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Distortional buckling is one of the most important buckling modes of the steel-concrete composite girder under negative moment.
In this study, the equivalent lateral and torsional restraints of the bottom flange of a steel-concrete composite girder under negative
moments due to variable axial forces are thoroughly investigated. The results show that there is a coupling effect between the
applied forces and the lateral and torsional restraint of the bottom flange. Based on the calculation formula of lateral and torsional
restraints, the critical buckling stress of I-steel-concrete composite girders and steel-concrete composite box girders under variable
axial force is obtained. The critical bending moment of the steel-concrete composite girders can be further calculated. Compared
to the traditional calculation methods of elastic foundation beam, the paper introduces an improved method, which considers
coupling effect of the external loads and the foundation spring constraints of the bottom flange. Fifteen examples of the steel-
concrete composite girders in different conditions are calculated. The calculation results show a good match between the hand
calculation and the ANSYS finite element method, which validated that the analytic calculation method proposed in this paper is
practical.

1. Introduction

The steel-concrete composite girders are a type of important
lateral-load-carrying composite element. A concrete floor
or concrete deck and a steel girder are combined by shear
connections andhence the steel girder and concrete slab carry
loads together.The existence of the concrete slab can improve
the entire and local stability. The steel-concrete composite
girder has light self-weight, strong lateral restraint, good fire
resistance, and durability. In terms of strength, ductility, and
stability, this type of component is of high compressive stress
resistance benefitting from the concrete and excellent tensile
resistance because of the steel. Besides, this steel-concrete
composite girder is an ecofriendly structure. With effective
steel recycling and high construction speed, steel-concrete
composite girders have shown promising potential in the
future construction market [1–4].

The negative bending moment area of the steel girder
in a steel-concrete composite girder will be subjected to the
constraint caused by the concrete slab and, hence, experience
buckling. Chen and Jia [5] studied the ultimate resistance of a
continuous composite beam, and the investigations indicated
that the ultimate resistance was governed by either distor-
tional lateral buckling or local buckling or an interactive
mode of the two. Svensson [6] improved themethod of elastic
foundation beamunder constant axial force, whichwas based
on the assumption that the concrete slab was totally rigid.
The method also introduced variable axial elastic foundation
struts so as to consider the bending gradient effect. However,
Williams and Jemah [7] found that Svensson’s method is not
safe enough and suggested increasing the involved area of
the web. Goltermann and Svensson [8] further developed
Williams’ models, by solving the eigenvalue of a four-step
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differential equation to understand the buckling of steel-
concrete composite girders in the negative moment area
caused by variable axial force. In 1982, Swedish code for
light-gauge metal structures first simplified the issue [9], by
deeming the buckling analysis of steel-concrete composite
girder in negative moment area as a stability study of the
elastic foundation beam under constant axial force, that is,
the method of elastic foundation beam under constant axial
force. British Bridge Standard (BS5400) [10] also employs
this method to the design of continuous composite girders.
British Steel Structure Institute [11] obtained a calculation
formula of the critical stress 𝑀cr in the buckling analysis of
steel-concrete composite girders in negative moment area by
using energy method. Jiang et al. [12] presented a stability
analysis calculation model of composite box beam consid-
ering rotation of steel beam top flange and established the
critical bending moment calculation formula of distortional
buckling by employing energy method. Due to the limited
computation capacity at that time, the articles reviewed above
did not carry on a detailed analysis on the applicability
of the elastic foundation beam method. It requires further
investigation especially on whether the variable axial strut
is equivalent to the steel-concrete composite girder when
considering the real bending gradient. Based on Svensson’s
elastic foundation strut model, Ye et al. [13, 14] made an
improvement on the lateral and torsional restraints of the
elastic foundation strut by considering the involved part of
the web and pointed out that the elastic foundation beam
method was more reasonable than the energy method. The
buckling analysis of a multispan steel-concrete composite
girder via a three-step simplification can be carried out.
However, thismethod cannot be applied to composite girders
under complex loads. Zhou et al. [15, 16] undertook a research
on the equivalent lateral and torsional restraints of the bottom
flanges in negative moment areas of I-steel-concrete girders
and steel-concrete composite box girders. Corresponding
calculation formulaewere proposed, and the results indicated
a coupling relation between the external loads and the
torsional and lateral restraints of the bottom flange.

In this paper, the calculation formulae of the lateral and
torsional restraints under variable axial force are proposed by
considering the coupling effect of restraint and external loads.
The critical buckling stress and critical bending moment of
the steel-concrete composite girder are further developed.
Finally, the precision analysis of the proposed formula is
conductedwith an example.The calculationmethod provides
a theoretical basis for further studying of the ultimate resis-
tance of the steel-concrete composite girder under variable
axial force.

