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A continuous nonsingular fast terminal sliding mode (NFTSM) control scheme with the extended state observer (ESO) and the
tracking differentiator (TD) is proposed for second-order uncertain SISO nonlinear systems. The system’s disturbances and states
can be estimated by introducing the ESO, then the disturbances are compensated effectively, and the ideal transient process of the
system can be arranged based on TD to provide the target tracking signal and its high-order derivatives. The proposed controller
obtains finite-time convergence property and keeps good robustness of sliding mode control (SMC) for disturbances. Moreover,
compared with conventional SMC, the proposed control law is continuous and no chattering phenomenon exists. The property of
system stability is guaranteed by Lyapunov stability theory.The simulation results show that the proposedmethod can be employed
to shorten the system reaching time, improve the system tracking precision, and suppress the system chattering and the input noise.
The proposed control method is finally applied for the rotating control problem of theodolite servo system.

1. Introduction

Sliding mode control (SMC) is well known for its robustness
to system parameter variations and external disturbances [1].
SMC has been widely used for robots, aircrafts, DC and AC
motors, power systems, process control, and so on [2, 3].
In general, when the linear sliding mode surface function is
chosen, the tracking errors of the system states will not be
converged to zero within finite time. So, the nonlinear item is
used to obtain the better performance response in the sliding
mode surface [4]. Based on the terminal attractor, Zhihong
et al. proposed TSM control method to offer finite time
convergence property [5, 6]. Following it, many improved
forms of TSM are studied. There is a singularity problem in
the existing TSM controller design methods [7]. So, Feng
et al. proposed a NTSM control method to overcome the
singular problem [8]. In [9], Yu and Zhihong developed fast
terminal sliding mode control (FTSM). Then, a nonsingular
fast terminal sliding mode was proposed to overcome the
controller singular problemand the fast convergence problem
[10].

Chattering is an unavoidable problem for the SMC
technology in the actual application including above NTSM
control schemes. So some effective methods are proposed
[11–13]. The chattering phenomenon is avoided. However, to
do this, the disturbance rejection properties are sacrificed to
some extent. Yang et al. proposed a new continuous dynamic
sliding mode control (CDSMC) method for high-order mis-
matched disturbance attenuation in motion control systems
[14]. To completely compensate the effects of disturbances,
the high-order sliding mode differentiator is used to estimate
the mismatched high-order disturbance and its high-order
derivatives.

It is difficult to design the appropriate sliding mode
gain 𝑘 for the time-varying system disturbance as the main
factor of chattering. Furthermore, it is usually impossi-
ble to measure the disturbances directly in some certain
applications, for example, PMSM control system. Ohnishi
presented disturbance observer (DOB) technique firstly [15].
Based on DOB technique, Wei et al. firstly proposed many
types of DOB-based SMC methods to improve the system
performance [16–18]. Reference [19] proposed a nonlinear
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disturbance observer to estimate and compensate the external
disturbances.The switching gain was reduced greatly, and the
chattering was avoided effectively. Yang et al. proposed a con-
tinuous nonsingular terminal sliding mode control approach
with DOB for mismatched disturbance attenuation [20]. Su
et al. designed a finite-time disturbance observer (FTDO) to
estimate the uncertainties for robotic manipulators tracking
control [21].

However, except for the system disturbance, we may be
interested in some interior states of the system which cannot
be all measured directly by sensors. It will waste hardware too
much and gain the dissatisfactory results even though some
of them can be obtained in the control practice. For example,
in the SISO motor motion system, the velocity signal is
usually obtained by using many kinds of encoders. Encoders
measure the position signal directly to get the velocity signal
by adopting different method. But the measuring precision
and antijamming problem need to be studied furthermore.
Encoders enlarge the system size and increase the fees. In
addition, the high-order derivatives of reference position
signal with other noise signals need to be usually provided
for the single input motion system based on SMC method.
Extended state observer (ESO) and tracking differentiator
(TD) of the active disturbance rejection control (ADRC)
originated from Professor Han offer good and novel thought
to solve the above problems [22]. It is not necessary to
measure the accurate system states and the disturbance, while
ESO will estimate them in real time. TD is used to obtain
the differential signal mixed with other noise signal via
integration quickly and accurately. Gao, Huang and Xue, and
Xia et al. have given ADRC application and popularization
and ADRC connotation summary [23–25].

