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Cocurrent and countercurrent imbibitions are the crucial mechanism in many multiphase flow processes. In cocurrent imbibition
wetting phase displaces nonwetting phase such that the nonwetting phasemoves in the same direction to the wetting phase, whereas
in countercurrent imbibitions wetting and non-wetting phase flow in opposite directions. However for cocurrent imbibitions,
mathematical models need total flux condition as both phases flow in the same direction. Thus cocurrent imbibitions have been
considered neglecting pressure gradient of nonwetting phase and only pressure gradient of displacing phase is considered which
gives additional velocity to the displacing phase. An approximate analytical solution is derived by the method of small parameter;
an approximate expression for the wetting phase saturation has been obtained. From analytical expression graphical presentation
of saturation of wetting phase shows that cocurrent imbibition is faster than countercurrent imbibition. Also, the small parameter
is chosen from initial wetting phase saturation and wetting phase saturation at imbibition phase, thus giving comparative behavior
of imbibition at initial and later stage. It is shown that cocurrent imbibition proceeds faster with more amount of wetting phase
present in porous matrix.

1. Introduction

Imbibition is one of the most important mechanisms, if
wetting phase (like water and brine) enters in porous matrix
and displaces nonwetting phase (like air, oil, and nonaqueous
phase liquids (NAPL)). Imbibition is defined as the displace-
ment of nonwetting phase (generally air or oil) by wetting
phase (generally water), where driving force is capillary
pressure. During imbibition two main types of flow modes
are recognized: cocurrent flow in which displacing (wetting)
phase and displaced (nonwetting) phase flow in the same
direction and countercurrent flow in which displacing phase
flows in the opposite direction to displaced phase. Imbibition
in water-wet porous media is commonly considered to be
counter current, but studies have shown that when a porous
matrix block is partially covered by wetting fluid, flow is
dominated by cocurrent imbibition, not countercurrent [1].
Such situation may arise during water flowing in unsaturated
soil or oil recovery from fractured porous matrix. Though
permeability of fracture is higher having relatively low vol-
ume, porousmatrix with low permeability and higher volume

contains major volume of oil. During water flooding process,
water quickly surrounds oil-saturated (water wet) porous
matrix. Imbibition may occur as cocurrent or counter cur-
rent, depending on fracture network and water injection rate.
Having an oil filled porous matrix exposed from both sides
to water, imbibition is countercurrent from each end. If the
matrix is exposed so that one end is in the water and the other
is in the oil, then imbibition is cocurrent with water entering
from one end and oil leaving from the other end (Figure 1).

In spite of the fact that cocurrent imbibition is faster and
more efficient countercurrent imbibitions have received con-
siderable attention in the literature; comparatively less studies
are undertaken to understand cocurrent imbibitions exper-
imentally as well as theoretically. Through a detailed study
of the governing equations and boundary conditions, signif-
icant insight has been provided into the physical differences
between co- and countercurrent imbibitions by some authors
[1–3]. Experimental studies have shown that there are signifi-
cant recovery differences between cocurrent and countercur-
rent imbibition [4–6]. Pooladi-Darvish and Firoozabadi [1]
developed a numericalmodel and studied the similarities and
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Figure 1: Cocurrent and countercurrent imbibition when nonwetting phase is displaced by wetting phase.

differences of cocurrent and countercurrent imbibition and
point out the consequences for practical applications.

In the present study cocurrent imbibition is formulated
neglecting the nonwetting phase pressure gradient and con-
sidering that capillary pressure gradient and wetting fluid
pressure gradient are equal [1, 3]). Darcy-like formulation
of the flow equation is assumed to be sufficient for analysis,
in which the local wetting phase (water) saturation 𝑆

𝑤
(𝑥, 𝑡)

obeys a differential equation of the diffusion type with
one additional convective term. Wetting and nonwetting
phases flow in the same direction; thus the sum of Darcy’s
velocities is taken as nonzero. Also specific results for the
dependence of relative permeability and capillary pressure,
on phase saturation, have been taken from standard literature.
Governing differential equation is formulated and solved by
method of small parameter; an approximate expression for
saturation of wetting phase 𝑆

𝑤
(𝑥, 𝑡) has been obtained.