2. Basic Assumptions

The cross-section dimensions of a steel-concrete composite
girder are shown in Figure 1. The distortional buckling mode
of the steel girder in a composite girder is different from
that of an unconstraint steel girder. The top flange of the
steel girder in the composite girder is inserted into the
concrete slab, which has greater lateral and torsional restraint

Mx0

z

l

x
y

0

Mx1

bc
bf

tw tf hc
hw

yc
x

y

0

Figure 1: Cross-section dimensions of steel-concrete composite
girders and axes.

stiffness. Therefore, both lateral deformation and torsional
deformation of the steel girder are restrained by the concrete
slab. The lateral buckling of the composite girder happens
with the torsional bucking of the lateral distortion of the
steel web, as shown in Figure 2. To simplify calculation, the
following assumptions are made.

(1) The lateral bending stiffness and torsional stiffness of
the concrete slab are relatively greater. The top flange
of the steel girder is restricted by the concrete slab
so that the lateral distortion and torsional distortion
cannot take place.

(2) Tensile resistance of the concrete slab is ignored.
(3) Since no vertical deformation corresponding to flex-

ural buckling occurs when the distortional buckling
happens [5–8, 13–17], the vertical restraint stiffness of
the bottom flange is deemed to be infinity; that is,
𝑘𝑦 = ∞.

3. Restraining Stiffness Analysis of the Web of
Steel-Concrete Composite Girder

According to the above assumptions, the compression stress
at the edge of the bottom flange by considering the rein-
forcement within the flanges of concrete slabs under negative
bending moment is expressed as

𝜎1 (𝜉) =
𝑀𝑥 (𝜉) 𝑦𝑐

𝐼
, (1)

where 𝜉 = 𝑧/𝑙 is a normalization parameter, 0 ≤ 𝜉 ≤ 1, 𝑙 is the
length of the composite girder,𝑀𝑥(𝑧) is the negative bending
moment acting on the composite girder, and −𝑦𝑐 is the center
position of the equivalent cross-section in the vertical axis
and can be expressed by (3).

The varying compression stress in order to take into
account the moment gradient is expressed as

𝜎1 (𝜉) = 𝜎0 (𝑎0 + 𝑎1𝜉 + 𝑎2𝜉
2
) , (2)

where 𝜎0 is the maximum compression stress of the bottom
flange. Here, by definition, positive 𝜎1 denotes compression
stress and coefficients 𝑎0, 𝑎1, and 𝑎2 represent different load
conditions: (1) 𝑎0 = 1, 𝑎1 = 0, and 𝑎2 = 0 stand for the pure
bending moment; (2) 𝑎0 = 0, 𝑎1 = 1, and 𝑎2 = 0 represent
triangle negative bending moment; (3) 𝑎0 = 0, 𝑎1 = 4, and
𝑎2 = −4 are uniform distributed loads.
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Figure 2: Distortional buckling of steel-concrete composite girders
under negative moments.

Consider

𝑦𝑐 =
𝐴 𝑠𝑦𝑠 + 𝐴 𝑡ℎ𝑤 + 0.5𝐴𝑤ℎ𝑤

𝐴 𝑠 + 𝐴 𝑡 + 𝐴𝑤 + 𝐴𝑓

, (3)

where 𝐴𝑓 is the area of the bottom flange, 𝐴 𝑡 is the area of
the top flange,𝐴𝑤 is the area of the steel web,𝐴 𝑠 is the area of
reinforcements within concrete slab, and 𝑦𝑠 is the distance of
the center position of the equivalent cross-section to the edge
of steel flange.

3.1. The Torsional Restraint of the Steel Web. The simplified
model of the steel web is shown as in Figure 3. Two transverse
edges are simply supported. The junction of the web and top
flange is fixed while the junction of web and bottom flange is
simply supported.The boundary condition of the buckling of
the steel web is [15, 16] given as follows:

[𝑤]𝑧=0,𝑙 = 0, [𝑤]𝑦=0,−ℎ
𝑤

= 0, [𝑤,𝑦]𝑦=−ℎ
𝑤

= 0,

[−𝐷𝑤 (𝑤,𝑧𝑧 + 𝜇𝑤,𝑦𝑦)]𝑧=0,𝑙
= 0,

(4)

where 𝐷𝑤 = 𝐸𝑡
3

𝑤
/12(1 − 𝜇

2
), 𝜇 is Poisson’s ratio of steel,

𝐸 is the elasticity modulus of steel, 𝑤(𝑦, 𝑧) is the buckling
deformation function of web, 𝑡𝑤 is the thickness of the steel
girder web, and ℎ𝑤 is the height of the steel girder web.

Based on the boundary conditions, the buckling deforma-
tion function of the steel web is

𝑤 = [
𝑦

ℎ𝑤

+ 2(
𝑦

ℎ𝑤

)

2

+ (
𝑦

ℎ𝑤

)

3

](

𝑛

∑

𝑖=1

𝑐𝑖 sin
𝑖𝜋𝑧

𝑙
) . (5)

According to the principle of stationary potential energy
[18–20], the buckling characteristic equation is given as fol-
lows:

(B0 + 𝑘𝜑1T − 𝜎0N0)C = 0, (6)
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Figure 3: Rectangular plate under compression and moments.
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2
𝜋
2
))], 𝑘𝜑1

is the lateral restraint stiffness of theweb by the bottomflange,
and C = {𝑐1, 𝑐2, . . . , 𝑐𝑛}

𝑇 is general coordinates and represents
the buckling distortion.

