 (𝑡) , 𝑥 (𝜏 (𝑡))) , 𝑡
0
≤ 𝑡 ≤ 𝑡

𝑓 (23)

with the following initial conditions:

𝑥
(𝑘)

(𝑡
0
) = 𝑥
𝑘

0
, 𝑘 = 0, 1, . . . , 𝑛 − 1,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ≤ 𝑡
0
,

(24)

where the differential operator 𝐿 is defined by 𝐿(⋅) =

𝑑
𝑛
(⋅)/𝑑𝑡
𝑛.

3. Convergence Analysis

In this section, without loss of generality, we analyze the
convergence of the control-point-based method applied to
the problem (2) with time delay in state when 𝑝 = 𝑚 = 1,
and the time interval is [0, 1]. So, the following problem is
considered:

𝐿(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

) =

𝑑𝑥 (𝑡)

𝑑𝑡

− 𝐴 (𝑡) 𝑥 (𝑡) − 𝐶 (𝑡) 𝑥 (𝑡 − 𝜏) − 𝐺 (𝑡) 𝑢 (𝑡)

− 𝐷 (𝑡) 𝑥 (1 − 𝑡) = 𝐹 (𝑡) , 𝑡 ∈ [0, 1] ,

𝑥 (𝑡) = 𝑥
0
= 𝑎, 𝑡 ≤ 0, 𝑥 (1) = 𝑥

𝑓
= 𝑏,

𝑢 (𝑡) = 𝑢
0
= 𝑎
1
, 𝑡 ≤ 0,

(25)

where 𝑥(𝑡) ∈ 𝑅, 𝑢(𝑡) ∈ 𝑅, and 𝑎, 𝑏, 𝑎
1
are given real numbers

and 𝐴(𝑡), 𝐶(𝑡), 𝐺(𝑡), 𝐷(𝑡), and 𝐹(𝑡) are known polynomials
for 𝑡 ∈ [0, 1]. The constant time delay 𝜏 is nonnegative.

Without loss of generality, we consider the interval [0, 1]
instead of [𝑡

0
, 𝑡
𝑓
] since the variable 𝑡 can be changed with the

new variable 𝑧 by 𝑡 = (𝑡
𝑓
− 𝑡
0
)𝑧 + 𝑡
0
where 𝑧 ∈ [0, 1].

Lemma 5. For a polynomial in Bézier form

𝑥 (𝑡) =

𝑛
1

∑

𝑖=0

𝑎
𝑖,𝑛
1

𝐵
𝑖,𝑛
1
(𝑡) , (26)

we have

∑
𝑛
1

𝑖=0
𝑎
2

𝑖,𝑛
1

𝑛
1
+ 1

≥

∑
𝑛
1
+1

𝑖=0
𝑎
2

𝑖,𝑛
1
+1

𝑛
1
+ 2

≥ ⋅ ⋅ ⋅

≥

∑
𝑛
1
+𝑚
1

𝑖=0
𝑎
2

𝑖,𝑛
1
+𝑚
1

𝑛
1
+ 𝑚
1
+ 1

→ ∫

1

0

𝑥
2

(𝑡) 𝑑𝑡, 𝑚
1
→ +∞,

(27)
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where 𝑎
𝑖,𝑛
1
+𝑚
1

is the Bézier coefficient of 𝑥(𝑡) after degree-
elevating to degree 𝑛

1
+ 𝑚
1
.

Proof. See [22, page 245].

The convergence of the approximate solution could be
done in two ways:

(1) degree raising the Bezier polynomial approximation,
(2) subdivision of the time interval.

In the following, the convergence in each case can
be proven, although in numerical examples, we used only
subdivision case (see [32]).

3.1. Degree Raising

Theorem 6. If the problem (25) with inverse time in state has
a unique 𝐶

1 continuous trajectory solution 𝑥, 𝐶0 continuous
control solution 𝑢, then the approximate solution obtained by
the control-point-based method converges to the exact solution
(𝑥, 𝑢) as the degree of the approximate solution tends to infinity.

Proof. Given an arbitrary small positive number 𝜖 >

0, by the Weierstrass theorem (see [41]), one can easily
find polynomials 𝑄

1,𝑁
1

(𝑡) of degree 𝑁
1
and 𝑄

2,𝑁
2

(𝑡) of
degree 𝑁

2
such that ‖𝑑𝑖𝑄

1,𝑁
1

(𝑡)/𝑑𝑡
𝑖
− 𝑑
𝑖
𝑥(𝑡)/𝑑𝑡

𝑖
‖
∞

≤ 𝜖/16,
‖𝑑
𝑖
𝑄
1,𝑁
1

(𝑡 − 𝜏)/𝑑𝑡
𝑖
− 𝑑
𝑖
𝑥(𝑡 − 𝜏)/𝑑𝑡

𝑖
‖
∞

≤ 𝜖/16, 𝑖 = 0, 1,
‖𝑄
2,𝑁
2

(𝑡) − 𝑢(𝑡)‖
∞

≤ 𝜖/16, and ‖𝑄
1,𝑁
1

(1 − 𝑡) − 𝑥(1 − 𝑡)‖
∞

≤

𝜖/16, where ‖ ⋅ ‖
∞

stands for the 𝐿
∞
-norm over [0, 1].

Especially, we have





𝑎 − 𝑄

1,𝑁
1
(0)





∞

≤

𝜖

16

,






𝑏 − 𝑄
1,𝑁
1
(1)





∞

≤

𝜖

16

,






𝑎
1
− 𝑄
2,𝑁
2
(0)





∞

≤

𝜖

16

.

(28)

In general, 𝑄
1,𝑁
1

(𝑡) and 𝑄
2,𝑁
2

(𝑡) do not satisfy the boundary
conditions. After a small perturbation with linear and con-
stant polynomials 𝛼𝑡 + 𝛽, 𝛾, respectively, for 𝑄

1,𝑁
1

(𝑡) and
𝑄
2,𝑁
2

(𝑡), we can obtain polynomials 𝑃
1,𝑁
1

(𝑡) = 𝑄
1,𝑁
1

(𝑡) +

(𝛼𝑡 + 𝛽) and 𝑃
2,𝑁
2

(𝑡) = 𝑄
2,𝑁
2

(𝑡) + 𝛾 such that 𝑃
1,𝑁
1

(𝑡) satisfies
the boundary conditions 𝑃

1,𝑁
1

(0) = 𝑎, 𝑃
1,𝑁
1

(1) = 𝑏, and
𝑃
2,𝑁
2

(0) = 𝑎
1
.Thus,𝑄

1,𝑁
1

(0)+𝛽 = 𝑎, and𝑄
1,𝑁
1

(1)+𝛼+𝛽 = 𝑏.
By using (28), one has






𝑏 − 𝑄
1,𝑁
1
(1)





∞

=




𝛼 + 𝛽




∞

≤

𝜖

16

,






𝑎 − 𝑄

1,𝑁
1
(0)





∞

=




𝛽



∞

≤

𝜖

16

.

