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Abstract. 
This paper is intended to provide a numerical algorithm involving the combined use of the Levenberg-Marquardt algorithm and the Galerkin finite element method for estimating the diffusion coefficient in an inverse heat conduction problem (IHCP). In the present study, the functional form of the diffusion coefficient is unknown a priori. The unknown diffusion coefficient is approximated by the polynomial form and the present numerical algorithm is employed to find the solution. Numerical experiments are presented to show the efficiency of the proposed method.


1. Introduction
The numerical solution of the inverse heat conduction problem (IHCP) requires determining diffusion coefficient from additional information. Inverse heat conduction problems have many applications in various branches of science and engineering; mechanical and chemical engineers, mathematicians, and specialists in many other science branches are interested in inverse problems, each with different application in mind [1–15].
In this work, we propose an algorithm for numerical solving of an inverse heat conduction problem. The algorithm is based on the Galerkin finite element method and Levenberg-Marquardt algorithm [16, 17] in conjunction with the least-squares scheme. It is assumed that no prior information is available on the functional form of the unknown diffusion coefficient in the present study; thus, it is classified as the function estimation in inverse calculation. Run the numerical algorithm to solve the unknown diffusion coefficient which is approximated by the polynomial form. The Levenberg-Marquardt optimization is adopted to modify the estimated values.
The plan of this paper is as follows. In Section 2, we formulate a one-dimensional IHCP. In Section 3, the numerical algorithm is derived. Calculation of sensitivity coefficients will be discussed in Section 4. In order to discuss some numerical aspects, two examples are given in Section 5. Section 6 ends this paper with a brief discussion on some numerical aspects.




2. Description of the Problem
The mathematical formulation of a one-dimensional heat conduction problem is given as follows:
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In this work, the polynomial form is proposed for the unknown function 
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3. Overview of the Levenberg-Marquardt Method
The Levenberg-Marquardt method, originally devised for application to nonlinear parameter estimation problems, has also been successfully applied to the solution of linear ill-conditioned problems. Such a method was first derived by Levenberg (1944) by modifying the ordinary least-squares norm. Later Marquardt (1963) derived basically the same technique by using a different approach. Marquardt’s intention was to obtain a method that would tend to the Gauss method in the neighborhood of the minimum of the ordinary least-squares norm and would tend to the steepest descent method in the neighborhood of the initial guess used for the iterative procedure.
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					where 
	
		
			

				𝜀
			

			

				1
			

		
	
, 
	
		
			

				𝜀
			

			

				2
			

		
	
, and 
	
		
			

				𝜀
			

			

				3
			

		
	
 are user prescribed tolerances and 
	
		
			
				‖
				⋅
				‖
			

		
	
 denotes the Euclidean norm. The criterion given by (18) tests if the least-squares norm is sufficiently small, which is expected in the neighborhood of the solution for the problem. Similarly, (19) checks if the norm of the gradient of 
	
		
			
				𝐹
				(
				𝐏
				)
			

		
	
 is sufficiently small, since it is expected to vanish at the point where 
	
		
			
				𝐹
				(
				𝐏
				)
			

		
	
 is minimum. The last criterion given by (20) results from the fact that changes in the vector of parameters are very small when the method has converged. Generally, these three stopping criteria need to be tested and the iterative procedure of the Levenberg-Marquardt method is stopped if any of them is satisfied.
Different versions of the Levenberg-Marquardt method can be found in the literature, depending on the choice of the diagonal matrix 
	
		
			

				Ω
			

			

				𝑘
			

		
	
 and on the form chosen for the variation of the damping parameter 
	
		
			

				𝜇
			

			

				𝑘
			

		
	
. In this paper, we choose 
	
		
			

				Ω
			

			

				𝑘
			

		
	
 as 
						
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				Ω
			

			

				𝑘
			

			
				
				
				𝐉
				=
				d
				i
				a
				g
			

			

				𝑘
			

			

				
			

			

				𝑇
			

			

				𝐉
			

			

				𝑘
			

			
				
				.
			

		
	

					Suppose that the vectors of temperature measurements 
	
		
			
				𝐆
				=
				[
				𝑔
				(
				𝑡
			

			

				1
			

			
				)
				,
				𝑔
				(
				𝑡
			

			

				2
			

			
				)
				,
				…
				,
				𝑔
				(
				𝑡
			

			

				𝑛
			

			
				)
				]
			

		
	
 are given at times 
	
		
			

				𝑡
			

			

				𝑖
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	
, and an initial guess 
	
		
			

				𝐏
			

			

				0
			

		
	
 is available for the vector of unknown parameters 
	
		
			

				𝐏
			

		
	
. Choose a value for 
	
		
			

				𝜇
			

			

				0
			

		
	
, say 
	
		
			

				𝜇
			

			

				0
			

			
				=
				0
				.
				0
				0
				1
			

		
	
, and 
	
		
			
				𝑘
				=
				0
			

		
	
. Then, consider the following.
Step 1. Solve the direct problem (1)–(3) with the available estimate 
	
		
			

				𝐏
			

			

				𝑘
			

		
	
 in order to obtain the vector 
	
		
			
				𝐔
				(
				𝐏
			

			

				𝑘
			

			
				)
				=
				[
				𝑢
				(
				𝑥
			

			

				0
			

			
				,
				𝑡
			

			

				1
			

			
				,
				𝐏
			

			

				𝑘
			

			
				)
				,
				𝑢
				(
				𝑥
			

			

				0
			

			
				,
				𝑡
			

			

				2
			

			
				,
				𝐏
			

			

				𝑘
			

			
				)
				,
				…
				,
				𝑢
				(
				𝑥
			

			

				0
			

			
				,
				𝑡
			

			

				𝑛
			

			
				,
				𝐏
			

			

				𝑘
			

			
				)
				]
			

		
	
.
Step 2. Compute 
	
		
			
				𝐹
				(
				𝐏
			

			

				𝑘
			

			

				)
			

		
	
 from (7).
Step 3. Compute the sensitivity matrix 
	
		
			

				𝐉
			

			

				𝑘
			

		
	
 from (11) and then the matrix 
	
		
			

				Ω
			

			

				𝑘
			

		
	
 from (21), by using the current value of 
	
		
			

				𝐏
			

			

				𝑘
			

		
	
.
Step 4. Solve the following linear system of algebraic equations, obtained from (17).
	
