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This paper is concerned with the asymptotic behavior for stochastic Gilpin-Ayala competition system. The sufficient conditions
for existence of stationary distribution and extinction are established. And a certain asymptotic property of the solution is also
obtained. A nontrivial example is provided to illustrate our results.

1. Introduction

One of themost common phenomena considering ecological
population is that many species which grow in the same
environment compete for the limited resources or in some
way inhibit others’ growth. It is therefore very important
to study the competition models for multispecies. It is well
known that one of the famousmodels is the following classical
Lotka-Volterra competition system:

𝑑𝑥
𝑖

𝑑𝑡
= 𝑥
𝑖
(𝑏
𝑖
−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
) , 𝑖 = 1, . . . , 𝑛, (1)

where 𝑥
𝑖
(𝑡) represents the population size of species 𝑖 at

time 𝑡, the constant 𝑏
𝑖
is the growth rate of species 𝑖, and 𝑎

𝑖𝑗

represents the effect of interspecific (𝑖 ̸= 𝑗) or intraspecific
(𝑖 = 𝑗) interaction. The Lotka-Volterra models have often
been severely criticized. One disadvantage of Lotka-Volterra
models is that in such a model, the rate of change in the
density of each species is a linear function of densities of
the interacting species. In order to yield significantly more
accurate results, Gilpin and Ayala proposed the the following
Gilpin-Ayala models; detailed studies related to the model
may be found in [1]:

𝑑𝑥
𝑖

𝑑𝑡
= 𝑥
𝑖
(𝑏
𝑖
− 𝑎
𝑖𝑖
𝑥
𝜃𝑖

𝑖
−∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑥
𝑗
) , 𝑖 = 1, . . . , 𝑛, (2)

where 𝜃
𝑖
are the parameters to modify the classical Lotka-

Volterra model.

On the other hand, population systems are inevitably
affected by environmental noise. It is therefore useful to reveal
how the noise affects the population systems. Recall that the
parameter 𝑏

𝑖
in (2) represents the intrinsic growth rate of the

population. In practice we usually estimate it by an average
value plus an error which follows a normal distribution; then
the intrinsic growth rate becomes

𝑏
𝑖
→ 𝑏
𝑖
+ 𝜎
𝑖
�̇�
𝑖 (𝑡) , (3)

where 𝐵
𝑖
(𝑡) (𝑖 = 1, . . . , 𝑛) are Brown motions with 𝐵

𝑖
(0) =

0 and 𝜎
2

𝑖
represent the intensities of the noise. As a result,

system (2) becomes the stochastic Gilpin-Ayala system as
follows:

𝑑𝑥
𝑖
= 𝑥
𝑖
(𝑏
𝑖
− 𝑎
𝑖𝑖
𝑥
𝜃𝑖

𝑖
−∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑥
𝑗
)𝑑𝑡 + 𝜎

𝑖
𝑥
𝑖
𝑑𝐵
𝑖 (𝑡) ,

𝑖 = 1, . . . , 𝑛,

(4)

and we impose the following condition:

𝜃
𝑖
> 1, 𝑎

𝑖𝑖
> 0, 𝑎

𝑖𝑗
≥ 0,

1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ̸= 𝑗.

(5)

The stochastic Lotka-Volterra model has been extensively
studied due to its universal existence and importance; see [2–
10].More recently, the existence of stationary distribution and
extinction of stochastic Lotka-Volterra system have received
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a lot of attention, which can give a good explanation of
the recurring phenomena in population system. Under what
conditions can a stochastic Lotka-Volterra system has a
stationary distribution? It is an open topic until very recently
Mao [11] gave a positive answer. Since then, this topic has
received a lot of attention; the readers are referred to [11–
14]. In addition, the asymptotic behavior of log𝑥

𝑖
(𝑡)/𝑡, 𝑖 =

1, . . . , 𝑛 for various stochastic Lotka-Volterra systems has
been considered by many authors [4, 5, 10, 12], which is an
important and useful property on asymptotic estimation for
corresponding population systems.

However, these properties for stochastic Gilpin-Ayala
system (4) have not been investigated, which remain an
interesting research topic. We aim to establish new results
on these properties for system (4). It is well known that
the stochastic Gilpin-Ayala system (4) is a highly nonlinear
system; the method for classic Lotka-Volterra system cannot
be directly applied to system (4). By the Lyapunov methods,
and some techniques to deal with the nonquadratic item,
sufficient criteria are established which ensure the existence
of a stationary distribution and extinction. By using some
stochastic analysis techniques, an asymptotic property for
system (4) is obtained.

2. Notation

Throughout this paper, unless otherwise specified, let
(Ω,F, {F

𝑡
}
𝑡≥0
,P) be a complete probability space with a

filtration {F
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is
increasing and right continuous whileF

0
contains all P-null

sets). Let 𝐵(𝑡) = (𝐵
1

𝑡
, . . . , 𝐵

𝑛

𝑡
) be a n-dimensional Brownian

motion defined on the probability space. If 𝑎 and 𝑏 are real
numbers, then 𝑎 ∨ 𝑏 denotes the maximum of 𝑎 and 𝑏, and
𝑎 ∧ 𝑏 stands for the minimum of 𝑎 and 𝑏. If 𝐴 ∈ 𝑅

𝑛×𝑛 is
symmetric, its largest and smallest eigenvalues are denoted by
𝜆max(𝐴) and 𝜆min(𝐴). Let 𝑥

∗
= (𝑥
∗

1
, . . . , 𝑥

∗

𝑛
) be the positive

equilibrium of the deterministic Gilpin-Ayala competition
system (2), that is, the solution of the following equation:

𝑏
𝑖
= 𝑎
𝑖𝑖
(𝑥
∗

𝑖
)
𝜃𝑖
+∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑥
∗

𝑗
, 𝑖 = 1, . . . , 𝑛. (6)

In the same way as Mao et al. [8] did, we can also show the
following result on the existence of global positive solution.

Lemma 1. Assume that condition (5) holds.Then, for any given
initial value 𝑥

0
∈ 𝑅
𝑛

+
, there is a unique solution 𝑥(𝑡, 𝑥

0
) to

system (4) and the solution will remain in 𝑅𝑛
+
with probability

1; namely,

P {𝑥 (𝑡, 𝑥
0
) ∈ 𝑅
𝑛

+
, ∀𝑡 ≥ 0} = 1, (7)

for any 𝑥
0
∈ 𝑅
𝑛

+
.

Lemma 2. Let condition (5) hold.Then, for any 𝑝 > 0 and any
given initial value 𝑥

0
∈ 𝑅
𝑛

+
, there exists a constant𝐾

𝑝
such that

sup
0≤𝑡≤∞

𝐸

𝑛

∑

𝑖=1

𝑥
𝑝

𝑖
(𝑡, 𝑥
0
) < 𝐾
𝑝
. (8)

The proof of the lemma is rather standard so it is omitted.