(29)

Since

‖𝛼‖
∞

−




𝛽



∞

≤




𝛼 + 𝛽




∞

≤

𝜖

16

, (30)

so,

‖𝛼‖
∞

≤

𝜖

16

+




𝛽



∞

≤

𝜖

16

+

𝜖

16

=

𝜖

8

. (31)

By the time, from 𝑎
1
= 𝑃
2,𝑁
2

(0) = 𝑄
2,𝑁
2

(0) + 𝛾,






𝑎
1
− 𝑄
2,𝑁
2
(0)





∞

=




𝛾



∞

≤

𝜖

16

. (32)

Now, we have






𝑃
1,𝑁
1
(𝑡) − 𝑥 (𝑡)





∞

=






𝑄
1,𝑁
1
(𝑡) + 𝛼𝑡 + 𝛽 − 𝑥 (𝑡)





∞

≤






𝑄
1,𝑁
1
(𝑡) − 𝑥 (𝑡)





∞

+




𝛼 + 𝛽




∞

≤

𝜖

8

<

𝜖

5

,











𝑑𝑃
1,𝑁
1
(𝑡)

𝑑𝑡

−

𝑑𝑥 (𝑡)

𝑑𝑡









∞

=











𝑑𝑄
1,𝑁
1
(𝑡)

𝑑𝑡

+ 𝛼 −

𝑑𝑥 (𝑡)

𝑑𝑡









∞

≤











𝑑𝑄
1,𝑁
1
(𝑡)

𝑑𝑡

−

𝑑𝑥 (𝑡)

𝑑𝑡









∞

+ ‖𝛼‖
∞

≤

3𝜖

16

<

𝜖

5

,






𝑃
2,𝑁
2
(𝑡) − 𝑢 (𝑡)





∞

=






𝑄
2,𝑁
2
(𝑡) + 𝛾 − 𝑢 (𝑡)





∞

≤






𝑄
2,𝑁
2
(𝑡) − 𝑢 (𝑡)





∞

+




𝛾



∞

≤

𝜖

8

<

𝜖

5

,

(33)

so,






𝑃
1,𝑁
1
(𝑡 − 𝜏) − 𝑥 (𝑡 − 𝜏)





∞

<

𝜖

5

,











𝑑𝑃
1,𝑁
1
(𝑡 − 𝜏)

𝑑𝑡

−

𝑑𝑥 (𝑡 − 𝜏)

𝑑𝑡









∞

<

𝜖

5

,






𝑃
1,𝑁
1
(1 − 𝑡) − 𝑥 (1 − 𝑡)





∞

<

𝜖

5

.

(34)

Now, let 𝐿𝑃
𝑁
(𝑡) = 𝐿(𝑃

1,𝑁
1

(𝑡), 𝑃
2,𝑁
2

(𝑡), 𝑃
1,𝑁
1

(𝑡−𝜏), 𝑃
1,𝑁
1

(1−𝑡),
𝑑𝑃
1,𝑁
1

(𝑡)/𝑑𝑡) = 𝑑𝑃
1,𝑁
1

(𝑡)/𝑑𝑡−𝐴(𝑡)𝑃
1,𝑁
1

(𝑡)−𝐶(𝑡)𝑃
1,𝑁
1

(𝑡−𝜏)−

𝐺(𝑡)𝑃
2,𝑁
2

(𝑡) − 𝐷(𝑡)𝑃
1,𝑁
1

(1 − 𝑡) = 𝐹(𝑡), for every 𝑡 ∈ [0, 1].
Thus, for𝑁 ≥ max{𝑁

1
, 𝑁
2
}, an upper bound is found for the

following residual:





𝐿𝑃
𝑁
(𝑡) − 𝐹 (𝑡)




∞

=











𝐿(𝑃
1,𝑁
1
(𝑡) , 𝑃
2,𝑁
2
(𝑡) , 𝑃
1,𝑁
1
(𝑡 − 𝜏) ,

𝑃
1,𝑁
1
(1 − 𝑡) ,

𝑑𝑃
1,𝑁
1
(𝑡)

𝑑𝑡

) − 𝐹 (𝑡)









∞
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≤











𝑑𝑃
1,𝑁
1
(𝑡)

𝑑𝑡

−

𝑑𝑥 (𝑡)

𝑑𝑡









∞

+ ‖𝐴 (𝑡)‖
∞






𝑃
1,𝑁
1
(𝑡) − 𝑥 (𝑡)





∞

+ ‖𝐶 (𝑡)‖
∞






𝑃
1,𝑁
1
(𝑡 − 𝜏) − 𝑥 (𝑡 − 𝜏)





∞

+ ‖𝐺 (𝑡)‖
∞






𝑃
2,𝑁
2
(𝑡) − 𝑢 (𝑡)





∞

+ ‖𝐷 (𝑡)‖
∞






𝑃
1,𝑁
1
(1 − 𝑡) − 𝑥 (1 − 𝑡)





∞

≤ 𝐶
1
(

𝜖

5

+

𝜖

5

+

𝜖

5

+

𝜖

5

+

𝜖

5

) = 𝐶
1
𝜖,

(35)

where 𝐶
1
= 1 + ‖𝐴(𝑡)‖

∞
+ ‖𝐶(𝑡)‖

∞
+ ‖𝐺(𝑡)‖

∞
+ ‖𝐷(𝑡)‖

∞
is a

constant.
Since the residual 𝑅(𝑃

𝑁
) := 𝐿𝑃

𝑁
(𝑡)−𝐹(𝑡) is a polynomial,

it can be represented by a Bézier form. Therefore, we have

𝑅 (𝑃
𝑁
) :=

𝑚
1

∑

𝑖=0

𝑑
𝑖,𝑚
1

𝐵
𝑖,𝑚
1
(𝑡) . (36)

Then, by Lemma 5, there exists an integer𝑀(≥ 𝑁) such that,
when𝑚

1
> 𝑀, we have











1

𝑚
1
+ 1

𝑚
1

∑

𝑖=0

𝑑
2

𝑖,𝑚
1

− ∫

1

0

(𝑅 (𝑃
𝑁
))
2

𝑑𝑡












< 𝜖, (37)

which gives

1

𝑚
1
+ 1

𝑚
1

∑

𝑖=0

𝑑
2

𝑖,𝑚
1

< 𝜖 + ∫

1

0

(𝑅 (𝑃
𝑁
))
2

𝑑𝑡

≤ 𝜖 + 𝐶
2

1
𝜖
2

.

(38)

Suppose 𝑥(𝑡) and 𝑢(𝑡) are approximated solution of (25)
obtained by the control-point-based method of degree 𝑚

2

(𝑚
2
≥ 𝑚
1
≥ 𝑀). Let

𝑅(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

)

= 𝐿(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

) − 𝐹 (𝑡)

=

𝑚
2

∑

𝑖=0

𝑐
𝑖,𝑚
2

𝐵
𝑖,𝑚
2
(𝑡) , 𝑚

2
≥ 𝑚
1
≥ 𝑀, 𝑡 ∈ [0, 1] .

(39)

Define the following norm for difference approximated solu-
tion (𝑥(𝑡), 𝑢(𝑡)) and exact solution (𝑥(𝑡), 𝑢(𝑡)):

‖(𝑥 (𝑡) , 𝑢 (𝑡)) − (𝑥 (𝑡) , 𝑢 (𝑡))‖

:= ∫

1

0

1

∑

𝑗=0











𝑑
𝑗
𝑥 (𝑡)

𝑑𝑡
𝑗

−

𝑑
𝑗
𝑥 (𝑡)

𝑑𝑡
𝑗











2

𝑑𝑡

+ ∫

1

0

|𝑢 (0) − 𝑢 (0)| 𝑑𝑡.