		
			
				[
				(
				𝐉
			

			

				𝑘
			

			

				)
			

			

				𝑇
			

			

				𝐉
			

			

				𝑘
			

			
				+
				𝜇
			

			

				𝑘
			

			

				Ω
			

			

				𝑘
			

			
				]
				Δ
				𝐏
			

			

				𝑘
			

			
				=
				(
				𝐉
			

			

				𝑘
			

			

				)
			

			

				𝑇
			

			
				[
				𝐆
				−
				𝐔
				(
				𝐏
			

			

				𝑘
			

			
				)
				]
			

		
	
 in order to compute 
	
		
			
				Δ
				𝐏
			

			

				𝑘
			

			
				=
				𝐏
			

			
				𝑘
				+
				1
			

			
				−
				𝐏
			

			

				𝑘
			

		
	
.
Step 5. Compute the new estimate 
	
		
			

				𝐏
			

			
				𝑘
				+
				1
			

		
	
 as 
	
		
			

				𝐏
			

			
				𝑘
				+
				1
			

			
				=
				𝐏
			

			

				𝑘
			

			
				+
				Δ
				𝐏
			

			

				𝑘
			

		
	
.
Step 6. Solve the exact problem (1)–(3) with the new estimate 
	
		
			

				𝐏
			

			
				𝑘
				+
				1
			

		
	
 in order to find 
	
		
			
				𝑈
				(
				𝐏
			

			
				𝑘
				+
				1
			

			

				)
			

		
	
. Then compute 
	
		
			
				𝐹
				(
				𝐏
			

			
				𝑘
				+
				1
			

			

				)
			

		
	
.
Step 7. If 
	
		
			
				𝐹
				(
				𝐏
			

			
				𝑘
				+
				1
			

			
				)
				≥
				𝐹
				(
				𝐏
			

			

				𝑘
			

			

				)
			

		
	
, replace 
	
		
			

				𝜇
			

			

				𝑘
			

		
	
 by 
	
		
			
				1
				0
				𝜇
			

			

				𝑘
			

		
	
 and return to Step 4.
Step 8. If 
	
		
			
				𝐹
				(
				𝐏
			

			
				𝑘
				+
				1
			

			
				)
				≤
				𝐹
				(
				𝐏
			

			

				𝑘
			

			

				)
			

		
	
, accept the new estimate 
	
		
			

				𝐏
			

			
				𝑘
				+
				1
			

		
	
 and emplace 
	
		
			

				𝜇
			

			

				𝑘
			

		
	
 by 
	
		
			
				0
				.
				1
				𝜇
			

			

				𝑘
			

		
	
.
Step 9. Check the stopping criteria given by (18). Stop the iterative procedure if any of them is satisfied; otherwise, replace 
	
		
			

				𝑘
			

		
	
 by 
	
		
			
				𝑘
				+
				1
			

		
	
 and return to Step 3.
4. Calculation of Sensitivity Coefficients
Generally, there have been two approaches for determining the gradient; the first is a discretize-then-differentiate approach and the second is a differentiate-then-discretize approach.
The first approach is to approximate the gradient of the functional by a finite difference quotient approximation, but, in general, we cannot determine the sensitivities exactly, so this method may lead to larger error.
Here, we intend to use differentiate-then-discretize approach which we refer to as the sensitivity equation method. This method can be determined more efficiently with the help of the sensitivities
						
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑘
			

			
				=
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑝
			

			

				𝑘
			

			
				,
				𝑘
				=
				1
				,
				2
				,
				…
				,
				𝑚
				+
				1
				.
			

		
	

We first differentiate the flow system (1)–(3) with respect to each of the design parameters 
	
		
			
				[
				𝑝
			

			

				1
			

			
				,
				𝑝
			

			

				2
			

			
				,
				…
				,
				𝑝
			

			
				𝑚
				+
				1
			

			

				]
			

		
	
, to obtain the 
	
		
			
				𝑚
				+
				1
			

		
	
 continuous sensitivity systems: for 
	
		
			
				𝑘
				=
				1
				,
				2
				,
				…
				,
				𝑚
				+
				1
			

		
	

	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				𝜕
				𝑢
			

			

				𝑘
			

			
				
			
			
				=
				𝜕
				𝜕
				𝑡
			

			
				
			
			
				
				
				𝑝
				𝜕
				𝑥
			

			

				1
			

			
				+
				𝑝
			

			

				2
			

			
				𝑥
				+
				⋯
				+
				𝑝
			

			
				𝑚
				+
				1
			

			

				𝑥
			

			

				𝑚
			

			
				
				𝜕
				𝑢
			

			

				𝑘
			

			
				
			
			
				𝜕
				𝑥
				+
				𝑥
			

			
				𝑘
				−
				1
			

			
				𝜕
				𝑢
			

			
				
			
			
				
				,
				𝑢
				𝜕
				𝑥
			

			

				𝑘
			

			
				𝑢
				(
				𝑥
				,
				0
				)
				=
				0
				,
			

			

				𝑘
			

			
				𝑢
				(
				0
				,
				𝑡
				)
				=
				0
				,
			

			

				𝑘
			

			
				(
				𝐿
				,
				𝑡
				)
				=
				0
				.
			

		
	

					There are (
	
		
			
				𝑚
				+
				2
			

		
	
) equations; we can make them in one system equation and use the finite element methods to solve the system of equation. Here, we give the vector form of the equation as follows:
						
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎩
				𝜕
				⃗
				𝐔
				(
				𝐏
				1
				)
			

			
				
			
			
				⃗
				⃗
				𝐅
				⃗
				
				𝐔
				𝜕
				𝑡
				+
				∇
				⋅
				𝚪
				=
				𝐔
				(
				𝑥
				,
				0
				)
				=
			

			

				0
			

			
				⃗
				
				𝐆
				(
				𝑥
				)
				𝐔
				(
				0
				,
				𝑡
				)
				=
			

			

				1
			

			
				⃗
				
				𝐆
				(
				𝑡
				)
				𝐔
				(
				𝐿
				,
				𝑡
				)
				=
			

			

				2
			

			
				(
				𝑡
				)
				,
			

		
	

					where 
						
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				⃗
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝑢
				𝑢
				𝐔
				=
			

			

				1
			

			

				𝑢
			

			

				2
			

			
				⋮
				𝑢
			

			
				𝑚
				+
				1
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				⃗
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				−
				
				𝑝
				𝚪
				=
			

			

				1
			

			
				+
				𝑝
			

			

				2
			

			
				𝑥
				+
				⋯
				+
				𝑝
			

			
				𝑚
				+
				1
			

			

				𝑥
			

			

				𝑚
			

			
				
				𝜕
				𝑢
			

			
				
			
			
				−
				
				𝑝
				𝜕
				𝑥
			

			

				1
			

			
				+
				𝑝
			

			

				2
			

			
				𝑥
				+
				⋯
				+
				𝑝
			

			
				𝑚
				+
				1
			

			

				𝑥
			

			

				𝑚
			

			
				
				𝜕
				𝑢
			

			

				1
			

			
				
			
			
				−
				
				𝜕
				𝑥
				𝜕
				𝑢
			

			
				
			
			
				
				−
				
				𝑝
				𝜕
				𝑥
			

			

				1
			

			
				+
				𝑝
			

			

				2
			

			
				𝑥
				+
				⋯
				+
				𝑝
			

			
				𝑚
				+
				1
			

			

				𝑥
			

			

				𝑚
			

			
				
				𝜕
				𝑢
			

			

				2
			

			
				
			
			
				
				𝜕
				𝑥
				−
				𝑥
				𝜕
				𝑢
			

			
				
			
			
				
				⋮
				−
				
				𝑝
				𝜕
				𝑥
			

			

				1
			

			
				+
				𝑝
			

			

				2
			

			
				𝑥
				+
				⋯
				+
				𝑝
			

			
				𝑚
				+
				1
			

			

				𝑥
			

			

				𝑚
			

			
				
				𝜕
				𝑢
			

			
				𝑚
				+
				1
			

			
				
			
			
				−
				
				𝑥
				𝜕
				𝑥
			

			

				𝑚
			

			
				𝜕
				𝑢
			

			
				
			
			
				
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				⃗
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				0
				⋮
				0
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				
				𝐔
				𝜕
				𝑥
				𝐅
				=
				𝑓
				(
				𝑥
				,
				𝑡
				)
			

			

				0
			

			
				
				𝑢
				(
				𝑥
				)
				=
			

			

				0
			

			
				
				(
				𝑥
				)
				,
				0
				,
				0
				,
				…
				,
				0
			

			

				𝑇
			

			
				,
				
				𝐆
			

			

				1
			

			
				
				𝑔
				(
				𝑡
				)
				=
			

			

				1
			

			
				
				(
				𝑡
				)
				,
				0
				,
				0
				,
				…
				,
				0
			

			

				𝑇
			

			
				,
				
				𝐆
			

			

				2
			

			
				(
				
				𝑔
				𝑡
				)
				=
			

			

				2
			

			
				(
				
				𝑡
				)
				,
				0
				,
				0
				,
				…
				,
				0
			

			

				𝑇
			

			

				.
			