2. Governing Flow Equation for Imbibition

Theone-dimensional horizontal flow of two immiscible flow-
ing phases can be described by the multiphase extension of
the Darcy law for each phase, which describes the seepage
velocity of each phase because of a gradient in the phase
pressures:

V
𝑤
= −

𝑘
𝑟𝑤

𝜇
𝑤

𝑘(
𝜕𝑃
𝑤

𝜕𝑥
) ,

V
𝑛
= −

𝑘
𝑟𝑛

𝜇
𝑛

𝑘(
𝜕𝑃
𝑛

𝜕𝑥
) ,

(1)

where V
𝑤
, V
𝑛
are the velocity of the wetting and the nonwet-

ting phases, respectively, 𝑘 is the absolute permeability, and
𝜇
𝑤
, 𝜇
𝑛
are the viscosity of the wetting and the nonwetting

phases, respectively. Also 𝑘
𝑟𝑤

= 𝑘
𝑟𝑤
(𝑆
𝑤
), 𝑘
𝑟𝑛

= 𝑘
𝑟𝑛
(𝑆
𝑤
) are

the relative permeability of the wetting and the nonwetting
phase, respectively, which are function of the wetting phase
saturation and describe the impairment of one fluid phase by
the other.

The definition of capillary pressure 𝑃
𝑐
as the pressure

discontinuity between the flowing phases yields 𝑃
𝑐
= 𝑃
𝑛
− 𝑃
𝑤

[7].Hence, pressure gradients of both phases are related to the

gradient of the capillary pressure, which was first introduced
for two-phase flow in porous media by Leveratt [8]; that is,

𝜕𝑃
𝑐

𝜕𝑥
=

𝜕𝑃
𝑛

𝜕𝑥
−

𝜕𝑃
𝑤

𝜕𝑥
. (2)

Total velocity V
𝑡
= V
𝑤
+ V
𝑛
, (3)

is the sum of the velocities of wetting and nonwetting phases.
Using total velocity and from (1) and (2) velocity of wetting
phase can be written as

V
𝑤
=

V
𝑡

(1 + 𝑘
𝑟𝑛
𝜇
𝑤
/𝑘
𝑟𝑤
𝜇
𝑛
)
+

𝑘 (𝑘
𝑟𝑛
/𝜇
𝑛
) (𝜕𝑃
𝑐
/𝜕𝑥)

(1 + 𝑘
𝑟𝑛
𝜇
𝑤
/𝑘
𝑟𝑤
𝜇
𝑛
)
. (4)

Equation (4) gives the velocity of wetting phase as the sum of
two terms; first term on right is dictated by the rate at which
fluid is entering at the boundary. The second term occurs
due to additional impelling force resulting from gradient of
capillary pressure (effect of wettability).

Neglecting phase density variation, the equation of con-
tinuity for wetting phase may be written as

𝜙
𝜕𝑆
𝑤

𝜕𝑡
+

𝜕V
𝑤

𝜕𝑥
= 0, (5)

where 𝜙 ∈ (0, 1) is porosity of porous matrix.
Considering capillary pressure as function of phase satu-

ration of displacing fluid [1] in (5) and using (4) for velocity
of displacing phase give

(
𝜕𝑆
𝑤

𝜕𝑡
) = −

𝜕

𝜕𝑥
(
V
𝑡

𝜙
𝑓 (𝑆
𝑤
) + 𝐷
𝑐
(𝑆
𝑤
)
𝜕𝑆
𝑤

𝜕𝑥
) , (6)

where𝐷
𝑐
(𝑆
𝑤
) = (𝑘/𝜙)(𝑓(𝑆

𝑤
)(𝑘
𝑟𝑛
/𝜇
𝑛
))(𝑑𝑃
𝑐
/𝑑𝑆
𝑤
) is known as

capillary diffusion coefficient and function 𝑓(𝑆
𝑤
) is given by

the following expression:

𝑓 (𝑆
𝑤
) =

1

1 + (𝑘
𝑟𝑛
/𝑘
𝑟𝑤
) (𝜇
𝑛
/𝜇
𝑤
)
. (7)

The above partial differential equation has been previously
derived by several authors which describes one-dimension-
al, immiscible, incompressible, isothermal, two-phase flow
through homogeneous, horizontal porous media. Imbibition
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is cocurrent or countercurrent, that is, described by the
second term containing V