(40)

By (40), Lemma 5, the boundary conditions 𝑥(0) = 𝑎 =

𝑃
1,𝑁
1

(0) = 𝑥(0), 𝑥(1) = 𝑏 = 𝑃
1,𝑁
1

(1) = 𝑥(1), and 𝑢(0) =

𝑎
1
= 𝑃
2,𝑁
2

(0) = 𝑢(0), one can show that

‖(𝑥 (𝑡) , 𝑢 (𝑡)) − (𝑥 (𝑡) , 𝑢 (𝑡))‖

≤ 𝐶( |𝑥 (0) − 𝑥 (0)|

+ |𝑥 (1) − 𝑥 (1)| + |𝑢 (0) − 𝑢 (0)|

+










𝑅((𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

)

− (𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

))










2

2

)

= 𝐶∫

1

0

𝑚
2

∑

𝑖=0

(𝑐
𝑖,𝑚
2

𝐵
𝑖,𝑚
2
(𝑡))

2

𝑑𝑡

≤

𝐶

𝑚
2
+ 1

𝑚
2

∑

𝑖=0

𝑐
2

𝑖,𝑚
2

.

(41)

The last inequality in (41) is obtained by Lemma 5, where𝐶 is
a constant positive number. Now

‖(𝑥 (𝑡) , 𝑢 (𝑡)) − (𝑥 (𝑡) , 𝑢 (𝑡))‖ ≤

𝐶

𝑚
2
+ 1

𝑚
2

∑

𝑖=0

𝑐
2

𝑖,𝑚
2

≤

𝐶

𝑚
2
+ 1

𝑚
2

∑

𝑖=0

𝑑
2

𝑖,𝑚
2

≤

𝐶

𝑚
1
+ 1

𝑚
1

∑

𝑖=0

𝑑
2

𝑖,𝑚
1

≤ 𝐶 (𝜖 + 𝐶
2

1
𝜖
2

)

= 𝜖
1
, 𝑚
1
≥ 𝑀,

(42)

where the last inequality in (42) comes from (36). This
completes the proof.

3.2. Subdivision

Theorem 7. Let (𝑥, 𝑢) be the approximate solution of the
problem (25) with inverse time obtained by the subdivision
scheme of the control-point-based method. If (25) has a unique
solution (𝑥, 𝑢) and (𝑥, 𝑢) is smooth enough so that the cubic
spline 𝑇(𝑥, 𝑢) interpolates to (𝑥, 𝑢) and converges to (𝑥, 𝑢) in
the order 𝑂(ℎ

𝑞
), (𝑞 > 2), where ℎ is the maximal width of all

subintervals, then (𝑥, 𝑢) converges to (𝑥, 𝑢) as ℎ → 0.

Proof. We first impose a uniform partition ∏
𝑑
= ⋃
𝑖
[𝑡
𝑖
, 𝑡
𝑖+1

]

on the interval [0, 1] as 𝑡
𝑖
= 𝑖𝑑, where 𝑑 = 1/(𝑛

1
+ 1).



Mathematical Problems in Engineering 7

Let 𝐼
𝑑
(𝑥(𝑡), 𝑢(𝑡), 𝑥(𝑡 − 𝜏), 𝑥(1 − 𝑡), 𝑑𝑥(𝑡)/𝑑𝑡) be the cubic

spline over ∏
𝑑
which is interpolating to (𝑥, 𝑢). Then, for an

arbitrary small positive number 𝜖 > 0, there exists a 𝛿
1
> 0

such that










𝐿 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

)

−𝐿(𝐼
𝑑
(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

))








∞

≤ 𝜖

(43)

provided that 𝑑 < 𝛿
1
. Let 𝑅(𝐼

𝑑
(𝑥(𝑡), 𝑢(𝑡), 𝑥(𝑡 −

𝜏), 𝑥(1 − 𝑡), 𝑑𝑥(𝑡)/𝑑𝑡)) = 𝐿(𝐼
𝑑
(𝑥(𝑡), 𝑢(𝑡), 𝑥(𝑡 − 𝜏), 𝑥(1 −

𝑡), 𝑑𝑥(𝑡)/𝑑𝑡)) − 𝐹(𝑡) be the residual. For each subinterval
[𝑡
𝑖
, 𝑡
𝑖+1

], 𝑅(𝐼
𝑑
(𝑥(𝑡), 𝑢(𝑡), 𝑥(𝑡 − 𝜏), 𝑥(1 − 𝑡), 𝑑𝑥(𝑡)/𝑑𝑡))

is a polynomial. On each interval [𝑡
𝑖
, 𝑡
𝑖+1

], we impose
another uniform partition ∏

𝑖,ℎ
= ⋃

𝑗
[𝑡
𝑖,𝑗
, 𝑡
𝑖,𝑗+1

] as
𝑡
𝑖,𝑗

= 𝑖𝑑 + 𝑗ℎ where ℎ = 𝑑/(𝑚
1
+ 1), 𝑗 = 0, . . . , 𝑚

1
.

Express 𝑅(𝐼
𝑑
(𝑥(𝑡), 𝑢(𝑡), 𝑥(𝑡 − 𝜏), 𝑥(1 − 𝑡), 𝑑𝑥(𝑡)/𝑑𝑡)) in

[𝑡
𝑖,𝑗−1

, 𝑡
𝑖,𝑗
] as

𝑅(𝐼
𝑑
(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

))

=

𝑙

∑

𝑝
1
=0

𝑟
𝑖,𝑗

𝑝
1

𝐵
𝑝
1
,𝑙
(𝑡) , 𝑡 ∈ [𝑡

𝑖,𝑗−1
, 𝑡
𝑖,𝑗
] .

(44)

By Lemma 3 in [22], there exists a 𝛿
2
> 0 (𝛿

2
≤ 𝛿
1
) such that,

when ℎ < 𝛿
2
, we have













𝑚
1

∑

𝑗=1

(𝑡
𝑖,𝑗

− 𝑡
𝑖,𝑗−1

)

𝑙

∑

𝑝
1
=0

(𝑟
𝑖,𝑗

𝑝
1

)

2

− (𝑙 + 1)

× ∫

𝑡
𝑖+1

𝑡
𝑖

𝑅
2

(𝐼
𝑑
(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) ,

𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

))













𝑑𝑡 ≤

𝜖

𝑑

.

(45)

Thus,













𝑛
1

∑

𝑖=1

𝑚
1

∑

𝑗=1

(𝑡
𝑖,𝑗

− 𝑡
𝑖,𝑗−1

)

𝑙

∑

𝑝
1
=0

(𝑟
𝑖,𝑗

𝑝
1

)

2

− (𝑙 + 1) ∫

1

0

𝑅
2

(𝐼
𝑑
(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) ,

𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

))













𝑑𝑡

≤ 𝜖,

(46)

or

𝑛
1

∑

𝑖=1

𝑚
1

∑

𝑗=1

(𝑡
𝑖,𝑗

− 𝑡
𝑖,𝑗−1

)

𝑙

∑

𝑝
1
=0

(𝑟
𝑖,𝑗

𝑝
1

)

2

< (𝑙 + 1) ∫

1

0

𝑅
2

(𝐼
𝑑
(

𝑑𝑥 (𝑡)

𝑑𝑡

𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) ,

𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

))𝑑𝑡 + 𝜖

< (𝑙 + 1) 𝜖
2

+ 𝜖.