		
	

We use the Galerkin finite element method approximation for discretizing problem (24). For this, we multiply (24) by a test function 
	
		
			
				𝑣
				∶
				[
				0
				,
				𝐿
				]
				→
				𝑅
			

		
	
, 
	
		
			
				𝑣
				∈
				𝑉
			

			

				0
			

			
				∶
				=
				𝐻
			

			
				1
				0
			

			
				(
				0
				,
				𝐿
				)
			

		
	
 and integrate the obtained equation in space form 
	
		
			

				0
			

		
	
 to 
	
		
			

				𝐿
			

		
	
. We obtain the following equation:
						
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				
			

			
				𝐿
				0
			

			
				𝜕
				𝐔
				(
				𝑥
				,
				𝑡
				)
			

			
				
			
			
				
				𝜕
				𝑡
				⋅
				𝑣
				(
				𝑥
				)
				𝑑
				𝑥
				−
			

			
				𝐿
				0
			

			
				=
				
				∇
				𝚪
				⋅
				𝑣
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				𝐿
				0
			

			
				𝐅
				(
				𝑥
				,
				𝑡
				)
				⋅
				𝑣
				(
				𝑥
				)
				𝑑
				𝑥
				;
			

		
	

					integrating by parts gives
						
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				
			

			
				𝐿
				0
			

			
				|
				|
				∇
				𝚪
				⋅
				𝑣
				(
				𝑥
				)
				𝑑
				𝑥
				=
				(
				𝚪
				⋅
				𝑣
				(
				𝑥
				)
				)
			

			
				𝐿
				0
			

			
				−
				
			

			
				𝐿
				0
			

			
				𝚪
				⋅
				𝜕
				𝑣
				(
				𝑥
				,
				𝑡
				)
			

			
				
			
			
				𝜕
				𝑥
				𝑑
				𝑥
				.
			

		
	

					We can change the first derivative in time and the integral. We have 
	
		
			
				𝑣
				(
				0
				)
				=
				0
				=
				𝑣
				(
				𝐿
				)
			

		
	
, because 
	
		
			
				𝑣
				∈
				𝑉
			

			

				0
			

		
	
. This leads to an equivalent problem 
	
		
			
				(
				𝐏
				1
				)
			

		
	
: 
	
		
			
				∀
				𝑡
				>
				0
			

		
	
, find 
	
		
			
				𝐔
				(
				𝑥
				,
				𝑡
				)
			

		
	
 satisfying
						
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				
				𝑑
				𝑡
			

			
				𝐿
				0
			

			
				
				𝐔
				(
				𝑥
				,
				𝑡
				)
				⋅
				𝑣
				(
				𝑥
				)
				𝑑
				𝑥
				+
			

			
				𝐿
				0
			

			
				𝚪
				⋅
				𝜕
				𝑣
				(
				𝑥
				,
				𝑡
				)
			

			
				
			
			
				=
				
				𝜕
				𝑥
				𝑑
				𝑥
			

			
				𝐿
				0
			

			
				𝐅
				(
				𝑥
				,
				𝑡
				)
				⋅
				𝑣
				(
				𝑥
				)
				𝑑
				𝑥
				,
			

		
	

					for all 
	
		
			
				𝑣
				∈
				𝑉
			

			

				0
			

			
				∶
				=
				𝐻
			

			
				1
				0
			

			
				(
				0
				,
				𝐿
				)
			

		
	
. To simplify the notation, we use the scalar product in 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝐿
				)
			

		
	
:
						
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				
				(
				𝑓
				,
				𝑔
				)
				=
			

			
				𝐿
				0
			

			
				𝑓
				(
				𝑥
				)
				⋅
				𝑔
				(
				𝑥
				)
				𝑑
				𝑥
				.
			

		
	

					We also can define the following bilinear form.
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				
				𝑎
				(
				𝐔
				,
				𝑣
				)
				=
			

			
				𝐿
				0
			

			
				𝚪
				⋅
				𝜕
				𝑣
				(
				𝑥
				,
				𝑡
				)
			

			
				
			
			
				⎧
				⎪
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎪
				⎩
				
				𝜕
				𝑥
				𝑑
				𝑥
				=
			

			
				𝐿
				0
			

			
				−
				
				𝑝
			

			

				1
			

			
				+
				𝑝
			

			

				2
			

			
				𝑥
				+
				⋯
				+
				𝑝
			

			
				𝑚
				+
				1
			

			

				𝑥
			

			

				𝑚
			

			
				
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
				𝜕
				𝑣
			

			
				
			
			
				
				𝜕
				𝑥
				𝑑
				𝑥
			

			
				𝐿
				0
			

			
				
				−
				
				𝑝
			

			

				1
			

			
				+
				𝑝
			

			

				2
			

			
				𝑥
				+
				⋯
				+
				𝑝
			

			
				𝑚
				+
				1
			

			

				𝑥
			

			

				𝑚
			

			
				
				𝜕
				𝑢
			

			

				1
			

			
				
			
			
				𝜕
				𝑥
				𝜕
				𝑣
			

			
				
			
			
				−
				𝜕
				𝑥
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
				𝜕
				𝑣
			

			
				
			
			
				
				
				𝜕
				𝑥
				𝑑
				𝑥
			

			
				𝐿
				0
			

			
				
				−
				
				𝑝
			

			

				1
			

			
				+
				𝑝
			

			

				2
			

			
				𝑥
				+
				⋯
				+
				𝑝
			

			
				𝑚
				+
				1
			

			

				𝑥
			

			

				𝑚
			

			
				
				𝜕
				𝑢
			

			

				2
			

			
				
			
			
				𝜕
				𝑥
				𝜕
				𝑣
			

			
				
			
			
				𝜕
				𝑥
				−
				𝑥
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
				𝜕
				𝑣
			

			
				
			
			
				
				⋮
				
				𝜕
				𝑥
				𝑑
				𝑥
			

			
				𝐿
				0
			

			
				
				−
				
				𝑝
			

			

				1
			

			
				+
				𝑝
			

			

				2
			

			
				𝑥
				+
				⋯
				+
				𝑝
			

			
				𝑚
				+
				1
			

			

				𝑥
			

			

				𝑚
			

			
				
				𝜕
				𝑢
			

			
				𝑚
				+
				1
			

			
				
			
			
				𝜕
				𝑥
				𝜕
				𝑣
			

			
				
			
			
				𝜕
				𝑥
				−
				𝑥
			

			
				𝑚
				+
				1
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
				𝜕
				𝑣
			

			
				
			
			
				
				𝜕
				𝑥
				𝑑
				𝑥
				.
			