According to the elastic plate theory, the lateral distribu-
tion force of the web is given as follows [21]:

𝑓𝑥𝜑 = −𝐷𝑤 [
𝜕
3
𝑤

𝜕𝑦3
+ (2 − 𝜇)

𝜕
3
𝑤

𝜕𝑧2𝜕𝑦
] ,

𝑓𝑥𝜑

𝑦=0
= −

6𝐷𝑤

ℎ3
𝑤

(

𝑛

∑

𝑖=1

𝑐𝑖 sin
𝑖𝜋𝑧

𝑙
)

+ 𝐷𝑤𝛽
(2 − 𝜇)

ℎ𝑤

(

𝑛

∑

𝑖=1

𝑐𝑖𝑖
2 sin 𝑖𝜋𝑧

𝑙
) .

(7)

3.2. The Lateral Restraint of the Steel Web. The simplified
model of the steel web is shown as in Figure 4. Two transverse
edges are simply supported, and the junction of the web and
top flange is fixed. The junction of web and bottom flange is
free in the transverse direction. The boundary condition of
the buckling of the steel web is [15, 16] given as follows:

[𝑤]𝑧=0,𝑙 = 0, [𝑤]𝑦=−ℎ
𝑤

= 0, [𝑤,𝑦]𝑦=0,−ℎ
𝑤

= 0,

[−𝐷𝑤 (𝑤,𝑧𝑧 + 𝜇𝑤,𝑦𝑦)]𝑧=0,𝑙
= 0.

(8)

According to the boundary condition, the buckling defor-
mation function of the steel web can be expressed as

𝑤 = [1 − 3(
𝑦

ℎ𝑤

)

2

− 2(
𝑦

ℎ𝑤

)

3

](

𝑛

∑

𝑖=1

𝑑𝑖 sin
𝑖𝜋𝑧

𝑙
) . (9)

According to the principle of stationary potential energy
[18, 20], the buckling characteristic equation is given as
follows:

(H0 + 𝑘𝑥1R − 𝜎0S0)D = 0, (10)
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Figure 4: Rectangular plate under compression and lateral stress.

where 𝑅𝑖𝑗 = 𝐻0𝑖𝑗 = 0 (𝑖 ̸= 𝑗), 𝑅𝑖𝑖 = 𝑙/2, 𝐻0𝑖𝑖 = 𝑙𝐷𝑤((6/ℎ
3

𝑤
) +

(13ℎ𝑤/70)𝛽
2
𝑖
4
+ (6/5ℎ𝑤)𝛽𝑖

2
), 𝑆0𝑖𝑗 = (𝑡𝑤ℎ𝑤𝑏𝑖𝑗/𝑙)((13/35) −

(3ℎ𝑤/35𝑦𝑐)) (𝑖 ̸= 𝑗), 𝑆0𝑖𝑖 = (𝑡𝑤ℎ𝑤𝜋
2
𝑔𝑖/𝑙)((13/70) − (3ℎ𝑤/

70𝑦𝑐)), 𝑘𝑥1 is the lateral restraint stiffness of the web by
the bottom flange, and D = {𝑑1, 𝑑2, . . . , 𝑑𝑛}

𝑇 is general
coordinates and represents the buckling distortion of the
bottom flange.

According to the elastic plate theory, the lateral dis-
tributed bending moment of the web is [21] given as follows:

𝑓𝜑𝑥 = −𝐷𝑤 (
𝜕
2
𝑤

𝜕𝑦2
+ 𝜇

𝜕
2
𝑤

𝜕𝑧2
) ,

𝑓𝜑𝑥

𝑦=0
= 𝐷𝑤

6

ℎ2
𝑤

(

𝑛

∑

𝑖=1

𝑑𝑖 sin
𝑖𝜋𝑧

𝑙
)

+ 𝐷𝑤𝜇𝛽(

𝑛

∑

𝑖=1

𝑑𝑖𝑖
2 sin 𝑖𝜋𝑧

𝑙
) .

(11)

3.3. Restraint Analysis of the Steel Web. 𝑘𝜑1 and 𝑘𝑥1 can be
determined by the following equations:


B + 𝑘𝜑1T − 𝜎0N


= 0,

H + 𝑘𝑥1R − 𝜎0S
 = 0.

(12)

It can be found from (12) that there is a coupling
relation between external loads and torsional/lateral restraint
stiffness. It indicates that both the torsional and lateral
restraints of the bottom flange are not only determined by
the cross-section features of the composite girder, but they
also depended on the external loads. Therefore, it may not
be appropriate to take the restraint stiffness as a constant
material feature in the traditional elastic foundation beam
method.