(47)

Now combining the partitions∏
𝑑
and all∏

𝑖,ℎ
gives a denser

partition with the length ℎ for each subinterval. Suppose
(𝑥(𝑡), 𝑢(𝑡)) is the approximate solution by the control-point-
based method with respect to this partition, and denote the
residual over [𝑡

𝑖,𝑗−1
, 𝑡
𝑖,𝑗
] by

𝑅(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

)

= 𝐿(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

) − 𝐹 (𝑡)

=

𝑙

∑

𝑝
1
=0

𝑐
𝑖,𝑗

𝑝
1

𝐵
𝑝
1
,𝑙
(𝑡) .

(48)

Define the following norm for difference approximate solu-
tion (𝑥(𝑡), 𝑢(𝑡)) and exact solution (𝑥(𝑡), 𝑢(𝑡)):

‖(𝑥 (𝑡) , 𝑢 (𝑡)) − (𝑥 (𝑡) , 𝑢 (𝑡))‖

:=

𝑛
1

∑

𝑖=1

𝑚
1

∑

𝑗=1

∫

𝑡
𝑖,𝑗

𝑡
𝑖,𝑗−1

|𝑥 (𝑡) − 𝑥 (𝑡)|
2

𝑑𝑡

+

𝑛
1

∑

𝑖=1

𝑚
1

∑

𝑗=1

∫

𝑡
𝑖,𝑗

𝑡
𝑖,𝑗−1










𝑑𝑥 (𝑡)

𝑑𝑡

−

𝑑𝑥 (𝑡)

𝑑𝑡










2

𝑑𝑡

+

𝑛
1

∑

𝑖=1

𝑚
1

∑

𝑗=1

∫

𝑡
𝑖,𝑗

𝑡
𝑖,𝑗−1

|𝑢 (0) − 𝑢 (0)| 𝑑𝑡.

(49)

Then, there is a constant 𝐶 such that

‖(𝑥 (𝑡) , 𝑢 (𝑡)) − (𝑥 (𝑡) , 𝑢 (𝑡))‖

≤ 𝐶










𝑅((𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

)

−(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

))








2

≤

𝐶

𝑙 + 1

𝑛
1

∑

𝑖=1

𝑚
1

∑

𝑗=1

(𝑡
𝑖,𝑗

− 𝑡
𝑖,𝑗−1

)

𝑙

∑

𝑝
1
=0

(𝑐
𝑖,𝑗

𝑝
1

)

2

;

(50)
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the last inequality in (50) is obtained by Lemma 5. It can be
shown that

𝐶

𝑙 + 1

𝑛
1

∑

𝑖=1

𝑚
1

∑

𝑗=1

(𝑡
𝑖,𝑗

− 𝑡
𝑖,𝑗−1

)

𝑙

∑

𝑝
1
=0

(𝑐
𝑖,𝑗

𝑝
1

)

2

≤

𝐶

𝑙 + 1

𝑛
1

∑

𝑖=1

𝑚
1

∑

𝑗=1

(𝑡
𝑖,𝑗

− 𝑡
𝑖,𝑗−1

)

𝑙

∑

𝑝
1
=0

(𝑟
𝑖,𝑗

𝑝
1

)

2

≤ 𝐶(𝜖
2

+

𝜖

𝑙 + 1

) = 𝜖
2
.

(51)

By Lemma 3 in [22], we conclude that the approximate
solution converges to the exact solution in order 𝑜(ℎ𝑞), (𝑞 >

2). This completes the proof.

4. Numerical Examples

Applying the presented method, in Examples 1, 2, and 3, the
Bézier curves are chosen as piecewise polynomials of degree
3.

Example 8. Consider the delay system containing inverse
time described by (see [4])

ẋ (𝑡) = [
𝑡
2
+ 1 −𝑡

2

0 −9

] x (𝑡) + [

1 −1

9 0
] x (𝑡 −

1

3

)

+ [

1 0

−1 1
] x (1 − 𝑡) + [

4𝑡 + 3

8𝑡 + 15
] 𝑢 (𝑡) ,

𝜙 (𝑡) = [

𝑡
2
− 1

𝑡
2
+ 1

] , 𝑡 ∈ [−

1

3

, 0] ,

(52)

where we have the following exact solution:

x (𝑡) = [𝑥
1
(𝑡) 𝑥
2
(𝑡)]

𝑇

= [𝑡
2
− 1 𝑡
2
+ 1]

𝑇

. (53)

Let 𝑢(𝑡) = 1. Then, by (14) and choosing 𝑛 = 3, 𝑘 = 6 we
have the approximate solution x(𝑡) = [𝑥

1
(𝑡) 𝑥
2
(𝑡)]

𝑇

𝑥
1
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

−1.000000001 + 8.333333337 × 10
−9
𝑡 + 0.9999999669𝑡

2
+ 10
−7
𝑡
3
, 0 ≤ 𝑡 ≤

1

6

,

−0.9999999988 + 8.13333333 × 10
−9
𝑡 + 0.9999999829𝑡

2
,

1

6

≤ 𝑡 ≤

1

3

,

−0.9999999997 + 2.00 × 10
−10

𝑡 + 𝑡
2
,

1

3

≤ 𝑡 ≤

1

2

,

−0.9999999927 − 2.202222223 × 10
−8
𝑡 + 1.000000017𝑡

2
,

1

2

≤ 𝑡 ≤

2

3

,

−0.9999999902 − 1.504444443 × 10
−8
𝑡 + 0.9999999963𝑡

2
+ 10
−8
𝑡
3
,

2

3

≤ 𝑡 ≤

5

6

,

−1.000000032 + 1.120666667 × 10
−7
𝑡 + 0.9999998702𝑡

2
+ 5 × 10

−8
𝑡
3
,

5

6

≤ 𝑡 ≤ 1,

𝑥
2
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1.000000001 + 0.000011825𝑡 + 0.9996447669𝑡
2
+ 0.0023693𝑡

3
, 0 ≤ 𝑡 ≤

1

6

,

1.000000001 + 0.00001180813339𝑡 + 0.9996447663𝑡
2
+ 0.0023695𝑡

3
,

1

6

≤ 𝑡 ≤

1

3

,

0.9999999645 + 0.00001211131104𝑡 + 0.9996439669𝑡
2
+ 0.0023702𝑡

3
,

1

3

≤ 𝑡 ≤

1

2

,

1.000000063 + 0.00001151408882𝑡 + 0.9996452169𝑡
2
+ 0.0023693𝑡

3
,

1

2

≤ 𝑡 ≤

2

3

,

0.9581187057 + 0.1594325022𝑡 + 0.8040813829𝑡
2
+ 0.0783674𝑡

3
,

2

3

≤ 𝑡 ≤

5

6

,

0.9581181451 + 0.1594344559𝑡 + 0.8040791002𝑡
2
+ 0.0783683𝑡

3
,

5

6

≤ 𝑡 ≤ 1.