In this paper, an improved continuous nonsingular fast
terminal sliding mode (NFTSM) control is proposed for
a class of uncertain nonlinear system involving external
disturbances and input reference signal with the noise signal.
The main contributions of this paper are as follows. First,
the finite-time convergence property can be guaranteed even
in the presence of disturbances. An improved fast terminal
sliding mode surface function with a novel fast reaching law
is designed to improve the convergence rate along the sliding
surface. The reaching law is designed to shorten the reaching
time and enhance the design flexibility. Second, the nominal
performance is retained with the proposed method as the
modules of the controller are independent of each other; that
is, the proposed method acts the same as the regular SMC in
the absence of disturbances. Third, the proposed controller
is continuous without any chattering since the disturbances
are due to ESO, which does not lose the robustness property
and the precision, and the sliding mode switching item of
the controller is removed for disturbance rejection. Fourth,
except for disturbances, ESO is also used to estimate the
system states. It will avoid measuring certain interior states
of the system directly by sensors, which wastes hardware
too much and gains the dissatisfactory results even though
some of them can be obtained in the control practice. TD
is introduced to obtain the reference input signal and its
high-order derivatives, and it is very suitable for SMC and
can extract the useful and precise signal from the noise. So,

ADRC and NFTSM control are successfully integrated with
uncertain nonlinear systems firstly in this paper.

Theodolite is widely used in the fields of geodetic sur-
veying, weapon system, and engineering surveying [26].
Theodolite rotating control is put forward taking shaft motor
drive as the core to improve the theodolite measure preci-
sion and automation degree by combining theodolite with
servo drive technology [27]. However, essentially, theodolite
rotating system is a nonlinear system subject to both external
disturbances and parameter variations. Recently, its control
methods mainly include improved PID control [28] and
adaptive control [29].

The rest of the paper is organized as follows. In Section 2,
the background review of NTSM, TD, and ESO is outlined.
In Section 3, the proposed nonsingular fast terminal sliding
mode controller with ESO, TD, and fast reaching law is
derived and the stability of the control system is proved by
Lyapunov’s stability theory. Simulation results are presented
in Section 4, and themethodproposed is applied to theodolite
rotating control in this section. Finally, conclusions are
provided in Section 5.

2. Background Review

2.1. NTSM. Consider the following second-order SISO sys-
tem with nonlinear uncertainties described by

�̇�
1
= 𝑥
2
,

�̇�
2
= 𝑓 (𝑥) + 𝑏 (𝑥) 𝑢 (𝑥) + 𝑔 (𝑥, 𝑡) ,

𝑦 = 𝑥
1
,

(1)

where 𝑥 = [𝑥
1
, 𝑥
2
]
𝑇

∈ 𝑅
2, 𝑢 ∈ 𝑅, and 𝑦 ∈ 𝑅 are

the states variables, the control input, and the output of the
system, respectively; both 𝑓(𝑥) and 𝑏(𝑥) ̸= 0 are the smooth
nonlinear function in terms of 𝑥; 𝑔(𝑥, 𝑡) is the uncertainty
and disturbance satisfying |𝑔(𝑥, 𝑡)| < 𝑙

𝑔
, and 𝑙

𝑔
> 0.

The conventional TSM is described by the following
surface function [5]:

𝑠 = 𝑒
2
+ 𝛽𝑒
𝑞/𝑝

1
, (2)

where 𝑒
1
= 𝑥
1
−𝑥
𝑑
is the tracking error and 𝑒

2
= �̇�
1
−�̇�
𝑑
, as 𝑥
𝑑

is the reference signal. 𝛽 > 0 is the designed parameter, and
𝑝 and 𝑞 are the positive odd integers satisfying 𝑞 < 𝑝 < 2𝑞.

For system (1), a TSM controller is designed as follows:

𝑢 = −𝑏
−1
(𝑥) [𝑓 (𝑥) + 𝛽

𝑞

𝑝
𝑒
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1
𝑒
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+ (𝑙
𝑔
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𝑑
] ,

(3)

where 𝜂 > 0 is a constant. The controller can ensure that the
TSM occurs. Analyzing the TSM surface function (2), we can
know that the system states errors 𝑒

1
and 𝑒
2
converge to zero

in the finite time.
It can be seen in the TSM controller (3) that the second

term containing 𝑒𝑞/𝑝−1
1

𝑒
2
may cause a singularity if 𝑒

2
̸= 0 and

𝑒
1
= 0.This situation does not occur in the ideal slidingmode

when 𝑠 = 0, 𝑒
2
= −𝛽𝑒

𝑞/𝑝

1
. Substitute 𝑒
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= −𝛽𝑒
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2
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to get 𝑒(2𝑞−𝑝)/𝑝
1

. If 𝑞 < 𝑝 < 2𝑞, 𝑒(2𝑞−𝑝)/𝑝
1

is nonsingular. The
singularity problem may occur in the reaching phase when
there is an insufficient control to ensure that 𝑒

2
̸= 0 and 𝑒

1
= 0

[8]. TSM controller (3) cannot guarantee a bounded control
signal for the case of 𝑒

2
̸= 0 when 𝑒

1
= 0 before the system

states reach 𝑠 = 0. Furthermore, the singularity may also
occur even after the sliding mode 𝑠 = 0 is reached since, due
to computation errors and uncertain factors, the system states
cannot be guaranteed to always remain in the sliding mode
especially near the equilibrium point (𝑒

1
= 0; 𝑒
2
= 0), and the

case of 𝑒
2

̸= 0 while 𝑒
1
= 0may occur from time to time.This

underlines the importance of addressing singularity problem
in the TSM systems.