4. Buckling Analysis of I-Steel-Concrete
Composite Girders

According to the assumptions made upon, the buckling
model of the I-steel-composite girder can be simplified as
the model depicted in Figure 5. The horizontal and torsional
directions of the thin plate are restricted by springs while the
vertical direction is rigidly restricted.
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Figure 5: Simplified calculation model of steel-concrete composite
girders.

In Figure 5, the thin plate is symmetric about both 𝑥-axis
and 𝑦-axis. The centroid of the plate is set to be the origin
point. Assuming the horizontal lateral displacement of the
bottom flange is 𝑢(𝑧) and the torsional angle is 𝜑(𝑧), the
neutral equilibrium differential equation of an elastic thin-
walled bar under variable axial force can be expressed as [17]

𝐸𝐼𝑦𝑢
𝐼𝑉
+ [𝑃 (𝑢


+ 𝑦𝑎𝜑


)]


+ 𝑘𝑥 [𝑢 − (𝑦𝑑 − 𝑦𝑎) 𝜑]

− 𝑓𝑥𝜑 = 0,

𝐸𝐼𝑥V
𝐼𝑉
+ [𝑃 (V − 𝑥𝑎𝜑


)]


+ 𝑘𝑦 [V + (𝑥𝑑 − 𝑥𝑎) 𝜑] = 0,

𝐸𝐼𝑤𝜑
𝐼𝑉
+ [(𝑃𝑟

2

0
− 𝐺𝐽) 𝜑


]


− 𝑘𝑥 [𝑢 − (𝑦𝑑 − 𝑦𝑎) 𝜑]

× (𝑦𝑑 − 𝑦𝑎) + 𝑓𝜑𝑥 − 𝑥𝑎(𝑃V

)


+ 𝑦𝑎(𝑃𝑢

)


+ 𝑘𝑦 [V + (𝑥𝑑 − 𝑥𝑎) 𝜑] (𝑥𝑑 − 𝑥𝑎) + 𝑘𝜑𝜑 = 0,

(13)

where 𝐼𝑦 = 𝑡𝑓𝑏
3

𝑓
/12, 𝐼𝑥 = 𝑏𝑓𝑡

3

𝑓
/12, 𝐽 = 𝑏𝑓𝑡

3

𝑓
/3, 𝑟2
0
= 𝑥
2

𝑎
+

𝑦
2

𝑎
+ (𝐼𝑥 + 𝐼𝑦)/𝐴 𝑠, and 𝑥𝑎 is center position of the curved

bottom flange in the horizontal axis; here, 𝑥𝑎 = 0. 𝑦𝑎 is the
center position of the curved bottom flange in the vertical
axis; here, 𝑦𝑎 = 0. 𝑥𝑑 is the rotation axis of the bottom flange
in the horizontal axis; here, 𝑥𝑑 = 0. 𝑦𝑑 is the rotation axis of
the bottom flange in the vertical axis; here, 𝑦𝑑 = 0. 𝐼𝑤 is the
sectorial inertia moment of bottom flange; here, 𝐼𝑤 = 0. 𝐺
is shear modulus of the steel, 𝑃 is the pressure of the bottom
flange,𝑃 = 𝐴𝑓𝜎0(𝑎0+𝑎1𝜉+𝑎2𝜉

2
), 𝑘𝜑 = −𝑘𝜑1, and 𝑘𝑥 = −𝑘𝑥1.

Plugging𝑦𝑎 = 0, 𝑦𝑑 = 0, 𝑥𝑎 = 0, 𝑥𝑑 = 0, V = 0, and 𝐼𝑤 =
0 into (13) leads to

(𝑃𝑟
2

0
− 𝐺𝐽) 𝜑


+ 𝑟
2

0
𝑃

𝜑

+ 𝑘𝜑𝜑 + 𝑓𝜑𝑥 = 0,

𝐸𝐼𝑦𝑢
𝐼𝑉
+ 𝑃

𝑢

+ 𝑃𝑢

+ 𝑘𝑥𝑢 − 𝑓𝑥𝜑 = 0.

(14)

By combining (5) and (9), the torsional angle and lateral
displacement of the bottomflange of the composite girder can
be obtained:

𝜑 (𝑧) =

𝑛

∑

𝑖=1

𝑐𝑖

ℎ𝑤

sin 𝑖𝜋𝑧
𝑙
,

𝑢 (𝑧) =

𝑛

∑

𝑖=1

𝑑𝑖 sin
𝑖𝜋𝑧

𝑙
.