(54)
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The graphs of approximate trajectories are shown in Figures
1 and 2.

Example 9. Consider the boundary value problem described
by (see [4])

̇𝑦 (𝑡) = 16𝑡𝑦 (𝑡 −

1

4

) − 16𝑧 (𝑡) + 8𝑡
2

+ 17𝑡 + 16,

�̇� (𝑡) = 64𝑡𝑦 (𝑡) − 64𝑧 (𝑡 +

1

4

) + 51𝑡
2

+ 76𝑡 + 65,

𝑦 (𝑡) = 𝑡
2

− 1, −

1

4

≤ 𝑡 ≤ 0,

𝑧 (𝑡) = 𝑡
3

+ 1, 1 ≤ 𝑡 ≤

5

4

.

(55)

From (18), we have (see [4])

ẋ (𝑡) = [

16𝑡 0

0 64
] x (𝑡 −

1

4

) + [

0 −16

64𝑡 − 64 0
] x (1 − 𝑡)

+ [

8𝑡
2
+ 17𝑡 + 16

−51𝑡
2
+ 178𝑡 − 62

] ,

𝜙 (𝑡) = [

𝑡
2
− 1

−𝑡
3
+ 3𝑡
2
− 3𝑡 + 1

] , 𝑡 ∈ [−

1

4

, 0] ,

(56)

where x(𝑡) = [𝑥
1
(𝑡) 𝑥
2
(𝑡)]

𝑇

= [𝑦(𝑡) 𝑧(1 − 𝑡)]

𝑇, and we have
the following exact solution:

x (𝑡) = [𝑥
1
(𝑡) 𝑥
2
(𝑡)]

𝑇

= [𝑡
2
− 1 𝑡
3
+ 1]

𝑇

. (57)

Let 𝑢(𝑡) = 1. Then, by (14) and choosing 𝑛 = 3, 𝑘 = 4 we have
the approximate solution x(𝑡) = [𝑥

1
(𝑡) 𝑥
2
(𝑡)]

𝑇:

𝑥
1
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑡
2
− 1, 0 ≤ 𝑡 ≤

1

4

,

𝑡
2
− 1,

1

4

≤ 𝑡 ≤

1

2

,

𝑡
2
− 1,

1

2

≤ 𝑡 ≤

3

4

,

−1.000000006 + 2.0625 × 10
−8
𝑡

+0.999999975𝑡
2
+ 10
−8
𝑡
3
,

3

4

≤ 𝑡 ≤ 1,

𝑥
2
(𝑡) = 𝑡

3

+ 1.

(58)

The graphs of approximate trajectories are shown in Figures
3 and 4.

0 1

−0.2

−0.4

−0.6

−0.8

−1

−0.5 0.5

t

Approximate x1(t)
Exact x1(t)

Figure 1:The graph of approximated trajectory 𝑥
1
(𝑡) for Example 1.

2

1.8

1.6

1.4

1.2

−0.5 0 0.5 1

t

Approximate x2(t)
Exact x2(t)

Figure 2:The graph of approximated trajectory 𝑥
2
(𝑡) for Example 1.

Example 10. Consider the time-varying delay system
described by (see [42])

[

�̇�
1
(𝑡)

�̇�
2
(𝑡)

] = [

0 1

−25 −5𝑡
]

[

[

[

[

𝑥
1
(𝑡 −

1

4

)

𝑥
2
(𝑡 −

1

4

)

]

]

]

]

+ [

0

1
] ,

[

𝑥
1
(𝑡)

𝑥
2
(𝑡)

] = [

0

0
] , 𝑡 ∈ [−

1

4

, 0] .

(59)
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The exact solutions are [42]

𝑥
1
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

0, 𝑡 ∈ [0,

1

4

] ,

1

32

−

1

4

𝑡 +

1

2

𝑡
2
, 𝑡 ∈ [

1

4

,

1

2

] ,

1

32

−

19

96

𝑡 +

3

16

𝑡
2
+

5

8

𝑡
3
−

5

12

𝑡
4
, 𝑡 ∈ [

1

2

,

3

4

] ,

−

9641

32768

+

37391

24576

𝑡 −

3183

1024

𝑡
2
+

7065

2304

𝑡
3
−

135

384

𝑡
4
−

85

96

𝑡
5
+

5

18

𝑡
6
, 𝑡 ∈ [

3

4

, 1] ,

𝑥
2
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑡, 𝑡 ∈ [0,

1

4

] ,

−

5

384

+ 𝑡 +

5

8

𝑡
2
−

5

3

𝑡
3
, 𝑡 ∈ [

1

4

,

1

2

] ,

775

1536

−

17

8

𝑡 +

1295

192

𝑡
2
−

115

24

𝑡
3
−

75

32

𝑡
4
+

5

3

𝑡
5
, 𝑡 ∈ [

1

2

,

3

4

] ,

87997

132120

−

1051

1024

𝑡 −

95755

49152

𝑡
2
+

21515

1536

𝑡
3
−

55325

3072

𝑡
4
+

335

96

𝑡
5
+

2125

576

𝑡
6
−

25

21

𝑡
7
, 𝑡 ∈ [

3

4

, 1] .

(60)

Here, this problem is solved by choosing 𝑘 = 8 and 𝑛 = 3. the
following approximate solutions 𝑥

1
(𝑡) and 𝑥

2
(𝑡) are found. In

Tables 1 and 2, exact, numerical results of this method and
obtained results in [42] are shown, respectively:

𝑥
1
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

−0.001524977445𝑡 + 0.04981148910𝑡
2
− 0.3456171465𝑡

3
, 𝑡 ∈ [0,

1

8

] ,

−0.002668294207 + 0.06251408351𝑡 − 0.4625009986𝑡
2
+ 1.020549487𝑡

3
, 𝑡 ∈ [

1

8

,

1

4

] ,

0.006613889339 − 0.04887212012𝑡 − 0.01695618114𝑡
2
+ 0.4264897281𝑡

3
, 𝑡 ∈ [

1

4

,

3

8

] ,

0.01307452454 − 0.1005572014𝑡 + 0.1208707015𝑡
2
+ 0.303976944𝑡

3
, 𝑡 ∈ [

3

8

,

1

2

] ,

0.1271590458 − 0.7850643303𝑡 + 1.489884961𝑡
2
− 0.608699230𝑡

3
, 𝑡 ∈ [

1

2

,

5

8

] ,

0.06579667219 − 0.4905249419𝑡 + 1.018621948𝑡
2
− 0.357358960𝑡

3
, 𝑡 ∈ [

5

8

,

3

4

] ,

0.3247255416 − 1.526240419𝑡 + 2.399575918𝑡
2
− 0.9711162800𝑡

3
, 𝑡 ∈ [

3

4

,

7

8

] ,

0.6384881122 − 2.601997790𝑡 + 3.629012898𝑡
2
− 1.439473220𝑡

3
, 𝑡 ∈ [

7

8

, 1] ,

,
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𝑥
2
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1.003041110𝑡 − 0.09123330000𝑡
2
+ 0.6082219700𝑡