3. An Asymptotic Property

The main aim of this section is to consider the large time
behavior of log𝑥

𝑖
(𝑡)/𝑡, 𝑖 = 1, . . . , 𝑛. To this end, we consider

two auxiliary stochastic differential equations as follows:

𝑑𝜑
𝑖
= 𝜑
𝑖
(𝑏
𝑖
− 𝑎
𝑖𝑖
𝜑
𝜃𝑖

𝑖
) 𝑑𝑡 + 𝜎

𝑖
𝜑
𝑖
𝑑𝐵
𝑖 (𝑡) ,

𝜑
𝑖 (0) = 𝑥

𝑖 (0) , 𝑖 = 1, . . . , 𝑛,

(9)

𝑑𝑦
𝑖
= 𝑦
𝑖
(𝑏
𝑖
− 𝑎
𝑖𝑖
𝑦
𝜃𝑖

𝑖
−∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝜑
𝑗
)𝑑𝑡 + 𝜎

𝑖
𝑦
𝑖
𝑑𝐵
𝑖 (𝑡) ,

𝑦
𝑖 (0) = 𝑥

𝑖 (0) , 𝑖 = 1, . . . , 𝑛.

(10)

Then it follows from comparison principle (see [15]) that

𝑦
𝑖 (𝑡) ≤ 𝑥

𝑖 (𝑡) ≤ 𝜑
𝑖 (𝑡) , 𝑖 = 1, . . . , 𝑛. (11)

Lemma 3. Let condition (5) hold. Then the solution to system
(9) has the following property:

log𝜑
𝑖 (𝑡)

𝑡
= 0, 𝑖 = 1, . . . , 𝑛, a.s. (12)

The proof is similar to Li et al. [5] and is omitted here.

Theorem 4. Let condition (5) hold and 𝑥(𝑡, 𝑥
0
) be the global

solution to system (4)with any positive initial value 𝑥
0
. Assume

moreover that

𝑏
𝑖
−
𝜎
2

𝑖

2
> 0, 𝑏

𝑖
−
𝜎
2

𝑖

2
−∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
(
𝑏
𝑗
− (𝜎
2

𝑗
/2)

𝑎
𝑗𝑗

)

1/𝜃𝑗

𝑗

> 0,

𝑖 = 1, . . . , 𝑛.

(13)

Then the solution 𝑥(𝑡, 𝑥
0
) of system (4) has the following

property:

lim
𝑡→∞

log𝑥
𝑖
(𝑡, 𝑥
0
)

𝑡
= 0, 𝑖 = 1, . . . , 𝑛, a.s. (14)

Proof. Let 𝑥(𝑡) be 𝑥(𝑡, 𝑥
0
) for simplicity. By virtue of

Lemma 3 and (11), we have lim sup
𝑡→∞

(log𝑥
𝑖
(𝑡)/𝑡) ≤

0, 𝑖 = 1, . . . , 𝑛, a.s. Thus it remains to show that
lim inf

𝑡→∞
(log𝑥

𝑖
(𝑡)/𝑡) ≥ 0, 𝑖 = 1, . . . , 𝑛, a.s. It is sufficient

to show

lim inf
𝑡→∞

log𝑦
𝑖 (𝑡)

𝑡
≥ 0, 𝑖 = 1, . . . , 𝑛, a.s. (15)
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By Ito’s formula, 𝑦
𝑖
(𝑡) satisfies

1

𝑦
𝜃𝑖

𝑖
(𝑡)

=
1

𝑥
𝜃𝑖

𝑖
(0)

exp
{

{

{

(
𝜎
2

𝑖

2
− 𝑏
𝑖
)𝜃
𝑖
𝑡 − 𝜃
𝑖
𝜎
𝑖
𝐵
𝑖 (𝑡)

+ 𝜃
𝑖
∑

𝑗 ̸=𝑖

∫

𝑡

0

𝑎
𝑖𝑗
𝜑
𝑗 (𝑠) 𝑑𝑠

}

}

}

+ 𝑎
𝑖𝑖
𝜃
𝑖
∫

𝑡

0

exp
{

{

{

(
𝜎
2

𝑖

2
− 𝑏
𝑖
)𝜃
𝑖 (𝑡 − 𝑠)

− 𝜃
𝑖
𝜎
𝑖
(𝐵
𝑖 (𝑡) − 𝐵𝑖 (𝑠))

+ 𝜃
𝑖
∑

𝑗 ̸=𝑖

∫

𝑡

𝑠

𝑎
𝑖𝑗
𝜑
𝑗 (𝜏) 𝑑𝜏

}

}

}

𝑑𝑠

=: 𝐽
𝑖1
+ 𝐽
𝑖2
, 𝑖 = 1, . . . , 𝑛.

(16)

A simple computation shows that

∫

𝑡

𝑠

𝜑
𝜃𝑖 (𝜏) 𝑑𝜏 =

1

𝑎
𝑖𝑖

(log𝜑
𝑖 (𝑠) − log𝜑

𝑖 (𝑡))

+
𝑏
𝑖
− 𝜎
2

𝑖
/2

𝑎
𝑖𝑖

(𝑡 − 𝑠)

+
𝜎
1

𝑎
𝑖𝑖

(𝐵
𝑖 (𝑡) − 𝐵𝑖 (𝑠))

:= 𝑘
𝑖 (𝑡 − 𝑠)

+ 𝑚
𝑖
(𝐵
𝑖 (𝑡) − 𝐵𝑖 (𝑠))

+ 𝑑
𝑖
(log𝜑

𝑖 (𝑠) − log𝜑
𝑖 (𝑡)) ,

𝑖 = 1, . . . , 𝑛.

(17)

The well-known Hölder inequality yields

∫

𝑡

𝑠

𝜑
𝑖 (𝜏) 𝑑𝜏 ≤ (𝑡 − 𝑠)

1−1/𝜃𝑖

× (𝑘
𝑖 (𝑡 − 𝑠) + 𝑚𝑖 (𝐵𝑖 (𝑡) − 𝐵𝑖 (𝑠))

+ 𝑑
𝑖
(log𝜑

𝑖 (𝑠) − log𝜑
𝑖 (𝑡)))
1/𝜃𝑖

,

𝑖 = 1, . . . , 𝑛.

(18)

For 𝑖 = 1, . . . , 𝑛, it follows from the inequality (𝑎 + 𝑏 + 𝑐)𝑝 ≤
3
(𝑝−1)∨0

(𝑎
𝑝
+ 𝑏
𝑝
+ 𝑐
𝑝
) that

∫

𝑡

𝑠

𝜑
𝑖 (𝜏) 𝑑𝜏

≤ (𝑡 − 𝑠)
1−1/𝜃𝑖 (𝑘

𝜃𝑖

𝑖
(𝑡 − 𝑠)

𝜃𝑖

+ 𝑚
𝜃𝑖

𝑖
(𝐵
𝑖 (𝑡) − min

0≤𝑠≤𝑡

𝐵
𝑖 (𝑠))

𝜃𝑖

+ 𝑑
𝜃𝑖

𝑖
(max
0≤𝑠≤𝑡

log𝜑
𝑖 (𝑠) − log𝜑

𝑖 (𝑡))

𝜃𝑖

)

1/𝜃𝑖

.