(15)
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According to the Galerkin method [15, 22], we have

(
B1 + 𝑘𝜑T − 𝜎0N1 Q

M H1 + 𝑘𝑥R − 𝜎0S1
)(

C
D) = 0, (16)

where 𝐵1𝑖𝑗 = 𝑄𝑖𝑗 = 𝐻1𝑖𝑗 = 𝑀𝑖𝑗 = 0 (𝑖 ̸= 𝑗), 𝐵1𝑖𝑖 =
𝐺𝐽(𝑖
2
𝜋
2
/2𝑙ℎ
2

𝑤
), 𝑀𝑖𝑖 = (3𝐷𝑤𝑙/ℎ

3

𝑤
)−𝐷𝑤((2−𝜇)𝑖

2
𝑙𝛽/2ℎ𝑤), 𝑄𝑖𝑖 =

3(𝐷𝑤𝑙/ℎ
3

𝑤
)+(𝐷𝑤𝜇𝑙𝛽𝑖

2
/2ℎ𝑤), 𝑁1𝑖𝑖 = (𝐴𝑓𝑟

2

0
𝜋
2
𝑔𝑖/2𝑙ℎ

2

𝑤
), 𝑁1𝑖𝑗 =

(𝐴𝑓𝑟
2

0
𝑏𝑖𝑗/𝑙ℎ
2

𝑤
) (𝑖 ̸= 𝑗), 𝐻1𝑖𝑖 = 𝐸𝐼𝑦𝛽

2
(𝑖
4
𝑙/2), 𝑆1𝑖𝑖 = (𝐴𝑓𝜋

2
𝑔𝑖/

2𝑙), and 𝑆1𝑖𝑗 = (𝐴𝑓𝑏𝑖𝑗/𝑙) (𝑖 ̸= 𝑗).
The combination of (6), (10), and (16) leads to

[(
B Q
M H) − 𝜎0 (

N 0
0 S)](

C
D) = 0, (17)

where B = B0 + B1, N = N0 + N1, H = H0 + H1, and S =

S0 + S1.
The deformation vector {C𝑇,D𝑇}𝑇 cannot be zero when

buckling happens. Therefore, the buckling of the composite
girder can be solved by the generalized eigenvalue of the
characteristic matrix shown as follows:



(
B Q
M H) − 𝜎0 (

N 0
0 S)



= 0. (18)

By solving (18), 2𝑛 generalized eigenvalue can be
obtained: 𝜎𝑡𝑖 (𝑖 = 1, 2, . . . , 2𝑛); let 𝜎cr = min{𝜎𝑡𝑖 (𝑖 =

1, 2, . . . , 2𝑛)}; 𝜎cr is the critical buckling stress of the compos-
ite girder. The critical buckling moment of composite girder
can be calculated by the following equation:

𝑀cr =
𝜎cr (𝑎0 + 𝑎1𝜉 + 𝑎2𝜉

2
) 𝐼

𝑦𝑐

. (19)

5. Buckling Analysis of the Steel-Concrete
Composite Box Girder

The dimensions of the composite box girder are shown
in Figure 6. According to the assumptions made above,
the buckling model of the composite box girder can be
simplified as a thin-plate model that is restricted by springs
in horizontal and torsional directions, rigidly restricted in
vertical direction.The simplified model is shown in Figure 7.

As the derivation in Section 3, the following can be
obtained:

(B0 + 𝑘𝜑
𝑙
1T − 𝜎0N0)C𝑙 = 0, (20)

(B0 + 𝑘𝜑
𝑟
1T − 𝜎0N0)C𝑟 = 0, (21)

(H0 + 𝑘𝑥1R − 𝜎0S0)D = 0, (22)
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Figure 6: Cross-section dimensions of steel-concrete composite box
girder.
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Figure 7: Simplified calculation model of steel-concrete composite
girders.
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(23)
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(24)

𝑓𝜑𝑥

𝑦=0
=
6𝐷𝑤

ℎ2
𝑤

(

𝑛
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𝑖=1

𝑑𝑖 sin
𝑖𝜋𝑧
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2 sin 𝑖𝜋𝑧

𝑙
) ,

(25)

where 𝑘𝜑
𝑙
1 is the torsional restraint stiffness of left web by

the bottom flange, C𝑙 = {𝑐𝑙1, 𝑐𝑙2, . . . , 𝑐𝑙𝑛}
𝑇 is buckling general

coordinates of the left web, 𝑘𝜑
𝑟
1 is torsional restraint stiffness

of the right web by the bottom flange, C𝑟 = {𝑐𝑟1, 𝑐𝑟2, . . . , 𝑐𝑟𝑛}
𝑇

is buckling general coordinates of the right web, 𝑘𝑥1 is lateral
restraint stiffness of the steel web by the bottom flange, and
D = {𝑑1, 𝑑2, . . . , 𝑑𝑛}

𝑇 is buckling general coordinates of the
bottom flange.

As Figure 7 shows, the lateral displacement buckling
function of the horizontal buckling of the bottom flange is
𝑢(𝑧), the out-plane buckling deformation function of the
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bottom flange is V(𝑥, 𝑧), the left rotational angle is 𝜑𝑙(𝑧), and
the right rotational angle is 𝜑𝑟(𝑧). The boundary condition of
the bottom flange is given as follows:

V 𝑥=0 = 0, V,𝑥
𝑥=0

= 𝜑𝑙 (𝑧) ,

V

𝑥=𝑏
𝑓

= 0, V,𝑥
𝑥=𝑏𝑓

= 𝜑𝑟 (𝑧) .