3
, 𝑡 ∈ [0,

1

8

] ,

0.003925049727 + 0.9088399072𝑡 + 0.6623763650𝑡
2
− 1.401403820𝑡

3
, 𝑡 ∈ [

1

8

,

1

4

] ,

0.003925049727 + 0.9088399072𝑡 + 0.6623763650𝑡
2
− 1.401403820𝑡

3
, 𝑡 ∈ [

1

4

,

3

8

] ,

−0.02462216250 + 1.075221794𝑡 + 0.4666746125𝑡
2
− 1.558091100𝑡

3
, 𝑡 ∈ [

3

8

,

1

2

] ,

0.3991598156 − 1.467470069𝑡 + 5.552058325𝑡
2
− 4.948346900𝑡

3
, 𝑡 ∈ [

1

2

,

5

8

] ,

0.00006281562500 + 0.4481955219𝑡 + 2.486993388𝑡
2
− 3.313645600𝑡

3
, 𝑡 ∈ [

5

8

,

3

4

] ,

−1.159405308 + 5.086068009𝑡 − 3.696836582𝑡
2
− 0.5652767300𝑡

3
, 𝑡 ∈ [

3

4

,

7

8

] ,

−5.634050302 + 20.42770799𝑡 − 21.23013942𝑡
2
+ 6.114076730𝑡

3
, 𝑡 ∈ [

7

8

, 1] .

(61)

Example 11. Consider the following system described by (see
[40])

�̇� (𝑡) =

8

𝑡 + 1

𝑥 (𝑡 − (

𝑡

2

+

1

2

)) , 𝑡 ≥ 0,

𝑥 (𝑡) = (𝑡 + 1)
2

, 𝑡 ∈ [−

1

2

, 0] .

(62)

Analytic solution of the initial value problem (IVP) is 𝑥(𝑡) =

(𝑡 + 1)
2. By choosing 𝑘 = 1 and 𝑛 = 16 (degree raising), we

obtain the following solution:

𝑥 (𝑡) = 1 + 0.2018032795 × 10
−4

𝑡
12

− 0.01572515756𝑡
7

− 0.008572702573𝑡
5

+ 0.01741959010𝑡
6

− 0.0001540665901𝑡
11

− 0.1834453040 × 10
−5

𝑡
13

+ 1.101285958 × 10
−7

𝑡
14

+ 0.008669328894𝑡
8

+ 1.999552507𝑡

+ 6.306939519 × 10
−11

𝑡
16

− 3.928281389

× 10
−9

𝑡
15

− 0.003213347229𝑡
9

+ 0.9993525856𝑡
2

+ 0.0008342736689𝑡
10

+ 0.004438985657𝑡
3

− 0.002620448442𝑡
4

.

(63)

In Table 3, exact and presented methods are shown, respec-
tively.

Example 12. Consider the following system described by (see
[40])

�̇� (𝑡) = 𝑥 (𝑡 − 1 −

1

𝑡 + 1

) , 𝑡 ≥ 0,

𝑥 (𝑡) =

{

{

{

2

3

(𝑡 + 2) , −2 ≤ 𝑡 ≤ −0.5,

1, −0.5 ≤ 𝑡 ≤ 0,

(64)

where the exact solution is 𝑥(𝑡) = 1 + (2/3)𝑡 + 𝑡
3
/3 −

(2/3) log(𝑡+1) on [0, 1] and 𝑥(𝑡) = 1−(2/3) log 2+𝑡 on [1, 2].
By choosing 𝑘 = 1 and 𝑛 = 7 (degree raising), we obtain the
following solution:

𝑥 (𝑡) = 1 + 5.424427795𝑡
5

− 1.611981446𝑡
6

− 2.552250886𝑡
2

+ 7.963903747𝑡
3

+ 0.3574277875𝑡 − 9.236517482𝑡
4

+ 0.1928923646𝑡
7

.

(65)

In Table 4, exact, numerical results of this method, method in
[40], error of presented method, and error of the method in
[40] are shown, respectively.

Example 13. Consider the following system described by (see
[40])

�̇� (𝑡) = −𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑡 ∈ [0, 2] ,

𝑥 (0) = 1,

𝜏 (𝑡) ≡ {

𝑡 − 2 + √4 − 2𝑡, 0 ≤ 𝑡 ≤ 2,

0, 𝑡 > 2.

(66)
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The solution of this problem is

𝑥 (𝑡) =

{

{

{

(𝑡 − 2)
2

4

, 0 ≤ 𝑡 ≤ 2,

0, 𝑡 > 2.

(67)

By choosing 𝑘 = 1 and 𝑛 = 7 (degree raising), we obtain the
following solution:

𝑥 (𝑡) = 1 − 1.000000002𝑡 + 3.207267830 × 10
−9

𝑡
6

+ 0.2500000112 × 𝑡
2

− 3.416339151 × 10
−10

𝑡
7

− 1.204800000 × 10
−8

𝑡
5

− 2.304000000 × 10
−8

𝑡
3

+ 2.296000000 × 10
−8

𝑡
4

.

(68)

In Table 5, exact, numerical results of this method, method in
[40], error of presented method, and error of the method in
[40] are shown, respectively.

Example 14. Consider the following LDDE described by

𝑑
3
𝑥 (𝑡)

𝑑𝑡
3

= −𝑥 (𝑡) − 𝑥 (𝑡 − 0.3) + 𝑒
−𝑡+0.3

, 0 ≤ 𝑡 ≤ 1, (69)

with the initial conditions

𝑥 (0) = 1,

𝑑𝑥 (0)

𝑑𝑡

= −1,

𝑑
2
𝑥 (0)

𝑑𝑡
2

= 1, 𝑥 (𝑡) = 𝑒
−𝑡

,

𝑡 ≤ 0,

(70)

where the exact solution of this example is 𝑥(𝑡) = 𝑒
−𝑡. Here,

this problem is solved by choosing 𝑘 = 10 and 𝑛 = 3.
The graph of error is shown in Figure 5, and the following
approximate solution 𝑥(𝑡) is found:

𝑥 (𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1 − 𝑡 + 0.5𝑡
2
− 0.172928𝑡

3
, 𝑡 ∈ [0, 0.1] ,

0.9999767558 − 0.999302674𝑡 + 0.49302674𝑡
2
− 0.1496838𝑡

3
, 𝑡 ∈ [0.1, 0.2] ,

0.9998081522 − 0.996773576𝑡 + 0.48038104𝑡
2
− 0.1286073𝑡

3
, 𝑡 ∈ [0.2, 0.3] ,

0.9992953871 − 0.991645877𝑡 + 0.46328853𝑡
2
− 0.1096154𝑡

3
, 𝑡 ∈ [0.3, 0.4] ,

0.9982244623 − 0.983613861𝑡 + 0.44320829𝑡
2
− 0.0928817𝑡

3
, 𝑡 ∈ [0.4, 0.5] ,

0.9964070488 − 0.972709334𝑡 + 0.42139914𝑡
2
− 0.0783422𝑡

3
, 𝑡 ∈ [0.5, 0.6] ,

0.9937493164 − 0.9594206𝑡 + 0.39925114𝑡
2
− 0.0660377𝑡

3
, 𝑡 ∈ [0.6, 0.7] ,

0.9903114379 − 0.944686777𝑡 + 0.37820273𝑡
2
− 0.0560146𝑡

3
, 𝑡 ∈ [0.7, 0.8] ,

0.9863822587 − 0.929952279𝑡 + 0.35978451𝑡
2
− 0.0483403𝑡

3
, 𝑡 ∈ [0.8, 0.9] ,

0.9825547252 − 0.917193744𝑡 + 0.34560826𝑡
2
− 0.0430898𝑡

3
, 𝑡 ∈ [0.9, 1] .