𝑡
, for countercurrent flow V

𝑡
= 0 and

for cocurrent flow V
𝑡

̸= 0. Equation (6) has been formulated
earlier for nonlinear relation between capillary pressure
and phase saturation of displacing fluid so as to describe
imbibition model by McWhorter and Sunada [2], Pooladi-
Darvish and Firoozabadi [1], and Le Guen and Kovscek [3].
For countercurrent and cocurrent imbibition, the coefficient
of diffusion𝐷

𝑐
(𝑆
𝑤
) is function of saturation of wetting phase

only because capillary pressure and relative permeability of
wetting phase depend only on wetting fluid saturation. In
(6) V
𝑡
is unknown and thus an additional equation, that is,

the pressure equation with initial and boundary conditions is
required to complete the formulation. Only a few analytical
solutions of this equation are known because of strong non-
linearity due to capillary drive in 𝐷

𝑐
and 𝑓. Thus, generally

two approaches are taken to solve this equation. In first
approach, closed form solutions are determined restricting
the 𝑘
𝑟𝑤
(𝑆
𝑤
), 𝑘
𝑟𝑛
(𝑆
𝑤
), and 𝑃

𝑐
(𝑆
𝑤
) to particular nonlinearities;

otherwise more general nonlinearities are chosen and the
resulting exact analytical expression is mostly nonlinear
expression that generally needs to be solved numerically [9].
In the first approach, the specific form of the nonlinearities is
considered. In the present paper first approach has been taken
to find approximate analytical solution.

Some studies of the imbibition process have assumed
that the pressure gradient in the displaced oil phase may
be neglected [3]. This assumption is based on the common
practice in hydrology, where themathematical formulation of
unsaturated water flow ignores the air pressure gradient [10].
Under this assumption, (2) gives

𝜕𝑃
𝑐

𝜕𝑥
= −

𝜕𝑃
𝑤

𝜕𝑥
. (8)

From (8) simplification of (6) results in

𝜕𝑆
𝑤

𝜕𝑡
= −

𝜕

𝜕𝑥
{𝐷 (𝑆

𝑤
)
𝜕𝑆
𝑤

𝜕𝑥
} , (9)

where𝐷(𝑆
𝑤
) = (𝑘𝑘

𝑟𝑤
/𝜙𝜇
𝑤
)(𝑑𝑃
𝑐
/𝑑𝑆
𝑤
) is diffusion coefficient.

Following Scheidegger and Johnson [11], relation between
relative permeability of wetting and nonwetting phases and
saturation of wetting phase can be written as

𝑘
𝑟𝑤

= 𝑆
𝑤
,

𝑘
𝑟𝑛

= 1 − 𝛼𝑆
𝑤
, 𝛼 = 1.11.

(10)

Babchin andNasr [12] suggested that when both the phas-
es are continuous then the capillary pressure gradient (in
present notations) can be written as Δ𝑃

𝑐
= (𝛾
𝑛𝑠

− 𝛾
𝑤𝑠
)𝑆VΔ𝑆𝑛,

where 𝑆V is the specific surface area of homogeneous porous
media and 𝛾

𝑛𝑠
and 𝛾

𝑤𝑠
are native fluid-solid and displacing

fluid-solid specific surface energies, respectively. Also Mehta
[13] suggested the presence of a linear relation between
capillary pressure and phase saturation of displacing phase
when external force does not apply. Hence, capillary pressure
and wetting phase saturation can be considered related by
expression 𝑃

𝑐
= −𝛽𝑆

𝑤
, where 𝛽 is constant of proportionality

[14].Thus substitution of capillary pressure andwetting phase
relation and expression of relative permeability of wetting
phase from (10) in (9) gives

𝜕𝑆
𝑤

𝜕𝑡
= −

𝜕

𝜕𝑥
{
(−𝛽) 𝑘𝑆

𝑤

𝜙𝜇
𝑤

𝜕𝑆
𝑤

𝜕𝑥
} . (11)

Equation (11) is the desired nonlinear partial differential
equation in wetting phase saturation, which describes the lin-
ear cocurrent imbibition.The governing differential equation
of counter current imbibition is given inMehta andYadav [15]
which differs in diffusivity co-efficient.