		
	
Finally, we obtain with this notation the weak problem of 
	
		
			
				(
				𝐏
				1
				)
			

		
	
:
						
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				𝑑
				(
				𝐏
				2
				)
			

			
				
			
			
				𝑑
				𝑡
				(
				𝐔
				,
				𝑣
				)
			

			

				𝐿
			

			

				2
			

			
				+
				𝑎
				(
				𝐔
				,
				𝑣
				)
				=
				(
				𝐅
				,
				𝑣
				)
			

			

				𝐿
			

			

				2
			

			
				𝐔
				(
				𝑥
				,
				0
				)
				=
				𝐔
			

			

				0
			

			
				(
				𝑥
				)
				𝐔
				(
				0
				,
				𝑡
				)
				=
				𝐆
			

			

				1
			

			
				(
				𝑡
				)
				𝐔
				(
				𝐿
				,
				𝑡
				)
				=
				𝐆
			

			

				2
			

			
				(
				𝑡
				)
				.
			

		
	

4.1. Space Discretization with the Galerkin Method
In this section, we search a semidiscrete approximation of the weak problem 
	
		
			
				(
				𝐏
				2
				)
			

		
	
, using the Galerkin finite element method. This leads to a first-order Cauchy problem in time.
Let 
	
		
			

				𝑉
			

			

				ℎ
			

		
	
 be an 
	
		
			

				𝑁
			

			

				𝑥
			

			
				+
				1
			

		
	
-dimensional subspace of 
	
		
			

				𝑉
			

		
	
 and 
	
		
			

				𝑉
			

			
				0
				,
				ℎ
			

			
				=
				𝑉
			

			

				ℎ
			

			
				∩
				𝑉
			

			

				0
			

		
	
. Then, the following problem is an approximation of the weak problem; find 
	
		
			

				𝑢
			

			

				ℎ
			

			
				,
				𝑢
			

			
				1
				,
				ℎ
			

			
				,
				𝑢
			

			
				2
				,
				ℎ
			

			
				,
				…
				,
				𝑢
			

			
				𝑚
				+
				1
				⋅
				ℎ
			

			
				∈
				𝑉
			

			

				ℎ
			

		
	
 that satisfies 
								
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				
				𝐔
				𝑑
				𝑡
			

			

				ℎ
			

			
				,
				𝑣
			

			

				ℎ
			

			
				
				
				𝐔
				+
				𝑎
			

			

				ℎ
			

			
				,
				𝑣
			

			

				ℎ
			

			
				
				=
				
				𝐅
				,
				𝑣
			

			

				ℎ
			

			
				
				,
				𝐔
			

			

				ℎ
			

			
				(
				𝑥
				,
				0
				)
				=
				𝐔
			

			
				0
				,
				ℎ
			

			
				𝐔
				(
				𝑥
				)
				,
			

			

				ℎ
			

			
				(
				0
				,
				𝑡
				)
				=
				𝐆
			

			

				1
			

			
				𝐔
				(
				𝑡
				)
				,
			

			

				ℎ
			

			
				(
				𝐿
				,
				𝑡
				)
				=
				𝐆
			

			

				2
			

			
				(
				𝑡
				)
				,
			

		
	

							for all 
	
		
			

				𝑣
			

			

				ℎ
			

			
				∈
				𝑉
			

			
				0
				,
				ℎ
			

		
	
, where 
	
		
			

				𝐔
			

			

				ℎ
			

			
				=
				[
				𝑢
			

			

				ℎ
			

			
				,
				𝑢
			

			
				1
				,
				ℎ
			

			
				,
				𝑢
			

			
				2
				,
				ℎ
			

			
				,
				…
				,
				𝑢
			

			
				𝑚
				+
				1
				⋅
				ℎ
			

			

				]
			

			

				𝑇
			

		
	
.
The choice of 
	
		
			

				𝑉
			

			

				ℎ
			

		
	
 is completely arbitrary. So, we can choose it the way that, for later treatment, it will be as easy as possible. For example, we subdivide the interval 
	
		
			
				[
				0
				,
				𝐿
				]
			

		
	
 into partitions of equal distances 
	
		
			

				ℎ
			

		
	
:
								
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				0
				=
				𝑎
			

			

				1
			

			
				<
				𝑎
			

			

				2
			

			
				<
				⋯
				<
				𝑎
			

			

				𝑁
			

			

				𝑥
			

			
				<
				𝑎
			

			

				𝑁
			

			

				𝑥
			

			
				+
				1
			

			
				𝑎
				=
				𝐿
				,
			

			

				𝑖
			

			
				𝑉
				=
				(
				𝑖
				−
				1
				)
				⋅
				ℎ
				,
			

			

				ℎ
			

			
				=
				
				𝑣
			

			

				ℎ
			

			
				∈
				𝐶
			

			

				0
			

			
				[
				]
				0
				,
				𝐿
				∶
				𝑣
			

			

				ℎ
			

			
				|
				|
			

			
				[
				𝑎
			

			
				𝑖
				,
			

			

				𝑎
			

			
				𝑖
				+
				1
			

			

				]
			

			
				∈
				𝚸
			

			

				1
			

			
				,
				∀
				𝑖
				=
				1
				,
				…
				,
				𝑁
			

			

				𝑥
			

			
				
				,
				𝑉
			

			
				0
				,
				ℎ
			

			
				=
				
				𝑣
			

			

				ℎ
			

			
				∈
				𝑉
			

			

				ℎ
			

			
				∶
				𝑣
			

			

				ℎ
			

			
				(
				0
				)
				=
				𝑣
			

			

				ℎ
			

			
				
				.
				(
				𝐿
				)
				=
				0
			

		
	

							Note that the finite dimension allows us to build a finite base for the corresponding space. In the case of 
	
		
			

				𝑉
			

			
				0
				,
				ℎ
			

		
	
, we have 
	
		
			
				{
				𝜑
			

			

				𝑖
			

			

				}
			

			

				𝑁
			

			

				𝑥
			

			
				𝑖
				=
				2
			

		
	
, where 
	
		
			
				∀
				𝑖
				=
				2
				,
				…
				,
				𝑁
			

			

				𝑥
			

		
	
.
Consider
								
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				𝜑
			

			

				𝑖
			

			
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				
				𝑎
				(
				𝑥
				)
				=
				0
				𝑥
				∈
			

			

				0
			

			
				,
				𝑎
			

			
				𝑖
				−
				1
			

			
				
				𝑥
			

			
				
			
			
				ℎ
				
				𝑎
				−
				(
				𝑖
				−
				2
				)
				𝑥
				∈
			

			
				𝑖
				−
				1
			

			
				,
				𝑎
			

			

				𝑖
			

			
				
				𝑥
				𝑖
				−
			

			
				
			
			
				ℎ
				
				𝑎
				𝑥
				∈
			

			

				𝑖
			

			
				,
				𝑎
			

			
				𝑖
				+
				1
			

			
				
				
				𝑎
				0
				𝑥
				∈
			

			
				𝑖
				+
				1
			

			
				,
				𝑎
			

			

				𝑁
			

			

				𝑥
			

			
				+
				1
			

			
				
				,
			

		
	

							while we add for 
	
		
			

				𝑉
			

			

				ℎ
			

		
	
 the two functions 
	
		
			

				𝜑
			

			

				1
			

		
	
 and 
	
		
			

				𝜑
			

			

				𝑁
			

			

				𝑥
			

			
				+
				1
			

		
	
 defined as
								
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				𝜑
			

			