(71)

Example 15. Consider the second-order linear decay differ-
ential equation:

�̈� (𝑡) =

3

4

𝑥 (𝑡) + 𝑥 (

𝑡

2

) − 𝑡
2

+ 2, 0 ≤ 𝑡 ≤ 1,

𝑥 (0) = 0, �̇� (0) = 0.

(72)

The exact solution of this problem is 𝑥(𝑡) = 𝑡
2. Here, this

problem is solved by choosing 𝑘 = 1 and 𝑛 = 7. The following
approximate solution 𝑥(𝑡) is found.

𝑥 (𝑡) = 1.882848000𝑡
2

− 5.072623999𝑡
3

+ 15.56400000𝑡
4

− 28.14240000𝑡
5

+ 30.84000000𝑡
6

− 𝑡
9

+ 7𝑡
8

− 0.06182400000𝑡

− 20.01000000𝑡
7

.

(73)

In Table 6, exact, numerical results of this method, error of
presentedmethod, and error of themethod in [43] are shown,
respectively.

5. Conclusions

Using the Bézier curves, the general algorithm is provided
for the delay systems containing inverse time. Numerical
examples show that the proposedmethod is efficient and very
easy to use.

Appendix

In this Appendix, we specify the derivative of Bézier curve.
By (6), we have

k
𝑗
(𝑡) =

𝑛

∑

𝑖=0

𝑎
𝑗

𝑖
𝐵
𝑖,𝑛

(𝑡) , 𝑡 ∈ [0, 1] , (A.1)

where 𝐵
𝑖,𝑛
(𝑡) = (𝑛!/𝑖!(𝑛 − 𝑖)!)𝑡

𝑖
(1 − 𝑡)

𝑛−𝑖.
Now, we have (see [44])

𝑑𝐵
𝑖,𝑛

(𝑡)

𝑑𝑡

= 𝑛 (𝐵
𝑖−1,𝑛−1

(𝑡) − 𝐵
𝑖,𝑛−1

(𝑡)) , 0 ≤ 𝑖 ≤ 𝑛, (A.2)
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Figure 3:The graph of approximated trajectory 𝑥
1
(𝑡) for Example 2.

5

4

3

2
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t
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Figure 4:The graph of approximated trajectory 𝑥
2
(𝑡) for Example 2.

where 𝐵
−1,𝑛−1

(𝑡) = 𝐵
𝑛,𝑛−1

(𝑡) = 0, and

𝐵
𝑖−1,𝑛−1

(𝑡) =

(𝑛 − 1)!

(𝑖 − 1)! (𝑛 − 𝑖)!

𝑡
𝑖−1

(1 − 𝑡)
𝑛−𝑖

,

𝐵
𝑖,𝑛−1

(𝑡) =

(𝑛 − 1)!

𝑖! (𝑛 − 𝑖 − 1)!

𝑡
𝑖

(1 − 𝑡)
𝑛−𝑖−1

.

(A.3)
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0.0010
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0
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Figure 5: The graph of error for Example 7.

By using (A.2), the first derivative k
𝑗
(𝑡) is shown as

𝑑k
𝑗
(𝑡)

𝑑𝑡

=

𝑛−1

∑

𝑖=1

𝑛a𝑗
𝑖
𝐵
𝑖−1,𝑛−1

(𝑡) −

𝑛−1

∑

𝑖=0

𝑛a𝑗
𝑖
𝐵
𝑖,𝑛−1

(𝑡)

=

𝑛−1

∑

𝑖=0

𝑛a𝑗
𝑖+1

𝐵
𝑖,𝑛−1

(𝑡) −

𝑛−1

∑

𝑖=0

𝑛a𝑗
𝑖
𝐵
𝑖,𝑛−1

(𝑡)

=

𝑛−1

∑

𝑖=0

𝐵
𝑖,𝑛−1

(𝑡) 𝑛 {a𝑗
𝑖+1

− a𝑗
𝑖
} .

(A.4)

Now, we specify the procedure of derivation of (10) from (9).
By (6), we have

k
𝑗
(𝑡) = (

𝑛

0
) a𝑗
0

1

ℎ
𝑛
(𝑡
𝑗
− 𝑡)

𝑛

+ ⋅ ⋅ ⋅ + (

𝑛

𝑛
) a𝑗
𝑛

1

ℎ
𝑛
(𝑡 − 𝑡
𝑗−1

)

𝑛

,

k
𝑗+1

(𝑡) = (

𝑛

0
) a𝑗+1
0

1

ℎ
𝑛
(𝑡
𝑗+1

− 𝑡)

𝑛

+ ⋅ ⋅ ⋅ + (

𝑛

𝑛
) a𝑗+1
𝑛

1

ℎ
𝑛
(𝑡 − 𝑡
𝑗
)

𝑛

;

(A.5)

by substituting 𝑡 = 𝑡
𝑗
into (A.5), one has

k
𝑗
(𝑡
𝑗
) = a𝑗
𝑛

1

ℎ
𝑛
(𝑡
𝑗
− 𝑡
𝑗−1

)

𝑛

,

k
𝑗+1

(𝑡
𝑗
) = a𝑗+1
0

1

ℎ
𝑛
(𝑡
𝑗+1

− 𝑡
𝑗
)

𝑛

.

(A.6)
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Table 1: Exact and estimated values of 𝑥
1
(𝑡) for Example 3.

𝑡 Exact 𝑥
1
(𝑡) Present 𝑥

1
(𝑡) 𝑥

1
(𝑡) in [42]

0.00 0.000000 0.0000000000000000 −0.000088

0.05 0.000000 0.0000050777072400 −0.000046

0.10 0.000000 0.0000000000000000 0.000021
0.15 0.000000 −0.000253099630375 0.000083
0.20 0.000000 −0.000501121553000 −0.000128

0.25 0.000000 −1.06875 × 10
−11

−0.000024

0.30 0.001250 0.0019414196591000 0.001400
0.35 0.005000 0.0057172621996375 0.004987
0.40 0.011250 0.0116454806360000 0.011157
0.45 0.020000 0.0199999999857500 0.019968
0.50 0.031250 0.0310107172150000 0.031304
0.55 0.044971 0.04479153044625000 0.045021
0.60 0.061000 0.06099999990000000 0.060991
0.65 0.079086 0.0791835285950000 0.079044
0.70 0.098917 0.0989798441000000 0.098901
0.75 0.120117 0.1201170006000000 0.120143
0.80 0.142244 0.1422502585600000 0.142266
0.85 0.164728 0.1647280007500000 0.164710
0.90 0.186819 0.1868145712000000 0.186803
0.95 0.207606 0.2076060001475000 0.207623
1.00 0.226030 0.2260300002000000 0.226030

Table 2: Exact and estimated values of 𝑥
2
(𝑡) for Example 3.