Set of suitable boundary and initial conditions associated
with (11) are

𝑆
𝑤
(0, 𝑡) = 𝑆

1
at 𝑥 = 0, 𝑡 ≥ 0, (12a)

𝑆
𝑤
(𝑥, 0) = 𝑆

2
at 𝑡 = 0, 𝑥 > 0, (12b)

where 𝑆
1
is the saturation of wetting phase at the imbibition

phase, as only displacing phase, that is, wetting phase, flows
through imbibition face 0 < 𝑆

1
= 1 − 𝑆

𝑟𝑛
< 1 at 𝑥 = 0 for

𝑡 > 0, where 𝑆
𝑟𝑛
is irreducible saturation of nonwetting phase.

𝑆
2
is the initial saturation of the wetting phase in the porous

matrix under consideration, at 𝑡 = 0 for 𝑥 > 0.
Equation (11) along with initial and boundary conditions

(12a) and (12b) is a nonlinear differential equation which
describes the cocurrent imbibition phenomenon in a homo-
geneous porous cylindrical matrix with impervious cylindri-
cal bounding surfaces. With all the linear relations used to
derive (11), it now becomes possible to use some of the calcu-
lations that occur in the theory of motion with free surface.

3. Solution of the Problem

Introducing the dimensionless variables:

𝑋 =
𝑥

𝐿
, 𝑇 =

𝛽𝑘𝑡

𝜙𝐿2𝜇
𝑤

, (13)

where 0 ≤ 𝑋 ≤ 1 and 0 ≤ 𝑇 ≤ 1 in (11), it reduces to

𝜕𝑆
𝑤

𝜕𝑇
=

𝜕

𝜕𝑋
(𝑆
𝑤

𝜕𝑆
𝑤

𝜕𝑋
) . (14)

From (12a) and (12b), initial and boundary conditions are

𝑆
𝑤
(0, 𝑇) = 𝑆

1
, at 𝑋 = 0, 𝑇 ≥ 0, (15a)

𝑆
𝑤
(𝑋, 0) = 𝑆

2
, at 𝑇 = 0, 𝑋 > 0. (15b)

Introducing the transformations as below;

𝑆
𝑤
(𝑋, 𝑇) = 𝑆

1
𝜉 (𝜂) , 𝜂 =

𝑋

2√𝑆
1
𝑇

(16)

in (14) results in

𝑑
2

𝜉
2

𝑑𝜂2
+ 4𝜂

𝑑𝜉

𝑑𝜂
= 0. (17a)
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Initial and boundary conditions given in (15a) and (15b) will
transform to

𝜉 (0) = 1, (17b)

lim
𝜂→∞

𝜉 (𝜂) =
𝑆
2

𝑆
1

. (17c)

We now seek an approximate analytical solution for (17a)
through an exposed method by power series expansion in
powers of a small parameter [16]. Exposed method can be
applied to (17a) with conditions (17b) and (17c), as conditions
are considered to be constant. Assuming that solution of (17a)
can be expressed in the form of a power series in powers of
small parameter 𝜀 gives

𝜉 (𝜂) = 1 + 𝜀𝜉
∗
+ 𝜀
2

𝜉
∗∗

+ 𝜀
3

𝜉
∗∗∗

+ ⋅ ⋅ ⋅ , (18)

where 𝜉
∗
(𝜂), 𝜉
∗∗

(𝜂), 𝜉
∗∗∗

(𝜂), . . . are some functions of 𝜂. In
order to satisfy initial and boundary conditions in (17b) and
(17c), 𝜉

∗
(𝜂), 𝜉
∗∗

(𝜂), 𝜉
∗∗∗

(𝜂), . . . are subject to the following
conditions:

𝜉
∗
(0) = 𝜉

∗∗
(0) = 𝜉

∗∗∗
(0) = ⋅ ⋅ ⋅ = 0,

𝜉
∗∗

(∞) = 𝜉
∗∗∗

(∞) = ⋅ ⋅ ⋅ = 0.

(19)

In order to satisfy condition (17b) at infinity, we must set
lim
𝜂→∞

𝜉(𝜂) = 𝑆
2
/𝑆
1
= 1 + 𝜀𝜉

∗
(∞), choosing 𝜉

∗
(∞) such

that lim
𝜂→∞

𝜉
∗
(𝜂) = 1.