(26)

According to compatibility of deformation, the displace-
ment function of the bottom flange is

V =
𝑏𝑓

2𝜋
sin 𝜋𝑥

𝑏𝑓

(𝜑𝑙 − 𝜑𝑟) +

𝑏𝑓

4𝜋
sin 2𝜋𝑥

𝑏𝑓

(𝜑𝑙 + 𝜑𝑟) . (27)

According to the principle of stationary potential energy,
the buckling characteristic equations are given as follows:

𝐷𝑓(
5𝜋
2
𝜑𝑙

8𝑏𝑓

+
3𝜋
2
𝜑𝑟
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−
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2
+
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−
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𝑓
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𝑟

32𝜋2
)
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𝑓
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32𝜋2
)
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2

𝑓
𝜑


𝑟

32𝜋2
)



+ 𝑘𝜑
𝑙

𝜑𝑙 + 𝑓𝜑𝑥 = 0,

2𝑘𝑥𝑢 + (𝜎𝐴𝑓𝑢

)


+ 𝐸𝐼𝑦𝑢


− 𝑓𝑥𝜑
𝑙

− 𝑓𝑥𝜑
𝑟

= 0,
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𝑙

32𝜋2
)



+ 𝑘𝜑
𝑟

𝜑𝑗 + 𝑓𝜑𝑥 = 0,

(28)

where 𝐼𝑦 = 𝑡𝑓𝑏
3

𝑓
/12, 𝑡𝑓 is the thickness of bottom flange, 𝑏𝑓

is the width of the bottom flange,𝐷𝑓 = 𝐸𝑡
3

𝑓
/12(1 − 𝜇

2
), 𝑘𝜑

𝑙

=

−𝑘𝜑
𝑙
1 is torsional restraint stiffness of the bottom flange edge

by the left steel web, 𝑘𝜑
𝑟

= −𝑘𝜑
𝑟
1 is torsional restraint stiffness

of the bottomflange edge by the right steel web, and 𝑘𝑥 = −𝑘𝑥1
is lateral restraint stiffness of the bottom flange edge by the
steel web.

According to the Galerkin method [15, 16], we have

(

B
1
+ 𝑘
𝜑
𝑙

T − 𝜎
0
N
1 F + 0.6𝜎

0
N
1 Q

F + 0.6𝜎
0
N
1

B
1
+ 𝑘
𝜑
𝑟

T − 𝜎
0
N
1 Q

M M H
1
− 𝜎
0
S
1
+ 2𝑘
𝑥
R
)

× 𝜂 = 0,

(29)

where 𝐵1𝑖𝑗 = 𝐹𝑖𝑗 = 𝑄𝑖𝑗 = 𝑀𝑖𝑗 = 𝐻1𝑖𝑗 = 0 (𝑖 ̸= 𝑗), 𝐵1𝑖𝑖 =
(5𝐷𝑓𝜋

2
𝑙/16𝑏𝑓ℎ

2

𝑤
) + (𝐷𝑓𝑏𝑓𝛽𝑙𝑖

2
/4ℎ
2

𝑤
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𝑓
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2
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4
/64𝜋
2
ℎ
2

𝑤
),
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2
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𝑤
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𝑓
𝛽
2
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3

𝑤
)+(𝑙𝐷𝑤𝜇𝛽/2ℎ𝑤)𝑖

2, 𝑁1𝑖𝑗 = (5𝐴𝑓𝑏
2

𝑓
𝑏𝑖𝑗/32𝜋

2
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𝑗), 𝑁1𝑖𝑖 = (5𝐴𝑓𝑏
2

𝑓
𝑔𝑖/64ℎ

2

𝑤
𝑙), 𝑀𝑖𝑖 = (3𝐷𝑤𝑙/ℎ

3

𝑤
) − 𝐷𝑤((2 −

𝜇)𝑖
2
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4
𝐸𝐼𝑦𝛽
2
𝑙/2), 𝑆1𝑖𝑖 = (𝐴𝑓𝜋

2
𝑔𝑖/2𝑙), 𝑆1𝑖𝑗 =

(𝐴𝑓𝑏𝑖𝑗/𝑙) (𝑖 ̸= 𝑗), and 𝜂 = (C𝑇
𝑙
,C𝑇
𝑟
,D𝑇)𝑇.

Table 1: Basic geometric size of I-steel composite girder cases.