To solve the controller singularity problem and improve
the system tracking precision, theNTSMcontrol is presented.
For (1), NTSM surface function is described as follows [8]:

𝑠 = 𝑒
1
+
1

𝛽
𝑒
𝑝/𝑞

2
, (4)

where𝛽,𝑝, and 𝑞 have been defined in (2). For system (1) with
NTSM (4), the controller can be designed as follows:

𝑢 = −𝑏
−1
(𝑥) [𝑓 (𝑥) + 𝛽

𝑞

𝑝
𝑒
2−𝑝/𝑞

2
+ (𝑙
𝑔
+ 𝜂) sgn (𝑠) − �̈�

𝑑
] ,

(5)

where 1 < 𝑝/𝑞 < 2; 𝜂 > 0 then the NTSM surface function
(4) will be reached in the finite time. Furthermore, the states
errors 𝑒

1
and 𝑒

2
will converge to zero in the finite time.

It should be noted that the NTSM controller (5) is always
nonsingular in the state space since 1 < 𝑝/𝑞 < 2. However,
the system states reach the sliding mode 𝑠 = 0; it is obtained
as follows:

̇𝑒
1
= −(

1

𝛽
)

𝑞/𝑝

𝑒
𝑞/𝑝

1
, (6)

Remark 1. The system states can reach the sliding mode
surface 𝑠 = 0 by designing the reasonable sliding mode
controller to satisfy Lyapunov stability principle. Suppose that
the reaching time is 𝑡

𝑟
. When the system reach the sliding

mode surface, 𝑒
1
will decrease as 𝑒

1
> 0 due to ̇𝑒

1
< 0 from

(6); 𝑒
1
will increase as 𝑒

1
< 0. Finally, the system errors can

converge to 0 in finite time 𝑡
𝑠1
by solving (6). However, the

system states converge slowly for the regions far away from
the equilibrium point because the exponent of 𝑒

1
is less than

1 according to (6).

Remark 2. For the NTSM controller (5), in order to achieve
system convergence, the switching gain 𝜂 is generally selected
for a bigger value. It will produce the chattering obviously and
influence the convergence precision in the steady state, even
the unmodeled dynamics of the system are motivated by the
chattering to make the system unstable.

From above analysis, it is very necessary to improve
system convergence characteristics and eliminate system
chattering based on the conventional NTSM controller.

2.2. Tracking Differentiator. In the transition design of the
reference signal, both transition signal and its derivatives are
simultaneously presented. The differential signal is usually
obtained by the backward difference of the reference signal,
but it will get unstable and inaccurate results in the presence
of noise.However, TDhas the ability to resolve the problemof
differential signal extraction via integration to avoid unneces-
sary noise and make the system performance more effective
and robust in some situations [25]. A feasible second-order
TD can be designed as follows:

V̇
1
= V
2
,

V̇
2
= fhan (V

1
− V (𝑡) , V

2
, 𝑟, ℎ
0
) ,

(7)

where V(𝑡) = 𝑥
𝑑
denotes the control objective. V

1
is the

desired trajectory and V
2
is its derivative. 𝑟 and ℎ

0
are the

controller’s parameters. 𝑟 is the speed factor deciding tracking
speed. ℎ

0
is the filtering factor, which makes an effort of filter.

These parameters can be adjusted individually according to
the desired speed and smoothness. fhan(V

1
− V(𝑡), V

2
, 𝑟, ℎ
0
) is

defined as follows [19]:
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2
,
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2
) 𝑠
𝑦
+ 𝑎
2
,

𝑠
𝑎
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(sign (𝑎 + 𝑑) − sign (𝑎 − 𝑑))

2
,

fhan = −𝑟 (
𝑎

𝑑
− sign (𝑎)) 𝑠

𝑎
− 𝑟 sign (𝑎) .

(8)

TD with nonlinear feedback combination can provide
transition process for expected input V = 𝑥

𝑑
, that is, V

1
and

its differential V
2
. Meanwhile, TDhas the ability to track input

reference signal with quick response and avoid overshooting.

2.3. Extended State Observer. In the theoretical analysis, it
is assumed that the estimation error caused by using ESO is
rather small. This fact is coupled severely with the desirable
result: the states are stable. Otherwise, the disturbance may
be unbounded and that the estimation error is meaningless.