Thus the value for the small parameter 𝜀 can be obtained
as follows:

𝜀 =
𝑆
2
− 𝑆
1

𝑆
1

. (20)

Substituting the series (18) in (17a) and equating like powers
of 𝜀 gives

𝑑
2

𝜉
∗

𝑑𝜂2
+ 2𝜂

𝑑𝜉
∗

𝑑𝜂
= 0,

𝑑
2

𝜉
∗∗

𝑑𝜂2
+ 2𝜂

𝑑𝜉
∗∗

𝑑𝜂
− 𝜂𝜉
∗

𝑑𝜉
∗

𝑑𝜂
= 0,

𝑑
2

𝜉
∗∗∗

𝑑𝜂2
+ 2𝜂

𝑑𝜉
∗∗∗

𝑑𝜂
+

3

4
𝜂𝜉
2

∗

𝑑𝜉
∗

𝑑𝜂

− 𝜂{𝜉
∗

𝑑𝜉
∗∗

𝑑𝜂
+ 𝜉
∗∗

𝑑𝜉
∗

𝑑𝜂
} = 0,

....

(21)

The first approximation in (21) together with conditions
in (19) gives probability function [16]

𝜉
∗
(𝜂) =

2

√𝜋
∫

𝜂

0

𝑒
−𝜏
2

𝑑𝜏. (22)

Integrating by parts after simplification of the second equa-
tion in (21) and using the conditions in (19), the expression of
second approximation can be given as follows:

𝜉
∗∗

(𝜂) =
1

𝜋
(1 − 𝑒

−2𝜂
2

) −
1

√𝜋
𝜂𝑒
−2𝜂
2

𝜉
∗
−

1

2
(𝜉
∗
)
3

+ (
1

2
−

1

𝜋
) 𝜉
∗
.

(23)

Similarly, for the third approximation the expression is
obtained as follows:

𝜉
∗∗∗

(𝜂) =
1

2
𝜉
3

∗
+

9

4√𝜋
𝜂𝑒
−𝜂
2

𝜉
2

∗
−

1

2√𝜋
𝜂
3

𝑒
−𝜂
2

𝜉
2

∗

+
3

𝜋
𝑒
−𝜂
2

𝜉
∗
−

1

𝜋
𝜂
2

𝑒
−2𝜂
2

𝜉
∗
−

𝜂𝑒
−𝜂
2

𝜋√𝜋

−
𝜂𝑒
−3𝜂
2

2𝜋√𝜋
−

3√3

4𝜋
𝜉
∗
(𝜂√3) + (1 −

2

𝜋
) 𝜉
∗∗

+ (
3√3

4𝜋
−

1

2
) 𝜉
∗
.

(24)

From (22), (23), and (24), considering 𝜉
∗
(𝜂), 𝜉

∗∗
(𝜂),

𝜉
∗∗∗

(𝜂), . . . in series (18) and using (16), the solution of (14)
can be given as follows,

𝑆
𝑤
(𝑋, 𝑇) = 𝑆

1
𝜉 (𝜂) = 𝑆

1
(1 + 𝜀𝜉

∗
+ 𝜀
2

𝜉
∗∗

+ 𝜀
3

𝜉
∗∗∗

+ ⋅ ⋅ ⋅ ) ,

(25)

where value of parameter 𝜀 is as in (20) with conditions in
(19). Thus (25) gives saturation of wetting phase at any time
𝑇 and at distance 𝑋, where 𝑇 and 𝑋 are dimensionless time
and distance, respectively.

4. Discussion and Conclusions

An approximate analytical solution in infinite series is
obtained for cocurrent imbibition, which satisfies initial
and boundary conditions with terms containing negative
exponential term in coefficients. From the expressions given
in (22), (23), and (24) the coefficient of the series may be
considered [17] as shown in Table 1. Also, for the free surface
Polubarinova-Kochina concluded from Table 1 that the series
up to third-degree approximation was not valid for the
extreme cases (zero initial and boundary conditions) consid-
ered. But for the cocurrent imbibition occurring due to water
injection in secondary oil recovery thismethodworks. As dis-
cussed earlier, 0 < 𝑆

1
= 1 − 𝑆

𝑟𝑛
< 1 at 𝑥 = 0 for 𝑡 > 0, where

𝑆
𝑟𝑛
is irreducible saturation of nonwetting phase and the ini-

tial (irreducible) saturation of the wetting phase in the porous
matrix under consideration is 0 < 𝑆

2
at 𝑡 = 0 for 𝑥 > 0. Also

saturation of wetting phase is relatively more due to sponta-
neous imbibition during primary recovery. One more advan-
tage of thismethod lies in using only one boundary condition,
that is, 𝑥 = 0. Also the saturation of wetting phase increases at
𝑥 = 𝐿 gradually hence may be left as free boundary. From the
expressions (22), (23), and (24) and fromTable 1, for the coef-
ficients of the series observation can bemade that for 𝜂 → ∞
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Table 1