Example
number

Cross-
section
number

ℎ
𝑤
/mm 𝑏

𝑓
/mm 𝑡

𝑓
/mm 𝑡

𝑤
/mm 𝑙/mm

1 4500
2 1 600 200 12 12 7200
3 9600
4 3000
5 2 600 120 10 10 5400
6 8400
7 6000
8 3 719 268 25 16 10200
9 14400
10 3000
11 4 300 100 3 3 5400
12 8400
13 4200
14 5 450 150 4 4 7200
15 10200

Since the constraint in the theoretical model is higher
than the real scenario, the critical buckling stress is increased.
Therefore, the theoretical buckling deformation functions of
the web and bottomflange cannot accurately describe the real
buckling deformation curves. In order to eliminate errors,
the paper gives a reduction factor on the torsional restraint
stiffness of the bottom flange and the reduction factor is
found to be 0.5. Combining (20), (21), (22), and (29) leads
to

[
[
[
[

[

(

B F Q
F B Q
M M H

) − 𝜎0(

N −3N1
5

0
−3N1
5

N 0
0 0 S

)

]
]
]
]

]

𝜂 = 0, (30)

where B = B0/2 + B1, N = N0/2 + N1, H = 2H0 +
H1, and S = 2S0 + S1.

The deformation vector 𝜂 cannot be zero when the buck-
ling of the composite girder happens.Therefore, the buckling
of the composite girder can be solved by the generalized
eigenvalue of the characteristic matrix shown as follows:



(

B F Q
F B Q
M M H

)− 𝜎0(

N −0.6N1 0
−0.6N1 N 0

0 0 S
)



= 0. (31)

3𝑛 general eigenvalues can be obtained from (31), which
are 𝜎𝑡𝑖 (𝑖 = 1, 2, . . . , 3𝑛); let 𝜎cr = min{𝜎𝑡𝑖 (𝑖 =

1, 2, . . . , 3𝑛)}; 𝜎cr is the critical buckling stress of the com-
posite girder.The following equation can calculate the critical
buckling moment

𝑀cr =
𝜎cr (𝑎0 + 𝑎1𝜉 + 𝑎2𝜉

2
) 𝐼

𝑦𝑐

. (32)
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Table 2: Basic geometric size of steel composite box girder cases.

Example number ℎ
𝑤
/mm 𝑏

𝑓
/mm 𝑏

𝑡
/mm 𝑡

𝑤
/mm 𝑡

𝑓
/mm 𝑡

𝑡
/mm 𝑙/mm

1 4000
2 400 600 100 10 10 10 8000
3 12000
4 4000
5 400 500 100 10 10 10 8000
6 12000
7 4000
8 300 600 100 10 10 10 8000
9 12000
10 4000
11 400 600 120 10 10 10 8000
12 12000
13 4000
14 400 600 100 12 12 12 8000
15 12000

Table 3: Critical distortional buckling moment of I-steel composite
girder under negative uniform moment.

Example
number

Distortional buckling critical moment𝑀cr/kN⋅m
ANSYS Williams Goltermann Svensson (19)

1 1129.1 1060.6 1193.6 1540.1 1138.3
2 1212.3 1148.0 1234.4 1664.7 1203.9
3 1149.7 1077.0 1197.1 1561.7 1155.0
4 390.98 354.02 405.88 619.6 404.40
5 410.19 375.12 436.86 656.6 421.61
6 401.97 366.03 469.19 640.6 414.12
7 3672.7 3126.4 3521.1 3899.1 3720.0
8 3836.5 3390.4 4014.3 4228.1 3874.5
9 3905.1 3226.8 4245.4 4024.2 3932.7
10 34.155 33.710 35.235 48.9 32.632
11 35.235 34.884 36.464 50.6 33.587
12 34.729 34.304 35.951 49.7 33.106
13 94.611 94.325 101.817 136.8 89.713
14 107.307 107.811 102.911 156.3 101.31
15 91.161 90.153 93.920 130.7 86.372

6. Analysis of Examples

Thegeometric dimensions of each example are listed inTables
1 and 2. By means of the calculation method introduced in
this paper and the finite elementmethod, the critical buckling
analysis of the composite girder under uniform negative
bending moment, triangle bending moment, and uniform
loads can be carried out. Svensson’s method, Williams’
method, and Goltermann’s method are also employed in the
calculation of various I-steel-concrete composite girders, so
as to validate the calculation method proposed in this paper.
The finite element analysis is conducted by using ANSYS
commercial software. Element SHELL43 is adopted to model

Table 4: Critical distortional buckling moment of I-steel composite
girder under negative triangular moment.

Example
number

Distortional buckling critical moment𝑀cr/kN⋅m
ANSYS Williams Goltermann Svensson (19)

1 1868.6 1838.8 1971.4 2665.4 1925.2
2 1726.4 1680.5 1774.0 2436.7 1735.8
3 1590.9 1528.8 1621.3 2216.2 1597.4
4 659.9 632.7 713.2 1107.2 703.15
5 586.6 550.6 605.6 963.3 601.56
6 525.7 484.6 535.7 848.1 538.84
7 6125.2 5530.4 6144.4 6897.2 6353.4
8 5523.5 4945.5 5438.7 6167.4 5607.5
9 5060.4 4435.0 4923.2 5531.0 5119.1
10 55.183 59.346 61.236 86.0 56.167
11 51.574 51.935 53.366 75.3 49.469
12 46.366 46.184 47.412 67.0 44.224
13 131.762 170.748 181.683 247.6 133.61
14 129.117 147.906 150.336 214.4 129.98
15 127.803 131.099 134.420 190.1 124.08

the steel girder. The concrete slab of the composite girder is
replaced with constraints in the numerical simulation. The
motions in 𝑥 and 𝑦 directions of the top flange edge are
restrained to represent the lateral and torsional restrictions
caused by the concrete slab in practice. The results of each
simplified calculation method are listed in Tables 3, 4, 5, and
6, and the error analyses of each simplifiedmethod are shown
in Figures 8, 9, 10, and 11.