𝑤(𝑥, 𝑡) = 𝑓(𝑥) + 𝑔(𝑥, 𝑡) is a multivariable function of the
states, external disturbances, and time.Generally, it is difficult
to get the exact model of 𝑤(𝑥, 𝑡). Now, the ESO is used to
estimate 𝑤(𝑥, 𝑡) in real time and make adjustments at each
sampling point in a digital controller. We define 𝑥

3
as the
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derivative of the uncertainties. The original system (1) can be
rewritten as follows:

�̇�
1
= 𝑥
2
,

�̇�
2
= 𝑥
3
+ 𝑏𝑢,

�̇�
3
= 𝑎 (𝑡) ,

𝑥
1
= 𝑦,

(9)

which is always observable. Now, we construct a state
observer to estimate 𝑥 and 𝑤(𝑥, 𝑡), in the following form:

𝑒 = 𝑧
1
− 𝑦,

�̇�
1
= 𝑧
2
− 𝛽
1
𝑒,

�̇�
2
= 𝑧
3
− 𝛽
2
fal (𝑒, 𝛼

1
, 𝛿) + 𝑏

0
𝑢,

�̇�
3
= − 𝛽

3
fal (𝑒, 𝛼

2
, 𝛿) ,

(10)

where 𝑧
1
, 𝑧
2
, and 𝑧

3
are the observer outputs and 𝛽

1
, 𝛽
2
,

and 𝛽
3
are the observer gains. 𝑒 is the output error of the

system. 𝑧
1
is used to estimate 𝑥

1
; 𝑧
2
is used to estimate 𝑥

2
; 𝑧
3

is the extended state variable to estimate the comprehensive
disturbance 𝑤(𝑥, 𝑡). As to a particular problem, the observer
gains, 𝛽

1
, 𝛽
2
, and 𝛽

3
, must be selected rationally to guarantee

the speed and precision of the observer [30]. The function of
fal(⋅, ⋅, ⋅) is defined as

fal (𝑒, 𝛼, 𝛿) =
{

{

{

|𝑒|
𝛼 sgn (𝑒) , |𝑒| > 𝛿
𝑒

𝛿1−𝛼
, |𝑒| < 𝛿,

(11)

where 𝛿 > 0 and 0 < 𝛼
2
< 𝛼
1
< 1 are parameters that can be

regulated.
Let 𝜀
1
(𝑡) = 𝑧

1
(𝑡) − 𝑥

1
(𝑡), 𝜀
2
(𝑡) = 𝑧

2
(𝑡) − 𝑥

2
(𝑡), and 𝜀

3
(𝑡) =

𝑧
3
(𝑡) − 𝑥

3
(𝑡). From (9) and (10), we have

̇𝜀
1
(𝑡) = 𝜀

2
(𝑡) − 𝛽

1
𝜀
1
(𝑡) ,

̇𝜀
2
(𝑡) = 𝜀

3
(𝑡) − 𝛽

2
fal (𝜀
1
(𝑡) , 𝛼
1
, 𝛿) ,

̇𝜀
3
(𝑡) = − 𝛽

3
fal (𝜀
1
(𝑡) , 𝛼
2
, 𝛿) − ℎ (𝑡) ,

(12)

with the following constraints on the observer parameters

𝜀
2

1
𝛽
1
> 0, 𝜀

1
fal (𝜀
1
, 𝛼
1
, 𝛿) > 0, 𝜀

1
fal (𝜀
1
, 𝛼
2
, 𝛿) > 0,

∀𝜀
1

̸= 0, fal (0, 𝛼
1
, 𝛿) = 0.

(13)

It is shown in [31] that for an arbitrarily changing ℎ(𝑡)
in a certain range, the aforementioned system is stable with
respect to the origin. This means, with appropriate choices
of parameters 𝛼

1
, 𝛼
2
, 𝛽
1
, 𝛽
2
, 𝛽
3
, and 𝛿, that the states of the

system (10) can track the corresponding states of the system
(9); that is, 𝑧

1
(𝑡) → 𝑥

1
(𝑡), 𝑧
2
(𝑡) → 𝑥

2
(𝑡), and 𝑧

3
(𝑡) → 𝑥

3
(𝑡).

So the system (10) is called the extended state observer of the
system (1) and is used to estimate 𝑥

𝑖
(𝑡), 𝑖 = 1, 2, 3.

The system output 𝑦(𝑡) needs to track a reference input
signal V(𝑡) = 𝑥

𝑑
.The tracking differentiator is used to arrange

the transient process V
1
(𝑡) that tracks the reference input

signal V(𝑡), and then the extended state observer uses the
system output 𝑦(𝑡) as its input rather than V

1
(𝑡) itself. In

addition, the nonlinear state error feedback (NLSEF) is the
ADRC control law. In order to improve the system control
performance, a novel NFTSM controller will replace the
traditional nonlinear PID controller in this study.