(19)

For 𝑖 = 1, . . . , 𝑛, set

𝐵
∗

𝑖
(𝑡) := 𝐵

𝑖 (𝑡) − min
0≤𝑠≤𝑡

𝐵
𝑖 (𝑠) ,

𝜉
𝑖 (𝑡) := max

0≤𝑠≤𝑡

log𝜑
𝑖 (𝑠) − log𝜑

𝑖 (𝑡) .

(20)

Substituting these inequalities into (16) yields

𝐽
𝑖1
≤

1

𝑥
𝜃𝑖

𝑖
(0)

exp
{

{

{

(
𝜎
2

𝑖

2
− 𝑏
𝑖
)𝜃
𝑖
𝑡 − 𝜃
𝑖
𝜎
𝑖
𝐵
𝑖 (𝑡)

+ 𝜃
𝑖
∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑡
1−1/𝜃𝑗

× (𝑘
𝑖
𝑡 + 𝑚
𝑖
𝐵
𝑖 (𝑡)

+ 𝑑
𝑖
(log𝜑

𝑖 (0) − log𝜑
𝑖 (𝑡)))
1/𝜃𝑗

}

}

}

≤
1

𝑥
𝜃𝑖

𝑖
(0)

exp
{

{

{

(
𝜎
2

𝑖

2
− 𝑏
𝑖
)𝜃
𝑖
𝑡

+ 𝜃
𝑖
𝜎
𝑖
(max
0≤𝑠≤𝑡

𝐵
𝑖 (𝑠) − 𝐵𝑖 (𝑡))

+ 𝜃
𝑖
∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑡
1−1/𝜃𝑗

× ((𝑘
1/𝜃𝑗

𝑗
(𝑡 − 𝑠)

1/𝜃𝑗

+ 𝑚
1/𝜃𝑗

𝑗
(𝐵
∗

𝑗
(𝑡))
1/𝜃𝑗

+𝑑
1/𝜃𝑗

𝑗
(𝜉
𝑗 (𝑡))
1/𝜃𝑗

))
}

}

}
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≤
1

𝑥
𝜃𝑖

𝑖
(0)

exp
{

{

{

𝜃
𝑖
(
𝜎
2

𝑖

2
− 𝑏
𝑖
+∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑘
1/𝜃𝑗

𝑗
)𝑡

+ 𝜃
𝑖
𝜎
𝑖
(max
0≤𝑠≤𝑡

𝐵
𝑖 (𝑠) − 𝐵𝑖 (𝑡))

+ 𝜃
𝑖
∑

𝑗 ̸=𝑖

𝑡
1−1/𝜃𝑗𝑎

𝑖𝑗

× ((𝑚
1/𝜃𝑗

𝑗
(𝐵
∗

𝑗
(𝑡))
1/𝜃𝑗

+𝑑
1/𝜃𝑗

𝑗
(𝜉
𝑗 (𝑡))
1/𝜃𝑗

))
}

}

}

𝑑𝑠,

𝑖 = 1, . . . , 𝑛.

(21)

Similarly, we get

𝐽
𝑖2
≤ 𝑎
𝑖𝑖
𝜃
𝑖
∫

𝑡

0

exp
{

{

{

(
𝜎
2

𝑖

2
− 𝑏
𝑖
)𝜃
𝑖 (𝑡 − 𝑠)

− 𝜃
𝑖
𝜎
𝑖
(𝐵
𝑖 (𝑡) − 𝐵𝑖 (𝑠))

+ 𝜃
𝑖
∑

𝑗 ̸=𝑖

(𝑡 − 𝑠)
1−1/𝜃𝑗

× (𝑘
𝑗 (𝑡 − 𝑠)

+ 𝑚
𝑗
(𝐵
𝑗 (𝑡) − 𝐵𝑗 (𝑠))

+ 𝑑
𝑗
(log𝜑

𝑗 (𝑠)

− log𝜑
𝑗 (𝑡)))

1/𝜃𝑗
}

}

}

𝑑𝑠

≤ 𝑎
𝑖𝑖
𝜃
𝑖
∫

𝑡

0

exp
{

{

{

(
𝜎
2

𝑖

2
− 𝑏
𝑖
)𝜃
𝑖 (𝑡 − 𝑠)

+ 𝜃
𝑖
𝜎
𝑖
(max
0≤𝑠≤𝑡

𝐵
𝑖 (𝑠) − 𝐵𝑖 (𝑡))

+ 𝜃
𝑖
∑

𝑗 ̸=𝑖

(𝑡 − 𝑠)
1−1/𝜃𝑗𝑎

𝑖𝑗

× ((𝑘
1/𝜃𝑗

𝑗
(𝑡 − 𝑠)

1/𝜃𝑗

+ 𝑚
1/𝜃𝑗

𝑗
(𝐵
∗

𝑗
(𝑡))
1/𝜃𝑗

+𝑑
1/𝜃𝑗

𝑗
(𝜉
𝑗 (𝑡))
1/𝜃𝑗

))
}

}

}

𝑑𝑠

≤ 𝑎
𝑖𝑖
𝜃
𝑖
∫

𝑡

0

exp
{

{

{

𝜃
𝑖
(
𝜎
2

𝑖

2
− 𝑏
𝑖
+∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑘
1/𝜃𝑗

𝑗
)

× (𝑡 − 𝑠) + 𝜃𝑖𝜎𝑖 (max
0≤𝑠≤𝑡

𝐵
𝑖 (𝑠) − 𝐵𝑖 (𝑡))

+ 𝜃
𝑖
∑

𝑗 ̸=𝑖

𝑡
1−1/𝜃𝑗𝑎

𝑖𝑗

× ((𝑚
1/𝜃𝑗

𝑗
(𝐵
∗

𝑗
(𝑡))
1/𝜃𝑗

+𝑑
1/𝜃𝑗

𝑗
(𝜉
𝑗 (𝑡))
1/𝜃𝑗

))
}

}

}

𝑑𝑠,

𝑖 = 1, . . . , 𝑛.