The following conclusions can be drawn based on the
results presented in Tables 3 to 6 and Figures 8 to 11.

(1) Under uniform negative bending moment, the crit-
ical bending buckling moment in the same cross-
section of the composite girder is rarely affected by
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Table 5: Critical distortional buckling moment of I-steel composite
girder under uniformly distributed load.

Example
number

Distortional buckling critical moment𝑀cr/kN⋅m
ANSYS Williams Goltermann Svensson (19)

3 1551.2 1539.4 1638.8 2232.1 1616.0
6 527.2 498.8 550.8 872.9 551.10
9 5038.3 4509.3 5000.1 5623.4 5235.1
11 49.7 52.610 54.675 76.289 50.317
12 45.9 47.925 47.925 67.500 44.533
13 129.9 198.896 204.768 288.401 129.10
14 126.7 165.281 165.645 239.639 126.95
15 125.5 131.099 135.351 190.107 124.54
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Figure 8: Precision analysis of simplified methods under negative
uniform moment.

the length. The critical bending buckling moment is
not obviously changed with the increased length of
the structural component.

(2) Under triangle bending moment, the critical bending
buckling moment is greatly affected by the length;
that is, the value decreased quickly when the length
increases.

(3) Under uniform negative bending moment, triangle
bending moment, and uniform loads, the results
yielded by the calculation method in this paper
match well the finite element analysis results. The
discrepancy is limited within 5%, which validates the
accuracy and applicability of this method.

(4) Traditional calculation methods, such as Svens-
son’s method, Williams’ method, and Goltermann’s
method, have considerable deviations from the finite
element method.
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Figure 9: Precision analysis of simplified methods under negative
triangular moment.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Example number

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

M
cr

of
 an

al
yt

ic
al

 m
et

ho
ds

/M
cr

of
 A

N
SY

S

Williams
Goltermann

Svensson
This paper

Figure 10: Precision analysis of simplifiedmethods under uniformly
distributed load.

Therefore, the traditional elastic foundation beam
method taking into account the moment gradient needs to
be improved. It is also suggested that the constant lateral and
torsional restraints in the traditional methods may lead to
the relative deviations.

7. Conclusions

In this paper, the traditional elastic foundation beammethods
are improved by considering the coupling effect of the exter-
nal loads and the foundation spring constraints. Based on this
improvement a simplified calculation method computing the
critical buckling loads of steel-concrete composite girders is
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Table 6: Critical distortional buckling moment of composite box girder under negative moment.

Example
number

Distortional buckling critical moment𝑀cr/kN⋅m
Uniform negative bending moment Triangle negative bending moment Uniform load
ANSYS (32) ANSYS (32) ANSYS (32)

1 726.05 722.14 792.36 817.41 792.82 786.74
2 727.14 722.14 764.67 780.46 761.22 755.31
3 727.97 722.14 754.92 766.16 751.46 742.62
4 905.93 907.22 978.11 1012.5 975.47 974.36
5 908.24 906.50 948.67 971.43 943.90 939.16
6 909.57 906.10 938.64 956.00 934.34 927.85
7 537.51 535.75 586.54 603.16 582.84 580.39
8 538.52 534.07 566.22 576.36 559.78 556.42
9 539.17 534.11 559.06 566.01 552.67 548.75
10 742.21 736.10 810.13 833.22 808.61 801.95
11 743.33 736.10 781.78 795.55 776.85 767.88
12 744.17 736.10 771.81 780.97 767.02 756.98
13 1253.6 1247.9 1367.6 1412.5 1365.9 1359.5
14 1255.6 1247.9 1320.1 1348.6 1311.4 1301.7
15 1260.7 1247.9 1303.5 1323.9 1294.7 1283.3
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Figure 11: Precision analysis of simplified methods.

developed. The method is compared with various traditional
methods. The following conclusions are obtained.

(1) There is a linear coupling relation between both
torsional and lateral restraints and vertical loads.

(2) Under uniformnegative bendingmoment, the critical
bending buckling moment in the same cross-section
of the composite girder is rarely affected by the
length. The critical bending buckling moment is not
obviously changed with the increased length of the
structural component.

(3) Under triangle bending moment, the critical bending
buckling is influenced to a great extent by the length;
that is, the value decreased quickly when the length
increases.

(4) Under uniform negative bending moment, triangle
bending moment, and uniform loads, the calculation
method proposed in this paper matches well the
finite element calculation method.The discrepancy is
limited within 5%, which validates the applicability of
this method.
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