				1
			

			
				
				𝑥
				(
				𝑥
				)
				=
				1
				−
			

			
				
			
			
				ℎ
				
				𝑎
				,
				i
				f
				𝑥
				∈
			

			

				1
			

			
				,
				𝑎
			

			

				2
			

			
				
				
				𝑎
				0
				,
				i
				f
				𝑥
				∈
			

			

				2
			

			
				,
				𝑎
			

			

				𝑁
			

			

				𝑥
			

			
				+
				1
			

			
				
				,
				𝜑
			

			

				𝑁
			

			

				𝑥
			

			
				+
				1
			

			
				
				
				𝑎
				(
				𝑥
				)
				=
				0
				,
				i
				f
				𝑥
				∈
			

			

				1
			

			
				,
				𝑎
			

			

				𝑁
			

			

				𝑥
			

			
				
				𝑥
			

			
				
			
			
				ℎ
				−
				𝑁
			

			

				𝑥
			

			
				
				𝑎
				+
				1
				,
				i
				f
				𝑥
				∈
			

			

				𝑁
			

			

				𝑥
			

			
				,
				𝑎
			

			

				𝑁
			

			

				𝑥
			

			
				+
				1
			

			
				
				,
			

		
	

							so that we can write 
	
		
			

				𝐔
			

			

				ℎ
			

		
	
 as a linear combination of the basic elements:
								
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				𝐔
			

			

				ℎ
			

			
				(
				𝑥
				,
				𝑡
				)
				=
			

			

				𝑁
			

			

				𝑥
			

			
				+
				1
			

			

				
			

			
				∼
				𝑗
				=
				1
			

			

				𝐔
			

			

				𝑗
			

			
				(
				𝑡
				)
				⋅
				𝜑
			

			

				𝑗
			

			
				𝐔
				(
				𝑥
				)
				,
			

			
				0
				,
				ℎ
			

			
				(
				𝑥
				,
				𝑡
				)
				=
			

			

				𝑁
			

			

				𝑥
			

			
				+
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐔
			

			

				0
			

			
				
				𝑥
			

			

				𝑗
			

			
				
				⋅
				𝜑
			

			

				𝑗
			

			
				(
				𝑥
				)
				,
			

		
	

							where 
	
		
			

				∼
			

			

				𝐔
			

			

				1
			

			
				(
				𝑡
				)
				=
				𝐆
			

			

				0
			

			
				(
				𝑡
				)
			

		
	
 and 
	
		
			

				∼
			

			

				𝐔
			

			

				𝑁
			

			

				𝑥
			

			
				+
				1
			

			
				(
				𝑡
				)
				=
				𝐆
			

			

				1
			

			
				(
				𝑡
				)
			

		
	
. Knowing that 
	
		
			
				𝑎
				(
				⋅
				,
				⋅
				)
			

		
	
 is bilinear form and that (32) is valid for each element of the base 
	
		
			
				{
				𝜑
			

			

				𝑖
			

			

				}
			

			

				𝑁
			

			

				𝑥
			

			
				𝑖
				=
				2
			

		
	
, we obtain
								
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				𝑁
			

			

				𝑥
			

			
				+
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			
				
			
			
				𝑑
				𝑡
			

			

				∼
			

			

				𝐔
			

			

				𝑗
			

			
				
				𝜑
				(
				𝑡
				)
				⋅
			

			

				𝑗
			

			
				,
				𝜑
			

			

				𝑖
			

			
				
				+
			

			

				𝑁
			

			

				𝑥
			

			
				+
				1
			

			

				
			

			
				∼
				𝑗
				=
				1
			

			

				𝐔
			

			

				𝑗
			

			
				
				𝜑
				(
				𝑡
				)
				⋅
				𝑎
			

			

				𝑗
			

			
				,
				𝜑
			

			

				𝑖
			

			
				
				=
				
				𝐅
				,
				𝜑
			

			

				𝑖
			

			
				
				,
				∀
				𝑖
				=
				2
				,
				…
				,
				𝑁
			

			

				𝑥
			

			

				.
			

		
	

							This equation can be written in a vector form. For this, we define the vectors 
	
		
			
				⃗
				𝐮
			

		
	
, 
	
		
			
				
				𝐮
			

			

				0
			

		
	
, and 
	
		
			
				⃗
				𝐅
			

		
	
 with components
								
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				𝐅
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				=
				𝐅
				,
				𝜑
			

			

				𝑖
			

			

				
			

			

				𝐿
			

			

				2
			

			
				,
				𝐮
			

			

				𝑗
			

			
				(
				𝑡
				)
				∶
				=
			

			

				∼
			

			

				𝐮
			

			

				𝑗
			

			
				(
				𝑡
				)
				,
				𝐮
			

			
				0
				,
				𝑗
			

			
				=
				𝐮
			

			

				0
			

			
				
				𝐱
			

			

				𝑗
			

			
				
				,
			

		
	

							and matrices 
	
		
			

				𝐌
			

		
	
 and 
	
		
			

				𝐀
			

		
	
 as
								
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				𝑚
			

			
				𝑖
				𝑗
			

			
				
				𝜑
				∶
				=
			

			

				𝑖
			

			
				,
				𝜑
			

			

				𝑗
			

			

				
			

			

				𝐿
			

			

				2
			

			
				,
				𝑎
			

			
				𝑖
				𝑗
			

			
				
				𝜑
				∶
				=
				𝑎
			

			

				𝑖
			

			
				,
				𝜑
			

			

				𝑗
			

			
				
				.
			

		
	

							Note that 
	
		
			
				𝐌
				,
				𝐀
				∈
				𝐑
			

			

				𝑁
			

			

				𝑥
			

			
				−
				1
				×
				𝑁
			

			

				𝑥
			

			
				+
				1
			

		
	
, 
	
		
			
				⃗
				𝐮
				∈
				𝐑
			

			

				𝑁
			

			

				𝑥
			

			
				+
				1
			

		
	
, and 
	
		
			
				⃗
				𝐅
				∈
				𝐑
			

			

				𝑁
			

			

				𝑥
			

			
				−
				1
			

		
	
. So that (37) is equal to the Cauchy problem
								
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				𝐌
				𝑑
			

			
				
			
			
				⃗
				⃗
				⃗
				⃗
				𝐮
				
				𝑡
				𝑑
				𝑥
				𝐮
				(
				𝑡
				)
				+
				𝐀
				⋅
				𝐮
				(
				𝑡
				)
				=
				𝐅
				(
				𝑡
				)
				,
			

			

				0
			

			
				
				=
				
				𝐮
			

			

				𝟎
			

			

				,
			

		
	

							the Crank-Nicolson method can be applied to (40) at time 
	
		
			

				𝑡
			

			

				𝑘
			

		
	
, resulting in
								
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				
				
				𝐮
				𝐌
				⋅
			

			
				𝑘
				+
				1
			

			
				−
				
				𝐮
			

			

				𝑘
			

			
				
			
			
				
				+
				1
				Δ
				𝑡
			

			
				
			
			
				2
				
				𝐮
				𝐀
				⋅
			

			
				𝑘
				+
				1
			

			
				+
				1
			

			
				
			
			
				2
				
				𝐮
				𝐀
				⋅
			

			

				𝑘
			

			
				=
				1
			

			
				
			
			
				2
				
				
				𝐅
			

			

				𝑘
			

			
				+
				
				𝐅
			

			
				𝑘
				+
				1
			

			
				