(22)

Substituting (21) and (22) into (16) yields

1

𝑦
𝜃𝑖

𝑖
(𝑡)

≤ (
1

𝑥
𝜃𝑖

𝑖
(0)

exp
{

{

{

𝜃
𝑖
(
𝜎
2

𝑖

2
− 𝑏
𝑖
+∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑘
1/𝜃𝑗

𝑗
)𝑡

}

}

}

+ 𝜃
𝑖
𝑎
𝑖𝑖
∫

𝑡

0

exp
{

{

{

𝜃
𝑖
(
𝜎
2

𝑖

2
− 𝑏
𝑖
+∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑘
1/𝜃𝑗

𝑗
)

× (𝑡 − 𝑠)
}

}

}

𝑑𝑠)

× exp
{

{

{

𝜃
𝑖
𝜎
𝑖
(max
0≤𝑠≤𝑡

𝐵
𝑖 (𝑠) − 𝐵𝑖 (𝑡))

+ 𝜃
𝑖
∑

𝑗 ̸=𝑖

𝑡
1−1/𝜃𝑗 ((𝑚

1/𝜃𝑗

𝑗
(𝐵
∗

𝑗
(𝑡))
1/𝜃𝑗

+𝑑
1/𝜃𝑗

𝑗
(𝜉
𝑗 (𝑡))
1/𝜃𝑗

))
}

}

}

:= 𝑍
−1

𝑖
(𝑡) exp

{

{

{

𝜃
𝑖
𝜎
𝑖
(max
0≤𝑠≤𝑡

𝐵
𝑖 (𝑠) − 𝐵𝑖 (𝑡))

+ 𝜃
𝑖
∑

𝑗 ̸=𝑖

𝑡
1−1/𝜃𝑗 ((𝑚

1/𝜃𝑗

𝑗
(𝐵
∗

𝑗
(𝑡))
1/𝜃𝑗

+𝑑
1/𝜃𝑗

𝑗
(𝜉
𝑗 (𝑡))
1/𝜃𝑗

))
}

}

}

,

𝑖 = 1, . . . , 𝑛,

(23)
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where 𝑍
𝑖
(𝑡) is the solution of the following system:

�̇�
𝑖 (𝑡) = 𝜃

𝑖
𝑍
𝑖
(𝑏
𝑖
−
𝜎
2

𝑖

2
−∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑘
1/𝜃𝑗

𝑗
− 𝑎
𝑖𝑖
𝑍
𝑖 (𝑡)) ,

𝑍
𝑖 (0) = 𝑥

𝑖 (0) , 𝑖 = 1, . . . , 𝑛.

(24)

A simple computation shows that

log𝑦𝜃𝑖
𝑖
(𝑡)

𝑡
≥ −

log𝑍
𝑖 (𝑡)

𝑡

− 𝜃
𝑖
𝜎
𝑖

(max
0≤𝑠≤𝑡

𝐵
𝑖 (𝑠) − 𝐵𝑖 (𝑡))

𝑡

− ∑

𝑛 ̸=𝑗

𝑎
𝑖𝑗
(
𝑚
𝑗
𝐵
∗

𝑗
(𝑡)

𝑡
)

1/𝜃𝑗

− ∑

𝑛 ̸=𝑗

𝑎
𝑖𝑗
(
𝑑
𝑗
(𝜉
𝑗 (𝑡))

𝑡
)

1/𝜃𝑗

,

𝑖 = 1, . . . , 𝑛.

(25)

Using the property of Brownian motion, we conclude that

lim
𝑡→∞

(max
0≤𝑠≤𝑡

𝐵
𝑖 (𝑠) − 𝐵𝑖 (𝑡))

𝑡
= 0,

lim
𝑡→∞

(𝐵
𝑗 (𝑡) −min

0≤𝑠≤𝑡
𝐵
𝑗 (𝑠))

𝑡
= 0,

𝑖 = 1, . . . , 𝑛, a.s.

(26)

It is easy to see that if 𝑏
𝑖
− 𝜎
2

𝑖
/2 − ∑

𝑗 ̸=𝑖
𝑎
𝑖𝑗
𝑘
1/𝜃𝑗

𝑗
> 0, then we

have

lim
𝑡→∞

log𝑍
𝑖 (𝑡)

𝑡
= 0, 𝑖 = 1, . . . , 𝑛, a.s. (27)

Besides, it follows from Lemma 3 that

lim
𝑡→∞

(max
0≤𝑠≤𝑡

log𝜑
𝑗 (𝑠) − log𝜑

𝑗 (𝑡))

𝑡
= 0,

𝑖 = 1, . . . , 𝑛, a.s.

(28)

The required assertion (15) follows by letting 𝑡 → ∞ on
both sides of (25) and using conditions (26)–(28). The proof
is therefore completed.

4. Stationary Distribution

The main aim of this section is to study the existence of
a unique stationary distribution of the system (4). Let us
prepare a known lemma (see Hasminskii [16, pp. 106–125]).
Let 𝑋(𝑡) be a homogeneous Markov process in 𝐸

𝑛
⊂ 𝑅
𝑛

described by the following stochastic differential equation:

𝑑𝑋 (𝑡) = 𝑏 (𝑋) 𝑑𝑡 +

𝑑

∑

𝑚=1

𝜎
𝑚 (𝑋) 𝑑𝐵𝑚 (𝑡) . (29)

The diffusion matrix is

𝐴 (𝑥) = (𝑎
𝑖𝑗 (𝑥)) , 𝑎

𝑖𝑗 (𝑥) =

𝑑

∑

𝑚=1

𝜎
𝑖

𝑚
(𝑥) 𝜎
𝑗

𝑚
(𝑥) . (30)

To be more precise, let 𝑃
𝑥0,𝑡

denote the probability measure
induced by𝑋(𝑡, 𝑥

0
), that is

𝑃
𝑥0 ,𝑡

(𝐴) = P (𝑋 (𝑡, 𝑥
0
) ∈ 𝐴) , 𝐴 ∈ B (𝐸

𝑛
) , (31)

whereB(𝐸
𝑛
) is the 𝜎-algebra of all the Borel sets 𝐴 ⊂ 𝐸

𝑛.

Lemma 5 (see [16]). We assume that there is a bounded open
subset𝐺 ⊂ 𝐸

𝑛 with a regular (i.e., smooth) boundary such that
its closure 𝐺 ⊂ E𝑛, and consider the following:

(i) in the domain 𝐺 and some neighborhood, therefore,
the smallest eigenvalue of the diffusion matrix 𝐴(𝑥) is
bounded away from zero;

(ii) if 𝑥 ∈ 𝐸
𝑛
\ 𝐺, the mean time 𝜏 at which a path issuing

from𝑥 reaches the set𝐺 is finite, and sup
𝑥∈𝐾

𝐸
𝑥
𝜏 < +∞

for every compact subset 𝐾 ∈ 𝐸
𝑛. And throughout this

paper one sets inf 0 = ∞.
We then have the following assertions.
(1) The Markov process 𝑋(𝑡) has a stationary distribution

𝜇(⋅) with density in 𝐸𝑛, such that, for any borel set 𝐵 ⊂

𝐸
𝑛,

lim
𝑡→∞

∫
𝐵

𝑓 (𝑦) 𝑃
𝑥0 ,𝑡

(𝑑𝑦) = ∫
𝐵

𝑓 (𝑦) 𝜇 (𝑑𝑦) . (32)

(2) (ergodic property) Let 𝑓(𝑥) be a function integrable
with respect to the measure 𝜇(⋅). Then

P{ lim
𝑡→∞

1

𝑡
∫

𝑡

0

𝑓 (𝑥 (𝑠)) 𝑑𝑠

= ∫
𝐸
𝑛

𝑓 (𝑦) 𝜇 (𝑑𝑦) } = 1.