𝜂 𝜉
∗

𝜉
∗∗

𝜉
∗∗∗

0 0 0 0
0.1 0.1125 0.0141 −0.0039
0.2 0.2227 0.0160 −0.0081
0.3 0.3286 0.0073 −0.0090
0.4 0.4284 −0.0092 −0.0049
0.5 0.5205 −0.0300 0.0039
0.6 0.6039 −0.0519 0.0159
0.7 0.6778 −0.0718 0.0280
0.8 0.7421 −0.0874 0.0373
0.9 0.7969 −0.0975 0.0422
1 0.8427 −0.1017 0.0418
1.1 0.8802 −0.1004 0.0368
1.2 0.9103 −0.0946 0.0281
1.3 0.9340 −0.0855 0.0194
1.4 0.9523 −0.0744 0.0078
1.5 0.9661 −0.0626 −0.0011
1.6 0.9764 −0.0510 −0.0079
1.7 0.9838 −0.0394 −0.0125
1.8 0.9891 −0.0310 −0.0147
1.9 0.9928 −0.0232 −0.0151
2 0.9953 −0.0169 −0.0141
2.5 0.9996 −0.0024 −0.0047
3 0.9999 −0.0002 −0.0006
3.5 1 −0.0 −0.0001
4 1 −0.0 −0.0001

each coefficient approaches zero. The small parameter 𝜀 has
been chosen depending upon the ratio (𝑆

2
−𝑆
1
)/𝑆
1
, where 0 <

𝑆
2
< 𝑆
1
< 1. Hence the parameter 𝜀 is small with negative sign

which compensates the negative series coefficients occurring
in Table 1; giving a convergent series in (25).

Saturation of displacing fluid 𝑆
𝑤
increases at distance

𝑥 as time 𝑡 increases; graphical presentation of saturation
profile in dimensionless variables is shown for cocurrent and
countercurrent imbibition [15] with 𝑆

𝑤
(𝑋, 0) = 𝑆

2
= 0.2.

Saturation profile shows different behaviors during cocurrent
and countercurrent imbibition.

Also, during cocurrent imbibition for given time 𝑇

saturation varies nonlinearly initially showing faster rate but
slowly becomes linear after long time 𝑇 (Figure 2). Figure 3
shows saturation in porous matrix for countercurrent for the
same initial and boundary condition. During countercurrent
imbibition saturation profile shows the same behavior for
all time 𝑇. From both saturation profiles it can be observed
that saturation profile of wetting phase increases faster in
cocurrent imbibition than in countercurrent imbibition.

Also, the expression (25) gives saturation of wetting phase
through a power series expansion in powers of parameter 𝜀.
Thus for the purpose of comparison of cocurrent imbibition
at different initial wetting phase saturation, saturation profile
is depicted in Figure 4. These profiles show cocurrent imbi-
bition is faster in later stages than primary or in other words
connected wetting phase is dominant during the imbibition
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Figure 2: Saturation of wetting fluid versus distance during cocur-
rent imbibition.
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Figure 3: Saturation of wetting fluid versus distance during coun-
tercurrent imbibition.

mechanism. Earlier few authors [18, 19] argue over this aspect
by conducting experimental work on countercurrent imbi-
bition. They observed that secondary imbibition proceeds
via the thickening of the preexisting wetting phase. The
expression given by (25) shows faster progress in saturation
profile as a consequence of the thickening of initially present
wetting phase in the porous medium.

In summary, the present paper addresses cocurrent imbi-
bition with some restrictive assumption on capillary pressure
and relative permeability of wetting and nonwetting phases
to derive approximate analytical solution in power series.
The method may be applied to solve more general problems
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Figure 4: Saturation of wetting phase at fixed time for different
initial conditions during cocurrent imbibition.

with nonlinear relation for capillary pressure and relative
permeabilities, if resultant set of differential equations for
series coefficients (as in (21)) is solvable. In conclusion we
have found the approximate analytical expression for wetting
phase saturation during cocurrent imbibition for a simplified
model formulated by using linear relation curves. In spite
of the restrictive formulation of the solution, saturation
profile behavior shows agreement with available literature.
The proposed method can be used to find solution for more
general forms.
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