				,
			

		
	

							where 
	
		
			
				
				𝐮
			

			

				𝑘
			

			
				=
				⃗
				𝐮
				(
				𝑡
			

			

				𝑘
			

			

				)
			

		
	
, 
	
		
			
				
				𝐅
			

			

				𝑘
			

			
				=
				⃗
				𝐅
				(
				𝑡
			

			

				𝑘
			

			

				)
			

		
	
, 
	
		
			
				𝑘
				=
				0
				,
				1
				,
				…
			

		
	
.
Equation (41) can be written in simple form as 
								
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				
				𝐌
				+
				Δ
				𝑡
			

			
				
			
			
				2
				𝐀
				
				⋅
				
				𝐮
			

			
				𝑘
				+
				1
			

			
				=
				
				𝐌
				−
				Δ
				𝑡
			

			
				
			
			
				2
				𝐀
				
				⋅
				
				𝐮
			

			

				𝑘
			

			
				+
				Δ
				𝑡
			

			
				
			
			
				2
				
				
				𝐅
			

			

				𝑘
			

			
				+
				
				𝐅
			

			
				𝑘
				+
				1
			

			
				
				.
			

		
	

							The algebraic system (42) is solved by Gauss elimination method.
5. Numerical Experiment
In this section, we are going to demonstrate some numerical results for 
	
		
			
				(
				𝑢
				(
				𝑥
				,
				𝑡
				)
				,
				𝑞
				(
				𝑥
				)
				)
			

		
	
 in the inverse problem (1)–(4). Therefore, the following examples are considered and the solutions are obtained.
Example 1. Consider (1)–(3) with 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑥
				,
				0
				)
				=
				s
				i
				n
				𝑥
				,
				0
				≤
				𝑥
				≤
				1
				,
				𝑢
				(
				0
				,
				𝑡
				)
				=
				0
				,
				0
				≤
				𝑡
				≤
				1
				,
				𝑢
				(
				1
				,
				𝑡
				)
				=
				s
				i
				n
				(
				1
				)
				𝑒
			

			
				−
				𝑡
			

			
				
				
				𝑥
				,
				0
				≤
				𝑡
				≤
				1
				,
				𝑓
				(
				𝑥
				,
				𝑡
				)
				=
				s
				i
				n
				𝑥
			

			

				2
			

			
				
			
			
				4
				+
				𝑥
			

			
				
			
			
				2
				𝑒
				+
				1
				
				
			

			
				−
				𝑡
			

			
				−
				(
				𝑥
				+
				1
				)
			

			
				
			
			
				2
				c
				o
				s
				(
				𝑥
				)
				𝑒
			

			
				−
				𝑡
			

			
				−
				s
				i
				n
				𝑥
				𝑒
			

			
				−
				𝑡
			

			
				,
				0
				≤
				𝑥
				≤
				1
				,
				0
				≤
				𝑡
				≤
				1
				.
			

		
	

						We obtain the unique exact solution 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				𝑞
				(
				𝑥
				)
				=
				1
				+
				0
				.
				5
				𝑥
				+
				0
				.
				2
				5
				𝑥
			

			

				2
			

			
				,
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				s
				i
				n
				(
				𝑥
				)
				𝑒
			

			
				−
				𝑡
			

			

				.
			

		
	

						We take the observed data 
	
		
			

				𝑔
			

		
	
 as
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				𝑔
				(
				𝑡
				)
				=
				𝑢
				(
				0
				.
				5
				,
				𝑡
				)
				=
				s
				i
				n
				(
				0
				.
				5
				)
				𝑒
			

			
				−
				𝑡
			

			
				,
				0
				≤
				𝑡
				≤
				1
				.
			

		
	

						The unknown function 
	
		
			
				𝑞
				(
				𝑥
				)
			

		
	
 is defined as the following form:
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			

				∧
			

			
				𝑞
				(
				𝑥
				)
				=
				𝑝
			

			

				1
			

			
				+
				𝑝
			

			

				2
			

			
				𝑥
				+
				𝑝
			

			

				3
			

			

				𝑥
			

			

				2
			

			

				,
			

		
	

						where 
	
		
			

				𝑝
			

			

				1
			

		
	
, 
	
		
			

				𝑝
			

			

				2
			

		
	
, and 
	
		
			

				𝑝
			

			

				3
			

		
	
 are unknown coefficients.
Table 1 shows how the Levenberg-Marquardt algorithm can find the best parameters after 12 iterations when it is initialized in four different points.
Table 1: Performance of the algorithm when it is run to solve the model using four different parameters guesses.
	

	Starting point	0.5    0.5    0.5	1    1    1	10    10    10	50    50    50
	

	Iteration 12	0.999729028233135	0.999729028233183	0.999729028233194	0.999729028307261
	0.499885876453067	0.499885876453056	0.499885876453057	0.499885876454169
	0.252009862457275	0.252009862457315	0.252009862457325	0.25200986249336
	

	Error 
	
		
			

				𝐹
			

		
	
	
	
		
			
				8
				.
				7
				5
				6
				4
				9
				4
				4
				4
				0
				5
				×
				1
				0
			

			
				−
				1
				4
			

		
	
	
	
		
			
				8
				.
				7
				5
				6
				4
				9
				4
				4
				4
				2
				7
				×
				1
				0
			

			
				−
				1
				4
			

		
	
	
	
		
			
				8
				.
				7
				5
				6
				4
				9
				4
				4
				4
				2
				0
				×
				1
				0
			

			
				−
				1
				4
			

		
	
	
	
		
			
				8
				.
				7
				5
				6
				4
				9
				4
				4
				4
				2
				0
				×
				1
				0
			

			
				−
				1
				4
			

		
	

	



Figures 1, 2, 3, and 4 show the fitness of the estimated parameters and the rate of convergence.












	




	




	




	




	




	
	




	
	




	




	




	




	




	




	




	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	


	
		
			
		
		
			
			
		
		
			
		
		
			
		
	



Figure 1: All the initial values for the parameters are set to 0.5.







	
	
	
	
	
	
	
	
	
	
	
	











	




	




	




	




	




	
	




	
	




	




	




	




	




	




	




	




	




	




	






	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
			
		
		
			
			
		
		
			
		
		
			
		
	



Figure 2: All the initial values for the parameters are set to 1.







	
	
	
	
	
	
	
	
	
	
	
	











	




	




	




	




	




	
	




	
	




	




	
	
	




	




	
	
	




	




	
	
	







	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
			
		
		
			
			
		
		
			
		
		
			
		
	



Figure 3: All the initial values for the parameters are set to 10.







	
	
	
	
	
	
	
	
	
	
	
	











	




	




	




	




	




	
	




	
	




	




	
	
	




	




	
	
	




	




	
	
	




	






	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
			
		
		
			
			
		
		
			
		
		
			
		
	
	
	



Figure 4: All the initial values for the parameters are set to 50.


Figures 5, 6, 7, and 8 show the comparison between the inversion results 
	
		
			

				∧
			

			
				𝑞
				(
				𝑥
				)
			

		
	
 and the exact value 
	
		
			
				𝑞
				(
				𝑥
				)
			

		
	
.






	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	


	


	
	
	




	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	


	
	
	















































	
		
	


	
		
		
		
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
	
		
	
		
	
		


	
	
	
	
	
	
	
	
	
	
	
	




Figure 5: The comparison chart with all the initial values for the parameters being set to 0.5.