(33)

Remark 6. The proof is given by [16] in detail. Exactly, the
existence of stationary distribution with density is referred
to Theorem 4.3 on page 117 while ergodic property (33) is
referred toTheorem 4.2, page 110.

Theorem 7. Let condition (5) hold and 𝑥(𝑡, 𝑥
0
) be the global

solution to system (4)with any positive initial value 𝑥
0
. Assume

that there exists 𝑐 = (𝑐
1
, . . . , 𝑐

𝑛
) ≫ 0 such that

(𝑐
𝑖
(𝑥
∗
)
𝜃𝑖−1

𝑎
𝑖𝑖
−
1

2
∑

𝑖 ̸=𝑗

(𝑐
𝑖
𝑎
𝑖𝑗
+ 𝑐
𝑗
𝑎
𝑗𝑖
)) > 0, (34)

1

2

𝑛

∑

𝑘=1

𝑐
𝑖
𝑥
∗

𝑖
𝜎
2

𝑖

< min
1≤𝑖≤𝑛

{

{

{

(𝑥
∗

𝑖
)
2
(𝑐
𝑖
(𝑥
∗
)
𝜃𝑖−1

𝑎
𝑖𝑖
−∑

𝑖 ̸=𝑗

(𝑐
𝑖
𝑎
𝑖𝑗
+ 𝑐
𝑗
𝑎
𝑗𝑖
))

}

}

}

,

𝑖 = 1, . . . , 𝑛.

(35)
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Then there is a stationary distribution for system (4) and it has
the ergodic property.

Proof. By Lemma 5, it suffices to prove that there exists some
neighborhood 𝑈 and a nonnegative 𝐶2-function 𝑉(𝑥) such
that the diffusion matrix 𝐻(𝑥) = diag(𝜎

1
𝑥
1
, . . . , 𝜎

𝑛
𝑥
𝑛
) is

uniformly elliptical in 𝑈 and, for any 𝑥 ∈ 𝑅
𝑛

+
\ 𝑈, L𝑉(𝑥)

is negative (for details refer to [11]).
Applying Itô’s formula to 𝑉(𝑥) = ∑

𝑛

𝑖=1
𝑐
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
−

𝑥
∗

𝑖
log(𝑥
𝑖
/𝑥
∗

𝑖
)) yields

L𝑉 (𝑥) =

𝑛

∑

𝑖=1

(𝑐
𝑖
𝑎
𝑖𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
) (𝑥
𝜃𝑖

𝑖
− (𝑥
∗

𝑖
)
𝜃𝑖
)

+

𝑛

∑

𝑖 ̸=𝑗

𝑐
𝑖
𝑎
𝑖𝑗
(𝑥
∗

𝑗
− 𝑥
𝑗
) (𝑥
∗

𝑖
− 𝑥
𝑖
))

+
1

2

𝑛

∑

𝑖=1

𝑐
𝑖
𝜎
2

𝑖
𝑥
∗

𝑖
.

(36)

If 𝑥
𝑖
> 𝑥
∗

𝑖
, since (𝑥

𝑖
/𝑥
∗

𝑖
)
𝜃𝑖 ≥ (𝑥

𝑖
/𝑥
∗

𝑖
), for 𝜃

𝑖
≥ 1, then

(𝑥
𝑖
− 𝑥
∗

𝑖
) (𝑥
𝜃𝑖

𝑖
− (𝑥
∗

𝑖
)
𝜃𝑖
)

= (𝑥
∗

𝑖
)
𝜃𝑖+1

(
𝑥
𝑖

𝑥∗
𝑖

− 1)((
𝑥
𝑖

𝑥∗
𝑖

)

𝜃𝑖

− 1)

≥ (𝑥
∗

𝑖
)
𝜃𝑖+1

(
𝑥
𝑖

𝑥∗
𝑖

− 1)((
𝑥
𝑖

𝑥∗
𝑖

) − 1)

= (𝑥
∗

𝑖
)
𝜃𝑖−1

(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
.

(37)

If 𝑥
𝑖
< 𝑥
∗

𝑖
, then

(𝑥
𝑖
− 𝑥
∗

𝑖
) (𝑥
𝜃𝑖

𝑖
− (𝑥
∗

𝑖
)
𝜃𝑖
)

= (𝑥
∗

𝑖
)
𝜃𝑖+1

(1 −
𝑥
𝑖

𝑥∗
𝑖

)(1 − (
𝑥
𝑖

𝑥∗
𝑖

)

𝜃

)

≥ (𝑥
∗

𝑖
)
𝜃𝑖+1

(1 −
𝑥
𝑖

𝑥∗
𝑖

)(1 − (
𝑥
𝑖

𝑥∗
𝑖

))

= (𝑥
∗

𝑖
)
𝜃𝑖−1

(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
.

(38)

Substituting (37) and (38) into (36) yields

L𝑉 (𝑥) ≤ −

𝑛

∑

𝑖=1

(𝑥
∗

𝑖
)
𝜃𝑖−1

𝑐
𝑖
𝑎
𝑖𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2

+

𝑛

∑

𝑖=1

𝑛

∑

𝑖 ̸=𝑗

𝑐
𝑖
𝑎
𝑖𝑗
(𝑥
∗

𝑗
− 𝑥
𝑗
) (𝑥
∗

𝑖
− 𝑥
𝑖
)

+
1

2

𝑛

∑

𝑖=1

𝑐
𝑖
𝜎
2

𝑖
𝑥
∗

𝑖
.