3. The NFTSM Controller Design with
ESO and TD

In this section, the newNFTSM surface and the slidingmode
reaching law are proposed. Then, the NFTSM controller is
designed and some of its properties are analyzed. At last, the
complete structure of the NFTSM controller with TD and
ESO is given.

3.1. A New Form of TSM Surface Function

Definition 3. For (1), the NFTSM can be described by the
following first-order nonlinear differential equation:

𝑠 = 𝑒
1
+ 𝑘
1

𝑒1

𝛾+1

+ 𝑘
2
𝑒
𝑝/𝑞

2
, (14)

where 𝑘
1
, 𝑘
2
, and 𝛾 are all the designed constants; 𝑘

1
> 0,

𝑘
2
> 0, and 𝛾 > 0; 𝑝 and 𝑞 are positive odd integers satisfying

1 < 𝑝/𝑞 < 2. 𝛾+1 > 𝑝/𝑞.When the system states reach sliding
mode surface 𝑠 = ̇𝑠 = 0, (14) can be described as follows:

̇𝑒
1
= −(

1

𝑘
2

)

𝑞/𝑝

(𝑒
1
+ 𝑘
1

𝑒1

𝛾+1

)
𝑞/𝑝

= −(
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𝑘
2

)

𝑞/𝑝
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1
+ 𝑘
1
𝑒
𝛾+1

1
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1
)
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)
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= −𝑒
𝑞/𝑝

1
((

1

𝑘
2

) (1 + 𝑘
1
𝑒
𝛾

1
sgn (𝑒

1
)
𝛾+1

))

𝑞/𝑝

.

(15)

Suppose that the time from the initial state error 𝑒(0) ̸= 0

to 𝑒 = 0 is 𝑡
𝑠
; that is, 𝑒(𝑡

𝑠
) = 0. The time integrate of (15)

satisfies,

∫

𝑒
1
(𝑡
𝑠
)

𝑒
1
(0)

𝑑𝑒
1

𝑒
𝑞/𝑝

1

= −∫

𝑡
𝑠

0

(
1

𝑘
2

(1 + 𝑘
1
𝑒
𝛾

1
sgn (𝑒

1
)
𝛾+1

))

𝑞/𝑝

𝑑𝜏

≤ −∫

𝑡
𝑠

0

(
1

𝑘
2

)

𝑞/𝑝

𝑑𝜏.
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Furthermore,

𝑡
𝑠
≤

𝑝

(1/𝑘
2
)
𝑞/𝑝

(𝑝 − 𝑞)

𝑒
(1−𝑞/𝑝)

1
(0) . (17)

Remark 4. For the sliding mode surface (14), when the states
are far from the equilibrium point, the first team 𝑒

1
of 𝑠

mainly affects the convergence efficiency, which canmake the
system trajectory converge quickly. When the states are near
to the equilibriumpoint, the second team 𝑘

1
|𝑒
1
|
𝛾+1 of 𝑠 largely

affects the convergence efficiency, which can also make the
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system trajectory converge quickly. So the NFTSM scheme
can achieve the global states trajectory converges quickly,
not just within the area adjacent to the equilibrium point.
In addition, the sliding mode surface (14) is slightly different
from the previously reported FTSMwhich is expressed as [9]

𝑠 = 𝑒
2
+ 𝛼𝑒
1
+ 𝛽𝑒
𝑞/𝑝

1
= 0, (18)

where 𝛼, 𝛽 > 0, 𝑝 > 𝑞 > 0 are integers and 𝑝 and 𝑞 are odd.

Except for the controller singularity, the difference of the
slidingmode surface 𝑠 between the proposedNFTSMand the
FTSM is their second teams affecting the near convergence
area. The system (14) will show a better character than the
system (18). The convergence time along the sliding mode
surface 𝑡

𝑓
can be obtained as follows [8]:

𝑡
𝑓
=

1

𝛼 (1 − 𝑞/𝑝)
ln
𝛼
𝑒0

1−𝑞/𝑝

+ 𝛽

𝛽
, (19)

where 𝑒
0
= 𝑥
1
(0) − 𝑥

𝑑
(0).

In [32], the existing nonsingular fast TSM controlmethod
is proposed, and the NFTSM surface function is described as
follows:

𝑠 = 𝑒
1
+ 𝑘
1
𝑒
𝑔/ℎ

1
+ 𝑘
2
𝑒
𝑝/𝑞

2
, (20)

where 𝑘
2
∈ 𝑅
+, 𝑘
2
∈ 𝑅
+, 𝑝, 𝑞, 𝑔, and ℎ are all odd and 1 <

𝑝/𝑞 < 2, 𝑔/ℎ > 𝑝/𝑞 to guarantee the system nonsingular
characteristics.