	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
	
		
	
		
	
		


	
	
	
	
	
	
	
	
	
	
	
	




	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	


	


	
	
	




	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	


	
	
	















































	
		
	


	
		
		
		
		
	



Figure 6: The comparison chart with all the initial values for the parameters being set to 1.







	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
	
		
	
		
	
		


	
	
	
	
	
	
	
	
	
	
	
	




	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	


	


	
	
	




	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	


	
	
	















































	
		
	


	
		
		
		
		
	



Figure 7: The comparison chart with all the initial values for the parameters being set to 10.







	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
	
	
		
	
		


	
	
	
	
	
	
	
	
	
	
	
	




	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	


	


	
	
	




	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	


	
	
	















































	
		
	


	
		
		
		
		
	



Figure 8: The comparison chart with all the initial values for the parameters being set to 50.


Table 2 shows the values of 
	
		
			
				𝑞
				(
				𝑗
				Δ
				𝑥
				)
			

		
	
 and 
	
		
			
				𝑢
				(
				𝑗
				Δ
				𝑥
				,
				0
				.
				5
				)
			

		
	
 in 
	
		
			
				𝑥
				=
				𝑗
				Δ
				𝑥
			

		
	
 with all the initial values being set to 1.
Table 2: The values of 
	
		
			
				𝑞
				(
				𝑗
				Δ
				𝑥
				)
			

		
	
 and 
	
		
			
				𝑢
				(
				𝑗
				Δ
				𝑥
				,
				0
				.
				5
				)
			

		
	
 in 
	
		
			
				𝑥
				=
				𝑗
				Δ
				𝑥
			

		
	
 with all the initial values being set to 1.
	

	
	
		
			

				𝑗
			

		
	
	Numerical	Exact	Numerical	Exact
	
	
		
			
				𝑞
				(
				𝑗
				Δ
				𝑥
				)
			

		
	
	
	
		
			
				𝑞
				(
				𝑗
				Δ
				𝑥
				)
			

		
	
	
	
		
			
				𝑢
				(
				𝑗
				Δ
				𝑥
				,
				0
				.
				5
				)
			

		
	
	
	
		
			
				𝑢
				(
				𝑗
				Δ
				𝑥
				,
				0
				.
				5
				)
			

		
	

	

	0	0.999729028233183	1	0	0
	1	1.05223771450306	1.0525	0.0605593190239173	0.0605520280601669
	2	1.10978659802209	1.11	0.120511797611786	0.120499040271796
	3	1.17237567879026	1.1725	0.179257059078521	0.179242065904716
	4	1.24000495680758	1.24	0.236207449080344	0.236194164064666
	5	1.31267443207404	1.3125	0.290793943250869	0.290786288212692
	6	1.39038410458965	1.39	0.342471828361625	0.342472971890064
	7	1.47313397435441	1.4725	0.390726114897089	0.390737778838824
	8	1.56092404136831	1.56	0.435076630410587	0.435098463062163
	9	1.65375430563136	1.6525	0.475082717530532	0.475111787267016
	10	1.75162476714355	1.75	0.510347406713368	0.510377951544573
	



Example 2. Consider (1)–(3) with
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑥
				,
				0
				)
				=
				𝑥
				𝑒
			

			
				−
				𝑥
			

			
				,
				0
				≤
				𝑥
				≤
				1
				,
				𝑢
				(
				0
				,
				𝑡
				)
				=
				𝑡
				𝑒
			

			
				−
				𝑡
			

			
				,
				0
				≤
				𝑡
				≤
				1
				,
				𝑢
				(
				1
				,
				𝑡
				)
				=
				(
				1
				+
				𝑡
				)
				𝑒
			

			
				−
				1
				−
				𝑡
			

			
				,
				0
				≤
				𝑡
				≤
				1
				,
				𝑓
				(
				𝑥
				,
				𝑡
				)
				=
				𝑒
			

			
				−
				(
				𝑡
				+
				𝑥
				)
			

			
				−
				(
				𝑡
				+
				𝑥
				)
				𝑒
			

			
				−
				(
				𝑡
				+
				𝑥
				)
			

			
				−
				𝑒
			

			

				𝑥
			

			
				
				𝑒
			

			
				−
				(
				𝑡
				+
				𝑥
				)
			

			
				−
				(
				𝑡
				+
				𝑥
				)
				𝑒
			

			
				−
				(
				𝑡
				+
				𝑥
				)
			

			
				
				+
				𝑒
			

			

				𝑥
			

			
				
				2
				𝑒
			

			
				−
				(
				𝑡
				+
				𝑥
				)
			

			
				−
				(
				𝑡
				+
				𝑥
				)
				𝑒
			

			
				−
				(
				𝑡
				+
				𝑥
				)
			

			
				
				0
				≤
				𝑥
				≤
				1
				,
				0
				≤
				𝑡
				≤
				1
				.
			

		
	

						We obtain the unique exact solution 
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				𝑞
				(
				𝑥
				)
				=
				𝑒
			

			

				𝑥
			

			
				,
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				(
				𝑥
				+
				𝑡
				)
				𝑒
			

			
				−
				𝑥
				−
				𝑡
			

			

				.
			

		
	

						We take the observed data 
	
		
			

				𝑔
			

		
	
 as
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				𝑔
				(
				𝑡
				)
				=
				𝑢
				(
				0
				.
				5
				,
				𝑡
				)
				=
				(
				0
				.
				5
				+
				𝑡
				)
				𝑒
			

			
				(
				−
				0
				.
				5
				−
				𝑡
				)
			

			
				,
				0
				≤
				𝑡
				≤
				1
				.
			

		
	

						The unknown function 
	
		
			
				𝑞
				(
				𝑥
				)
			

		
	
 is defined as the following form.
	
		
			

				∧
			

			
				𝑞
				(
				𝑥
				)
				=
				𝑝
			

			

				1
			

			
				+
				𝑝
			

			

				2
			

			
				𝑥
				+
				𝑝
			

			

				3
			

			

				𝑥
			

			

				2
			

			
				+
				𝑝
			

			

				4
			

			

				𝑥
			

			

				3
			

			
				+
				𝑝
			

			

				5
			

			

				𝑥
			

			

				4
			

			
				+
				𝑝
			

			

				6
			

			

				𝑥
			

			

				5
			

			
				+
				𝑝
			

			

				7
			

			

				𝑥
			

			

				6
			

		
	
, where 
	
		
			

				𝑝
			

			

				1
			

			
				,
				𝑝
			

			

				2
			

			
				,
				…
				,
				𝑝
			

			

				7
			

		
	
 are unknown coefficients.
Table 3 shows how the Levenberg-Marquardt algorithm can find the best parameters after 20 iterations when it is initialized in four different points.
Table 3: Performance of the algorithm when it is run to solve the model using four different parameters guesses.
	