𝑡 Exact 𝑥
2
(𝑡) Present 𝑥

2
(𝑡) 𝑥

2
(𝑡) in [42]

0.00 0.000000 0.000000000000000 0.001169
0.05 0.050000 0.050000000000000 0.049923
0.10 0.100000 0.099999999970000 0.100294
0.15 0.150000 0.150424766127000 0.149740
0.20 0.200000 0.200976855207000 0.199902
0.25 0.250000 0.250636614672500 0.250170
0.30 0.298229 0.298229000000000 0.298294
0.35 0.345083 0.342083000067500 0.342098
0.40 0.380313 0.380416662700000 0.380186
0.45 0.411667 0.411748202343750 0.411593
0.50 0.434896 0.434896000125000 0.435025
0.55 0.448306 0.4482677054750000 0.448326
0.60 0.448532 0.4485758408000000 0.448483
0.65 0.432078 0.432134688390000 0.432080
0.70 0.395846 0.395846000275000 0.395868
0.75 0.337199 0.337199000906250 0.337171
0.80 0.254052 0.254052000960000 0.254038
0.85 0.145303 0.145637497343750 0.145354
0.90 0.011316 0.011635894970000 0.011295
0.95 −0.145872 −0.14587200166625 −0.145924

1.00 −0.322405 −0.32240500200000 −0.322386

To preserve the continuity of the Bézier curves at the nodes,
one needs to impose the condition k

𝑗
(𝑡
𝑗
) = k
𝑗+1

(𝑡
𝑗
); so from

(A.6), we have

a𝑗
𝑛
(𝑡
𝑗
− 𝑡
𝑗−1

)

𝑛

= a𝑗+1
0

(𝑡
𝑗+1

− 𝑡
𝑗
)

𝑛

. (A.7)

Table 3: Exact and estimated values of 𝑥(𝑡) for Example 4.

𝑡 Exact Presented method
0.5 2.25 2.24991525903163
1.0 4 4.00000000000000
1.5 6.25 6.24995700258759
2 9 9.00000000128046

From (A.4), the first derivatives of k
𝑗
(𝑡) and k

𝑗+1
(𝑡) are,

respectively,

𝑑k
𝑗
(𝑡)

𝑑𝑡

=

𝑛−1

∑

𝑖=0

𝐵
𝑖,𝑛−1

(𝑡) 𝑛 (a𝑗
𝑖+1

− a𝑗
𝑖
)

=

𝑛−1

∑

𝑖=0

(

𝑛 − 1

𝑖
) (𝑡
𝑗
− 𝑡)

𝑛−1−𝑖

(𝑡 − 𝑡
𝑗−1

)

𝑖

×

1

ℎ
𝑛
{𝑛 (a𝑗
𝑖+1

− a𝑗
𝑖
)}

= (

𝑛 − 1

0
) {𝑛 (a𝑗

1
− a𝑗
0
)}

1

ℎ
𝑛
(𝑡
𝑗
− 𝑡)

𝑛−1

+ ⋅ ⋅ ⋅ + (

𝑛 − 1

𝑛 − 1
) {𝑛 (a𝑗

𝑛
− a𝑗
𝑛−1

)}

×

1

ℎ
𝑛
(𝑡 − 𝑡
𝑗−1

)

𝑛−1

,

𝑑k
𝑗+1

(𝑡)

𝑑𝑡

=

𝑛−1

∑

𝑖=0

(

𝑛 − 1

𝑖
) (𝑡
𝑗+1

− 𝑡)

𝑛−1−𝑖

(𝑡 − 𝑡
𝑗
)

𝑖

×

1

ℎ
𝑛
{𝑛 (a𝑗+1
𝑖+1

− a𝑗+1
𝑖

)}

= (

𝑛 − 1

0
) {𝑛 (a𝑗+1

1
− a𝑗+1
0

)}

1

ℎ
𝑛
(𝑡
𝑗+1

− 𝑡)

𝑛−1

+ ⋅ ⋅ ⋅ + (

𝑛 − 1

𝑛 − 1
) {𝑛 (a𝑗+1

𝑛
− a𝑗+1
𝑛−1

)}

×

1

ℎ
𝑛
(𝑡 − 𝑡
𝑗
)

𝑛−1

.

(A.8)

By substituting 𝑡 = 𝑡
𝑗
into (A.8), we have

𝑑k
𝑗
(𝑡
𝑗
)

𝑑𝑡

= 𝑛 (a𝑗
𝑛
− a𝑗
𝑛−1

)

1

ℎ
𝑛
(𝑡
𝑗
− 𝑡
𝑗−1

)

𝑛−1

,

𝑑k
𝑗+1

(𝑡
𝑗
)

𝑑𝑡

= 𝑛 (a𝑗+1
1

− a𝑗+1
0

)

1

ℎ
𝑛
(𝑡
𝑗+1

𝑡
𝑗
)

𝑛−1

,

(A.9)

and to preserve the continuity of the first derivative of Bézier
curves at nodes, by equalizing (A.9), we have

(a𝑗
𝑛
− a𝑗
𝑛−1

) (𝑡
𝑗
− 𝑡
𝑗−1

)

𝑛−1

= (a𝑗+1
1

− a𝑗+1
0

) (𝑡
𝑗+1

− 𝑡
𝑗
)

𝑛−1

,

(A.10)

where it shows the equality (10).
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Table 4: Exact and estimated values of 𝑥(𝑡) for Example 5.

𝑡 Exact Presented method Method in [40] Error of presented method Error of the method in [40]
0.5 1.10468992792789 1.10468992817860 1.1451 2.50709000000000 × 10

−10

1.2232 × 10
−3

1.0 1.53790187962670 1.53790188062000 1.5361 9.93297 × 10
−10

1.7685 × 10
−3

1.4 1.93790187962670 1.93768171138582 1.9361 0.220168240883 × 10
−3

1.7685 × 10
−3

1.5 2.03790187962670 2.03790188078453 2.0362 1.157827 × 10
−9

1.6125 × 10
−3

2.0 2.53790187962670 2.53790188032000 2.5870 6.93297 × 10
−10

4.9096 × 10
−2

Table 5: Exact and estimated values of 𝑥(𝑡) for Example 6.

𝑡 Exact Presented method Method in [40] Error of presented method Error of the method in [40]
1.0 0.25 0.250000000017634 0.250013 1.7634 × 10

−11

1.28346 × 10
−5

2.0 0.0 0.0 5.26486 × 10
−7 0.0 5.26486 × 10

−7

Table 6: Exact and estimated values of 𝑥(𝑡) for Example 8.

𝑡 Exact Presented method Error Of presented method Error of the method in [43]
0.2 0.04 0.0400000000049152 4.9152 × 10

−12

1.73 × 10
−6

0.4 0.16 0.1600000000193540 1.9354 × 10
−11

1.10 × 10
−5

0.6 0.36 0.3600000000221180 2.2118 × 10
−11

1.26 × 10
−4

0.8 0.64 0.6400000000073730 7.373 × 10
−12

7.07 × 10
−4
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