(39)

By the inequality 𝑎𝑏 ≤ (1/2)(𝑎
2
+ 𝑏
2
), we have

L𝑉 (𝑥) ≤ −

𝑛

∑

𝑖=1

(𝑥
∗

𝑖
)
𝜃𝑖−1

𝑐
𝑖
𝑎
𝑖𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2

+

𝑛

∑

𝑖=1

𝑛

∑

𝑖 ̸=𝑗

𝑐
𝑖
𝑎
𝑖𝑗
(𝑥
∗

𝑗
− 𝑥
𝑗
) (𝑥
∗

𝑖
− 𝑥
𝑖
) +

1

2

𝑛

∑

𝑖=1

𝑐
𝑖
𝜎
2

𝑖
𝑥
∗

𝑖

≤ −

𝑛

∑

𝑖=1

(𝑥
∗

𝑖
)
𝜃𝑖−1

𝑐
𝑖
𝑎
𝑖𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2

+
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑖 ̸=𝑗

𝑐
𝑖
𝑎
𝑖𝑗
(𝑥
∗

𝑖
− 𝑥
𝑖
)
2

+
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑖 ̸=𝑗

𝑐
𝑖
𝑎
𝑖𝑗
(𝑥
∗

𝑗
− 𝑥
𝑗
)
2

+
1

2

𝑛

∑

𝑖=1

𝑐
𝑖
𝜎
2

𝑖
𝑥
∗

𝑖

= −

𝑛

∑

𝑖=1

(𝑥
∗

𝑖
)
𝜃𝑖−1

𝑐
𝑖
𝑎
𝑖𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2

+
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑖 ̸=𝑗

𝑐
𝑖
𝑎
𝑖𝑗
(𝑥
∗

𝑖
− 𝑥
𝑖
)
2

+
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑖 ̸=𝑗

𝑐
𝑗
𝑎
𝑗𝑖
(𝑥
∗

𝑖
− 𝑥
𝑖
)
2
+
1

2

𝑛

∑

𝑖=1

𝑐
𝑖
𝜎
2

𝑖
𝑥
∗

𝑖

= −

𝑛

∑

𝑖=1

[

[

𝑐
𝑖
(𝑥
∗
)
𝜃𝑖−1

𝑎
𝑖𝑖
−
1

2

𝑛

∑

𝑖 ̸=𝑗

(𝑐
𝑖
𝑎
𝑖𝑗
+ 𝑐
𝑗
𝑎
𝑗𝑖
)]

]

× (𝑥
∗

𝑖
− 𝑥
𝑖
)
2
+
1

2

𝑛

∑

𝑖=1

𝑐
𝑖
𝜎
2

𝑖
𝑥
∗

𝑖
.

(40)

Note that (𝑐
𝑖
(𝑥
∗
)
𝜃𝑖−1𝑎
𝑖𝑖
− ∑
𝑖 ̸=𝑗
(𝑐
𝑖
𝑎
𝑖𝑗
+ 𝑐
𝑗
𝑎
𝑗𝑖
)) > 0, 𝑖 = 1, . . . , 𝑛,

and

1

2

𝑛

∑

𝑘=1

𝑐
𝑖
𝑥
∗

𝑖
𝜎
2

𝑖

< min
1≤𝑖≤𝑛

{

{

{

(𝑥
∗

𝑖
)
2
(𝑐
𝑖
(𝑥
∗
)
𝜃𝑖−1

𝑎
𝑖𝑖
−∑

𝑖 ̸=𝑗

(𝑐
𝑖
𝑎
𝑖𝑗
+ 𝑐
𝑗
𝑎
𝑗𝑖
))

}

}

}

.

(41)

Then the ellipsoid

𝑛

∑

𝑖=1

[

[

𝑐
𝑖
(𝑥
∗
)
𝜃𝑖−1

𝑎
𝑖𝑖
−
1

2

𝑛

∑

𝑖 ̸=𝑗

(𝑐
𝑖
𝑎
𝑖𝑗
+ 𝑐
𝑗
𝑎
𝑗𝑖
)]

]

(𝑥
∗

𝑖
− 𝑥
𝑖
)
2

=
1

2

𝑛

∑

𝑖=1

𝑐
𝑖
𝜎
2

𝑖
𝑥
∗

𝑖
,

(42)

lies entirely in 𝑅𝑛
+
. Let 𝑈 ⊂ 𝑈 ⊂ 𝑅

𝑛

+
be a neighborhood of the

ellipsoid such that, for any 𝑥 ∈ 𝑅𝑛
+
\𝑈,L𝑉 < 0. We therefore

have verified condition (ii) in Lemma 5.
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Now we begin to verify condition (i) in Lemma 5. It is
easy to see that 𝜆min(𝐻

𝑇
(𝑥)𝐻(𝑥)) ≥ 0. If 𝜆min(𝐻

𝑇
(𝑥)𝐻(𝑥)) =

0, then there exists 𝜉 ̸= 0 such that 𝜉𝑇𝐻𝑇(𝑥)𝐻(𝑥)𝜉 = 0.
This implies that (diag(𝜎

1
𝑥
1
, . . . , 𝜎

𝑛
𝑥
𝑛
)𝜉 = 0. Then we have

𝜉 = 0, which contradicts the fact that 𝜉 ̸= 0. Noting that
𝜆min(𝐻

𝑇
(𝑥)𝐻(𝑥)) is a continuous function of 𝑥 ∈ 𝑈, we

therefore have

min
𝑥∈𝑈

𝜆min (𝐻
𝑇
(𝑥)𝐻 (𝑥)) > 0. (43)

This immediately implies condition (i) in Lemma 5.Theproof
is completed.

Now we denote by 𝜇(⋅) the stationary distribution. The
mean vector of 𝜇(⋅) is important and useful information on
population systems, from which we can infer asymptotically
the mean of 𝑥

𝑖
(𝑡) and the size of each species. If we can

show that ∫
𝑅
𝑛

+

|𝑧|𝜇(𝑑𝑧) < ∞, then the mean vector 𝜇 =

(𝜇
1
, . . . , 𝜇

𝑛
)
𝑇 is well defined. In this case, the ergodic theory

stated above implies that

𝜇
𝑖
:= lim
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥
𝑖 (𝑠) 𝑑𝑠, 𝑖 = 1, . . . , 𝑛, a.s. (44)

Theorem 8. Let assumptions in Theorems 4 and 7 hold. Then

𝑎
𝑖𝑖
(𝜇
𝑖
)
𝜃𝑖
+∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝜇
𝑗
≤ 𝑏
𝑖
−
𝜎
2

𝑖

2
, 𝑖 = 1, . . . , 𝑛. (45)

Proof. The proof is composed of two parts. The first part
is to show the well-definition of 𝜇 by dominated control
convergence theorem. The second part is to prove assertion
(45). Let 𝑥(𝑡) = 𝑥(𝑡, 𝑥

0
) for simplicity.

By the ergodic property of stationary distribution, for𝑚 >

0, 𝑝 > 0, we have

lim
𝑡→∞

1

𝑡
∫

𝑡

0

(𝑥
𝑝

𝑖
(𝑠) ∧ 𝑚) 𝑑𝑠 = ∫

∞

0

(𝑧
𝑝

𝑖
∧ 𝑚)𝜇 (𝑑𝑦) ,

𝑖 = 1, . . . , 𝑛, a.s.
(46)

The dominated convergence theorem yields that

𝐸[ lim
𝑡→∞

1

𝑡
∫

𝑡

0

(𝑥
𝑝

𝑖
(𝑠) ∧ 𝑚) 𝑑𝑠] =

1

𝑡
∫

𝑡

0

𝐸 [(𝑥
𝑝

𝑖
∧ 𝑚)] 𝑑𝑠,

𝑖 = 1, . . . , 𝑛.