According to [33], the convergence time along the sliding
mode surface (20) 𝑡nf can be obtained as follows:

𝑡nf = ∫

|𝑒
0
|

0

𝑘
𝑞/𝑝

2

(𝑒
1
+ 𝑘
1

𝑒1

𝑔/ℎ

)
𝑞/𝑝

𝑑𝑒
1
, (21)

where 𝑒
0
= 𝑥
1
(0) −𝑥

𝑑
(0). The finite integration of (16) can be

calculated by the gauss hypergeometric function.

Remark 5. (a) For the sliding mode surface (18), comparing
with (14) and (20), the singularity phenomenon may occur
in some area. If 𝑒

2
̸= 0 and 𝑒

1
̸= 0, the term 𝑒

𝑞/𝑝−1

1
𝑒
2
∉

𝑅 in the controller, which leads to the singularity problem.
The proposed surface function (14) does have this problem.
Except for the controller singularity, the second teams of three
sliding mode surfaces directly affect the near convergence
area.

(b) Furthermore, the system (14) shows the global con-
vergence property in the finite time. Analyzing (17), (19), and
(21), the convergence time 𝑡

𝑟
by using the proposed sliding

mode surface is the smallest from the initial system states
to the equilibrium point along 𝑠 = 0 when the designed
parameters of the sliding mode functions are the same.

3.2. Design of the Reaching Law. Based on the sliding mode
structure theory, the reaching condition of the sliding mode
can just promise that the free point reaches the sliding mode
surface in the finite time. But, the reaching specific trajectory

0 1 2 3 4

2

4

6

s

8

10

Familiar exponent reaching law

Improved fast reaching law

t (s)

Figure 1: Performance comparison of reaching laws.

has not been limited, so the reaching law can improve the
system dynamic quality of the reaching movement. The
familiar exponent reaching law is given as follows [34]:

̇𝑠 = −𝜀 sgn 𝑠 − 𝑘𝑠, 𝜀 > 0, 𝑘 > 0, (22)

where ̇𝑠 = −𝑘𝑠 is the exponent team, and its solution is 𝑠 =
𝑠(0)𝑒
−𝑘𝑡.
The exponent team can make the system states move to

the sliding manifold. If there is only the exponent team, the
reaching process is asymptotic, and it cannot achieve the
reaching in finite time. So, the constant speed reaching team
̇𝑠 = −𝜀 sgn(𝑠) to promise the finite time reaching.

The familiar exponent reaching law can provide some
references for the development of the reaching law.

In this paper, an improved fast reaching law is designed to
shorten the reaching time and enhance the design flexibility.
It is as follows:

̇𝑠 = −𝑘
3|𝑠|
𝑚 sgn (𝑠) − 𝑘

4|𝑠|
𝑛/2 sgn (𝑠) , (23)

where 𝑘
3
> 0 and 𝑘

4
> 0 are the designed coefficients; the

odd number 𝑚 > 1 and the rational number 2 < 𝑛 < 4 are
the designed exponents.When the system is far away from the
sliding mode surface, −𝑘

3
|𝑠|
𝑚 sgn(𝑠) plays the leading role to

guarantee the faster reaching speed. When the system is near
the sliding mode surface, −𝑘

4
|𝑠|
𝑛/2 sgn(𝑠) plays the leading

role to reduce the reaching speed that make the system states
reach the sliding mode surface smoothly. Consider

𝑠 ̇𝑠 = −𝑘
3|𝑠|
𝑚+1

− 𝑘
4|𝑠|
𝑛/2+1

≤ 0. (24)

So, the improved fast reaching law satisfies the sliding
mode reaching condition. Suppose that 𝜀 = 20, 𝑘 = 10,
𝑘
3
= 50, and 𝑘

4
= 50; the performance of the improved

reaching law and the familiar exponent reaching law is shown
in Figure 1.

From Figure 1, the system reaching speed of proposed
reaching law is bigger than that of exponent reaching law
from the initial states to sliding mode surface. When the
system is near the sliding mode surface, the reaching speed is
down to reduce the initial chattering when the system enters
the sliding mode surface.
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3.3. Sliding Mode Controller Design and Stability Analysis

Theorem 6. With the sliding mode surface function (14),
the trajectory of system (1) can be driven onto the sliding
surface with NFTSM controller (25), and finally evolves in a
neighborhood around the origin in finite time:

𝑢 = −𝑏(𝑥)
−1
[�̂� (𝑥, 𝑡) + 𝑘

3|𝑠|
𝑚 sgn (𝑠) + 𝑘

4
𝑠
𝑛/2

+
1

𝑘
2

𝑒
2−𝑝/𝑞

2

𝑞

𝑝
(1 + 𝑘

1
(𝛾 + 1)