	Starting point	0.1    0.1    0.1    0.1	0.5    0.5    0.5    0.5	1    1    1    1	2    2    2    2
	0.1    0.1    0.1    0.1	0.5    0.5    0.5    0.5	1    1    1    1	2    2    2    2
	

	Iteration 20	1.01536263526644	1.01536263500695	1.01536263525763	1.01536263525905
	0.896348846894057	0.896348850692318 	0.896348847022403	0.896348846999736 
	0.954285303464511 	0.954285278486704	0.954285302637587	0.954285302790922
	−0.890298938193057	−0.890298849338373 	−0.890298935334171	−0.890298935876618
	1.40131927153131 	1.40131909032315	1.40131926588117	1.40131926696099
	−0.871276408882294	−0.871276197318301 	−0.871276402487896	−0.87127640370648
	0.183785623507722	0.183785492186491	0.18378561965322	0.183785620380814
	0.0359103726343979	0.0359104061952515	0.0359103735933848	0.0359103734148875
	

	Error 
	
		
			

				𝐹
			

		
	
	
	
		
			
				7
				.
				8
				9
				7
				4
				9
				2
				0
				0
				3
				6
				3
				5
				1
				2
				×
				1
				0
			

			
				−
				1
				1
			

		
	
	
	
		
			
				7
				.
				8
				9
				7
				4
				9
				2
				0
				0
				3
				6
				3
				5
				0
				4
				×
				1
				0
			

			
				−
				1
				1
			

		
	
	
	
		
			
				7
				.
				8
				9
				7
				4
				9
				2
				0
				0
				3
				5
				3
				8
				8
				8
				×
				1
				0
			

			
				−
				1
				1
			

		
	
	
	
		
			
				7
				.
				8
				9
				7
				4
				9
				2
				0
				0
				3
				5
				3
				8
				9
				×
				1
				0
			

			
				−
				1
				1
			

		
	

	



Figures 9, 10, 11, and 12 show the fitness of the estimated parameters and the rate of convergence.






	




	




	




	




	




	
	




	
	




	
	




	
	




	
	


	
	


	




	
	
	
	
	




	
	
	
	




	
	
	
	
	




	
	
	
	




	
	
	
	
	




	
	
	
	




	
	
	
	
	




	
	
	
	


	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	



Figure 9: All the initial values for the parameters are set to 0.1.








	




	




	




	




	




	
	




	
	




	
	




	
	




	
	


	
	


	




	




	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
			
		
		
			
			
		
		
			
		
		
			
		
	


	
	
	
	
	
	
	
	
	
	
	
	



Figure 10: All the initial values for the parameters are set to 0.5.








	




	




	




	




	




	
	




	
	




	
	




	
	




	
	


	
	


	




	
	
	




	
	
	




	
	
	




	
	
	




	




	
	
	




	
	
	




	
	
	


	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
			
		
		
			
			
		
		
			
		
		
			
		
	


	
	
	
	
	
	
	
	
	
	
	
	



Figure 11: All the initial values for the parameters are set to 1.








	




	




	




	




	




	
	




	
	




	
	




	
	




	
	


	
	


	




	
	
	




	




	
	
	




	




	
	
	




	




	
	
	


	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
			
		
		
			
			
		
		
			
		
		
			
		
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	



Figure 12: All the initial values for the parameters are set to 2.


Figures 13, 14, 15, and 16 show the comparison between the inversion results 
	
		
			

				∧
			

			
				𝑞
				(
				𝑥
				)
			

		
	
 and the exact value 
	
		
			
				𝑞
				(
				𝑥
				)
			

		
	
.







	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	


	



	




	
	
	




	
	
	




	
	
	




	
	
	




	




	
	
	




	
	
	




	
	
	


	
	
	















































	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
		
	
		
	
		


	
	
	
	
	
	
	
	
	
	
	
	



	
		
	


	
		
		
		
		
	



Figure 13: The comparison chart with all the initial values for the parameters being set to 0.1.









	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	


	



	




	
	
	




	
	
	




	
	
	




	
	
	




	




	
	
	




	
	
	




	
	
	


	
	
	


	
		
	


	
		
		
		
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
	
		
	
		
	
		


	
	
	
	
	
	
	
	
	
	
	
	



	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	



Figure 14: The comparison chart with all the initial values for the parameters being set to 0.5.









	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	


	



	




	
	
	




	
	
	




	
	
	




	
	
	




	




	
	
	




	
	
	




	
	
	


	
	
	















































	
		
	


	
		
		
		
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
	
		
	
		
	
		


	
	
	
	
	
	
	
	
	
	
	
	




Figure 15: The comparison chart with all the initial values for the parameters being set to 1.









	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	


	



	




	
	
	




	
	
	




	
	
	




	
	
	




	




	
	
	




	
	
	




	
	
	


	
	
	















































	
		
	


	
		
		
		
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
	
	
		
	
		


	
	
	
	
	
	
	
	
	
	
	
	




Figure 16: The comparison chart with all the initial values for the parameters being set to 2.


Table 4 shows the values of 
	
		
			
				𝑞
				(
				𝑗
				Δ
				𝑥
				)
			

		
	
 and 
	
		
			
				𝑢
				(
				𝑗
				Δ
				𝑥
				,
				0
				.
				5
				)
			

		
	
 in 
	
		
			
				𝑥
				=
				𝑗
				Δ
				𝑥
			

		
	
 with all the initial values being set to 1.
Table 4: The values of 
	
		
			
				𝑞
				(
				𝑗
				Δ
				𝑥
				)
			

		
	
 and 
	
		
			
				𝑢
				(
				𝑗
				Δ
				𝑥
				,
				0
				.
				5
				)
			

		
	
 in 
	
		
			
				𝑥
				=
				𝑗
				Δ
				𝑥
			

		
	
 with all the initial values being set to 1.
	

	
	
		
			

				𝑗
			

		
	
	Numerical	Exact	Numerical	Exact
	
	
		
			
				𝑞
				(
				𝑗
				Δ
				𝑥
				)
			

		
	
	
	
		
			
				𝑞
				(
				𝑗
				Δ
				𝑥
				)
			

		
	
	
	
		
			
				𝑢
				(
				𝑗
				Δ
				𝑥
				,
				0
				.
				5
				)
			

		
	
	
	
		
			
				𝑢
				(
				𝑗
				Δ
				𝑥
				,
				0
				.
				5
				)
			

		
	

	

	0	1.01536263525763	1	0.303342962644088	0.303265329856317
	1	1.11378168059013	1.10517091807565	0.329201964677126	0.329286981656416
	2	1.22765694959399	1.22140275816017	0.347492882224886	0.347609712653987
	3	1.35549021305874	1.349858807576	0.359347568702678	0.359463171293777
	4	1.4973722149265	1.49182469764127	0.365808711321159	0.365912693766539
	5	1.65432828415206	1.64872127070013	0.367792378208857	0.367879441171442
	6	1.82785056869393	1.82211880039051	0.366091218454182	0.366158192067887
	7	2.01963499046464	2.01375270747048	0.361387761473796	0.361433054294643
	8	2.23154102006879	2.22554092849247	0.354267869273063	0.354291330944216
	9	2.46579237015687	2.45960311115695	0.345233023618059	0.345235749518249
	10	2.72543670622333	2.71828182845905	0.334712604803175	0.334695240222645
	



6. Conclusions
A numerical method to estimate the temperature 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

		
	
 and the coefficient 
	
		
			
				𝑞
				(
				𝑥
				)
			

		
	
 is proposed for an IHCP and the following results are obtained.(1)The present study successfully applies the numerical method involving the Levenberg-Marquardt algorithm in conjunction with the Galerkin finite element method to an IHCP.(2)From the illustrated example, it can be seen that the proposed numerical method is efficient and accurate to estimate the temperature 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

		
	
 and the coefficient 
	
		
			
				𝑞
				(
				𝑥
				)
			

		
	
.
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