(47)

It follows from Lemma 2 that

∫

∞

0

(𝑧
𝑝

𝑖
∧ 𝑚)𝜇 (𝑑𝑧) ≤ 𝐾

𝑝
, 𝑖 = 1, . . . , 𝑛. (48)

Letting𝑚 → ∞ yields

∫

∞

0

𝑧
𝑝

𝑖
𝜇 (𝑑𝑦) ≤ 𝐾

𝑝
, 𝑖 = 1, . . . , 𝑛. (49)

That is to say, for any 𝑝 > 0, the functions 𝑦𝑝 are integrable
with respect to the measure 𝜇(⋅). The well-definition of 𝜇
follows by letting 𝑝 = 1 in (49) straightforward.

Now we process to show assertion (45). For 𝑖 = 1, . . . , 𝑛,
simple computation shows that

log𝑥
𝑖 (𝑡)

𝑡
=
log𝑥
𝑖 (0)

𝑡

+
1

𝑡
∫

𝑡

0

[

[

𝑏
𝑖
−
𝜎
2

𝑖

2
− 𝑎
𝑖𝑖
𝑥
𝜃𝑖

𝑖
−

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑥
𝑗 (𝑠)

]

]

𝑑𝑠

+
1

𝑡
∫

𝑡

0

𝜎
𝑖
𝑑𝐵
𝑖 (𝑠) .

(50)

The well-known Hölder inequality yields

∫

𝑡

0

𝑥
𝑖 (𝑠) 𝑑𝑠 ≤ (∫

𝑡

0

𝑥
𝜃𝑖

𝑖
(𝑠) 𝑑𝑠)

1/𝜃𝑖

(∫

𝑡

0

1𝑑𝑠)

1/𝜃


𝑖

𝑖 = 1, . . . , 𝑛,

(51)

where 1/𝜃
𝑖
= 1 − 1/𝜃

𝑖
. This implies

∫

𝑡

0

𝑥
𝑖 (𝑠) 𝑑𝑠 ≤ (∫

𝑡

0

𝑥
𝜃𝑖

𝑖
(𝑠) 𝑑𝑠)

1/𝜃𝑖

𝑡
1−1/𝜃𝑖 , 𝑖 = 1, . . . , 𝑛. (52)

The well-known Hölder inequality yields

1

𝑡
∫

𝑡

0

𝑥
𝑖 (𝑠) 𝑑𝑠 ≤ (

1

𝑡
∫

𝑡

0

𝑥
𝜃𝑖

𝑖
(𝑠) 𝑑𝑠)

1/𝜃𝑖

, 𝑖 = 1, . . . , 𝑛. (53)

This implies

log𝑥
𝑖 (𝑡)

𝑡
≤
log𝑥 (0)

𝑡
+ 𝑏
𝑖
−
𝜎
2

𝑖

2
− 𝑎
𝑖𝑖
(
1

𝑡
∫

𝑡

0

𝑥
𝑖 (𝑠) 𝑑𝑠)

𝜃𝑖

−
1

𝑡
∫

𝑡

0

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑥
𝑗 (𝑠) 𝑑𝑠 +

1

𝑡
∫

𝑡

0

𝜎
𝑖
𝑑𝐵
𝑖 (𝑠) ,

𝑖 = 1, . . . , 𝑛.

(54)

By the law of strong large numbers for martingales and
Theorem 4, letting 𝑡 → ∞ on both sides of (54) yields

𝑎
𝑖𝑖
(𝜇
𝑖
)
𝜃𝑖
+∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝜇
𝑗
≤ 𝑏
𝑖
−
𝜎
2

𝑖

2
, 𝑖 = 1, . . . , 𝑛. (55)

which is the required assertion (45).

5. Extinction

One of the most basic questions one can ask in population
dynamics is extinction, which means a species will be
doomed. The interesting question is can the exponential
extinction rate be estimated precisely? Inmany cases, we need
to know the extinction rate of the species in order to have a
suitable policy in investment and to have timely measures to
protect them from the extinct disaster.
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Theorem 9. Let condition (5) and 𝜎
2

𝑖
> 2𝑏
𝑖
, 𝑖 = 1, . . . , 𝑛,

hold and 𝑥(𝑡, 𝑥
0
) be the global solution to system (4) with any

positive initial value 𝑥
0
. Then the solution 𝑥

𝑖
(𝑡, 𝑥
0
) to system

(4) has the property that

lim
𝑡→∞

log𝑥
𝑖
(𝑡, 𝑥
0
)

𝑡
= −(

𝜎
2

𝑖

2
− 𝑏
𝑖
) , 𝑖 = 1, . . . , 𝑛, a.s. (56)

That is, the population will become extinct exponentially with
probability one and the exponential extinction rate of the 𝑖th
species is −(𝜎2

𝑖
/2 − 𝑏

𝑖
).

Proof. Let 𝑥(𝑡) = 𝑥(𝑡, 𝑥
0
) for simplicity. It follows from Itô’s

formula that

log𝑥
𝑖 (𝑡) = log𝑥

𝑖 (0) + ∫

𝑡

0

(𝑏
𝑖
−
𝜎
2

𝑖

2
)𝑑𝑠

− ∫

𝑡

0

(𝑎
𝑖𝑖
𝑥
𝜃𝑖 (𝑠) + ∑

𝑖 ̸=𝑗

𝑎
𝑖𝑗
𝑥
𝑗 (𝑠))𝑑𝑠

+ ∫

𝑡

0

𝜎
𝑖
𝑑𝐵
𝑖 (𝑠) , 𝑖 = 1, . . . , 𝑛,

(57)

where𝑀
𝑖
(𝑡) = ∫

𝑡

0
𝜎
𝑖
𝑑𝐵
𝑖
(𝑠) is the real-valued continuous local

martingale vanishing at 𝑡 = 0, with the quadratic variation
⟨𝑀
𝑖
(𝑡),𝑀

𝑖
(𝑡)⟩ = 𝜎

2

𝑖
𝑡. Dividing both sides by 𝑡 yields

log𝑥
𝑖 (𝑡)

𝑡
=
log𝑥
𝑖 (0)

𝑡
+
1

𝑡
∫

𝑡

0

(𝑟 −
𝜎
2

𝑖

2
)𝑑𝑠

−
1

𝑡
∫

𝑡

0

(𝑎
𝑖𝑖
𝑥
𝜃𝑖 (𝑠) + ∑

𝑖 ̸=𝑗

𝑎
𝑖𝑗
𝑥
𝑗 (𝑠))𝑑𝑠

+
1

𝑡
∫

𝑡

0

𝜎
2

𝑖
𝑑𝐵
𝑖 (𝑠) , 𝑖 = 1, . . . , 𝑛.