𝑒1

𝛾

) − �̈�
𝑑
] ,

(25)

where 𝑒
1
= 𝑧
1
− 𝑥
𝑑
, 𝑒
2
= 𝑧
2
− �̇�
𝑑
; 𝑧
1
and 𝑧

2
are the states

estimations from ESO; 𝑥
𝑑
, �̇�
𝑑
, and �̈�

𝑑
are the reference signals

from TD. Moreover, the sliding mode surface function can be
described by 𝑠 = 𝑒

1
+ 𝑘
1
|𝑒
1
|
𝛾+1

+ 𝑘
2
𝑒
𝑝/𝑞

2
again. �̂�(𝑥, 𝑡) =

𝑓(𝑥) + 𝑔(𝑥, 𝑡) is the estimation value of the comprehensive
disturbances 𝜔(𝑥, 𝑡) = 𝑓(𝑥) + 𝑔(𝑥, 𝑡) from 𝑧

3
of ESO; K =

[𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑘
4
], 𝑚, 𝑛, and 𝛾 are positive design parameters; 𝑝

and 𝑞 are positive odd integers, and 1 < 𝑝/𝑞 < 2; 𝑚 > 1 and
2 > 𝑛 > 0.

Proof. Consider the following Lyapunov function:

𝑉 =
1

2
𝑠
2
. (26)

Its time derivative is

�̇� = 𝑠 ̇𝑠 = 𝑠 (𝑒
2
+ 𝑘
1
(𝛾 + 1)

𝑒1

𝛾

𝑒
2
+ 𝑘
2

𝑝

𝑞
𝑒
𝑝/𝑞−1

2
̈𝑒
1
)

= 𝑠 (𝑒
2
+ 𝑘
1
(𝛾 + 1)

𝑒1

𝛾

𝑒
2

+ 𝑘
2

𝑝

𝑞
𝑒
𝑝/𝑞−1

2
(𝜔 (𝑥, 𝑡) + 𝑏 (𝑥) 𝑢 − �̈�

𝑑
)) .

(27)

Combine (25) and (27) to yield

�̇� = 𝑠 (𝑒
2
+ 𝑘
1
(𝛾 + 1)

𝑒1

𝛾

𝑒
2
+ 𝑘
2

𝑝

𝑞
𝑒
𝑝/𝑞−1

2

× (𝜔 (𝑥, 𝑡) − �̂� (𝑥, 𝑡) − 𝑘
3
𝑠
𝑚
− 𝑘
4
𝑠
𝑛/2

−
1

𝑘
2

𝑒
2−𝑝/𝑞

2

𝑞

𝑝
(1 + 𝑘

1
(𝛾 + 1)

𝑒1

𝛾

)))

= 𝑘
2

𝑝

𝑞
𝑒
𝑝/𝑞−1

2
𝑠 [

1

𝑘
2

𝑞

𝑝
(𝑒
2−𝑝/𝑞

2
− 𝑒
2−𝑝/𝑞

2
)

+
𝑘
1
(𝛾 + 1)

𝑘
2

𝑞

𝑝
(
𝑒1

𝛾

𝑒
2−𝑝/𝑞

2
−
𝑒1

𝛾

𝑒
2−𝑝/𝑞

2
)

− �̃� (𝑥, 𝑡) − 𝑘
3
(𝑠 − 𝑠)

𝑚
− 𝑘
4
(𝑠 − 𝑠)

𝑛/2
] ,

(28)

where �̃�(𝑥, 𝑡) = 𝜔(𝑥, 𝑡) − �̂�(𝑥, 𝑡).

Suppose 𝑙(𝑒
2
) = 𝑘
2
(𝑝/𝑞)𝑒

𝑝/𝑞−1

2
, where 𝑝 and 𝑞 are positive

odd integers; it should be satisfied that 1 < 𝑝/𝑞 < 2. Hence
when 𝑒

2
̸= 0, 𝑙(𝑒

2
) > 0. Due to 𝑠 ̸= 𝑠 ̸= 0, 𝑚 is the odd

number and 1 < 𝑛/2 < 2, similarly, 𝑠𝑛/2 > 0. According to the
inequation theorem,

𝑒
2−𝑝/𝑞

2
− 𝑒
2−𝑝/𝑞

2
≤
𝑒2

2−𝑝/𝑞

;

𝑒1

𝛾

𝑒
2−𝑝/𝑞

2
−
𝑒1

𝛾

𝑒
2−𝑝/𝑞

2

=
𝑒1

𝛾

𝑒
2−𝑝/𝑞

2
−
𝑒1 − 𝑒1


𝛾

𝑒
2−𝑝/𝑞

2

≤
𝑒1

𝛾

𝑒
2−𝑝/𝑞

2
+ 𝑒
𝛾

1
𝑒
2−𝑝/𝑞

2
− 𝑒
𝛾

1
𝑒
2−𝑝/𝑞

2

=
𝑒1

𝛾

(𝑒
2−𝑝/𝑞

2
− 𝑒
2−𝑝/𝑞

2
) + 𝑒
𝛾

1
𝑒
2−𝑝/𝑞

2

≤
𝑒1

𝛾𝑒2


2−𝑝/𝑞

+ 𝑒
2−𝑝/𝑞

2
𝑒
𝛾

1
;