(58)

Using the law of strong large numbers for martingales (see
[17]), we can claim that

lim
𝑡→∞

1

𝑡
∫

𝑡

0

𝜎
𝑖
𝑑𝐵
𝑖 (𝑠) = 0, 𝑖 = 1, . . . , 𝑛, a.s. (59)

Letting 𝑡 → ∞ yields

lim
𝑡→∞

sup
log𝑥
𝑖 (𝑡)

𝑡
≤ −(

𝜎
2

𝑖

2
− 𝑏
𝑖
) , 𝑖 = 1, . . . , 𝑛, a.s.

(60)

This shows that, for any 1 ≤ 𝑖 ≤ 𝑘 and 𝜖 ∈ (0,min
1≤𝑖≤𝑘

{𝜎
𝑖
/2 −

𝑏
𝑖
}), there is a positive random variable 𝑇(𝜖) such that, with

probability one,

𝑥
𝑖 (𝑡) ≤ 𝑒

−(𝜎
2

𝑖
/2−𝑏𝑖)𝑡+𝜖𝑡, ∀𝑡 > 𝑇 (𝜖) , 𝑖 = 1, . . . , 𝑛, a.s. (61)

It follows that

𝑥
𝜃𝑖

𝑖
(𝑡) ≤ 𝑒

−𝛼(𝜎
2

𝑖
/2−𝑏𝑖)𝑡+𝛼𝜖𝑡, ∀𝑡 > 𝑇 (𝜖) , 𝑖 = 1, . . . , 𝑛, a.s.,

(62)
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which means

𝑎
𝑖𝑖
∫

∞

0

𝑥
𝜃𝑖

𝑖
(𝑠) 𝑑𝑠 +∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
∫

∞

0

𝑥
𝜃𝑗

𝑗
(𝑠) 𝑑𝑠 < ∞,

𝑖 = 1, . . . , 𝑛, a.s.

(63)

The required assertion (58) follows by letting 𝑡 → ∞ on both
sides of (54).

Remark 10. Theorem 9 showed that when the perturbation is
large in the sense that 𝜎2

𝑖
> 2𝑏
𝑖
, 𝑖 = 1, . . . , 𝑛, the population

will be forced to expire. And the exponential extinction rate
is given precisely in terms of system’s coefficients.

6. Numerical Simulations

In this section, to illustrate the usefulness and flexibility of
the theorem developed in previous section, we present a
numerical example.

Example 11. Consider a 2-dimensional stochastic Gilpin-
Ayala system as follows:

𝑑𝑥
1
= 𝑥
1
(1 − 0.8𝑥

1.5

1
− 0.3𝑥

2
) 𝑑𝑡 + 𝜎𝑥

1
𝑑𝐵
1 (𝑡) ,

𝑑𝑥
2
= 𝑥
2
(1 − 𝑥

1.2

2
− 0.2𝑥

1
) 𝑑𝑡 + 𝜎𝑥

2
𝑑𝐵
2 (𝑡) .

(64)

System (64) is exactly system (4) with 𝑎
11

= 0.8 > 0, 𝑎
12

=

0.3 > 0, 𝑎
21
= 0.2 > 0, 𝑎

22
= 1 > 0, 𝑏

1
= 1 > 0, 𝑏

2
= 1.2 > 0,

and 𝜃
1
= 1.2, 𝜃

2
= 1.5. We compute that 𝑥∗

1
= 0.9109 and

𝑥
∗

2
= 1.0148. The existence and uniqueness of the solution

follows from Lemma 1.We consider the solution 𝑥(𝑡, 𝑥
0
)with

initial data 𝑥
1
(0) = 0.5 and 𝑥

2
(0) = 0.5. Let 𝑥(𝑡) = 𝑥(𝑡, 𝑥

0
)

for simplicity.
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(i) 𝜎 = 0.4: simple computation shows that

𝑏
1
−
𝜎
2

2
= 0.92 > 0, 𝑏

2
−
𝜎
2

2
= 1.12 > 0,

𝑏
1
−
𝜎
2

2
− 𝑎
12
(𝑏
2
−
𝜎
2

2
)

1/𝜃2

= 0.5903 > 0,

𝑏
2
−
𝜎
2

2
− 𝑎
21
(𝑏
1
−
𝜎
2

2
)

1/𝜃1

= 0.9308 > 0.

(65)

By Theorem 4, the solution to system (64) has the following
property

lim
𝑡→∞

log𝑥
1 (𝑡)

𝑡
= 0; lim

𝑡→∞

log𝑥
2 (𝑡)

𝑡
= 0, a.s. (66)

Figures 1 and 2 show the stochastic trajectories of log 𝑥
1
(𝑡)/𝑡

and log𝑥
2
(𝑡)/𝑡 generated by the Heun scheme for time step

Δ = 10
−3 for system (64) on [0, 50], respectively.

Choosing 𝑐
1
= 1 and 𝑐

2
= 0.5, we further compute that

𝑐
1
𝑎
11
(𝑥
∗

1
)
0.5
−
1

2
(𝑐
1
𝑎
12
+ 𝑐
2
𝑎
21
) = 0.5635 > 0,

𝑐
2
𝑎
22
(𝑥
∗

2
)
0.2
−
1

2
(𝑐
1
𝑎
12
+ 𝑐
2
𝑎
21
) = 0.3015 > 0,

𝑐
1
𝜎(𝑥
∗

1
)
2
+ 𝑐
2
𝜎(𝑥
∗

2
)
2
= 0.2837 < min {0.5635, 0.3015} .

(67)
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By virtue of Theorem 7, system (64) has a unique stationary
distribution. Figures 3 and 4 show the stochastic trajectories
of 𝑥
1
(𝑡) and 𝑥

2
(𝑡) generated by theHeun scheme for time step

Δ = 10
−3 for system (64) on [0, 500], respectively.

(ii) Consider 𝜎 = 2.
Note that 1 < 2

2
/2, 1.2 < 2

2
/2, by virtue of Theorem 9,

system (64) is exponentially extinctive. Figures 5 and 6
show the stochastic trajectories of log𝑥

1
(𝑡)/𝑡 and log𝑥

2
(𝑡)/𝑡

generated by the Heun scheme for time step Δ = 10
−3 for

system (64) on [100, 500], respectively.

7. Conclusion

In this paper, we have investigated the asymptotic behavior
for the stochastic Gilpin-Ayala competition system. Firstly,
by utilizing stochastic analysis techniques and the stochastic
comparison principle, the larger time behavior log𝑥

𝑖
(𝑡)/𝑡, 𝑖 =

1, . . . , 𝑛. has been researched. Secondly, by applying some
techniques to deal with the nonquadratic item, sufficient
conditions are obtained under which there is a stationary
distribution to the system. Based on the condition, the
estimation on the mean of the stationary distribution is
presented. Finally, the sufficient criteria for extinction are
established.
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