(𝑠 − 𝑠)
𝑚
≥ 𝑠
𝑚
− 𝑠
𝑚
,

(29)

where 𝑠 = 𝑠 − 𝑠; 𝑒
1
= 𝑒
1
− 𝑒
1
; 𝑒
2
= 𝑒
2
− 𝑒
2
. Then

�̇� ≤ 𝑙 (𝑒
2
) [𝑠 (

1

𝑘
2

𝑞

𝑝

𝑒2

2−𝑝/𝑞

+
𝑘
1
(𝛾 + 1)

𝑘
2

𝑞

𝑝

× (
𝑒1

𝛾𝑒2


2−𝑝/𝑞

+ 𝑒
2−𝑝/𝑞

2
𝑒
𝛾

1
) + �̃� (𝑥, 𝑡)

+ 𝑘
3|𝑠|
𝑚
+ 𝑘
4|𝑠|
𝑛/2+1

) − 𝑘
3
𝑠
𝑚+1

− 𝑘
4
𝑠
𝑛/2

|𝑠| ] ,

(30)

where 𝑠𝑚+1 > 0, 𝑠𝑛/2|𝑠| > 0.
The stability of ESO is obtained by selecting appropriate

parameters 𝛽
1
, 𝛽
2
, and 𝛽

3
. When the observer is stable, the

derivative of 𝜀
3
is 0, and the error of 𝜔(𝑥, 𝑡) estimation can be

written as

𝜀
3
= 𝛽
2
fal(fal−1 (−ℎ (𝑡)

𝛽
3

) , 𝛼
1
, 𝛿) . (31)

Note (11), if |𝜀
1
| > 𝛿, the error of estimation is

𝜀3
 = 𝛽
2
(



ℎ (𝑡)

𝛽
3


)

𝛼
1
/𝛼
2

. (32)

And if |𝜀
1
| ≤ 𝛿, the error of estimation can be expressed

as follows:

𝜀3
 =

𝛽
2

𝛽
3

(|ℎ (𝑡)| 𝛿
𝛼
1
−𝛼
2) . (33)

From (32) and (33), it is clear that the estimation error 𝜀
3

is determined by the parameters 𝛽
2
, 𝛽
3
, 𝛼
1
, 𝛼
2
, and 𝛿. The

fundamental selection of the parameters can be chosen as
𝛽
2
> 0, 𝛽

3
> 0, 0 < 𝛼

2
< 𝛼
1
< 1, and 𝛿 > 0. Furthermore,

within the appropriate range, the larger 𝛽
3
is, the smaller

|ℎ(𝑡)/𝛽
3
| will be, although ℎ(𝑡) is unknown to us. Of course,

𝛽
2
should be small enough to make the estimation error 𝜀

3
as

small as possible.Thus via turning these parameters properly,
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+

+

−

−
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e2

NFTSM controller

Sliding mode surface
Reaching law
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Plantb(x)

ESO

u

̇S = k3|s|
m sgn(s)+ k4s

n

s = e1 + k1|e1|
𝛾+1 + k2e2

p/q

u = ueq + un

= −b(x)−1[�̂�(x, t) + k3|̂s|
msgn(ŝ) + k4ŝ

n ẋ1 = x2

̇ = f(x) + b(x)u + g(x, t)

y = x1

Z3 = �̂�(x, t) −→ f(x) + g(x, t)
Z1 −→ x1

Z2 −→ x2

Figure 2: Complete structure of NFTSM control with ESO for uncertain nonlinear systems.

the estimation errors |�̃�(𝑥, 𝑡)| = |𝜀
3
| will be small enough.

𝑒
1
and 𝑒

2
are the residual errors of states observer; 𝑠 is the

function of 𝑒
1
and 𝑒
2
.

Suppose that

ℎ =
1

𝑘
2

𝑞

𝑝

𝑒2

2−𝑝/𝑞

+
𝑘
1
(𝛾 + 1)

𝑘
2

𝑞

𝑝

× (
𝑒1

𝛾𝑒2


2−𝑝/𝑞

+ 𝑒
2−𝑝/𝑞

2
𝑒
𝛾

1
) + 𝑘
3|𝑠|
𝑚

+ 𝑘
4|𝑠|
𝑛/2+1

,

(34)

where ℎ is the function of the residual errors from ESO. For
(30), we have

�̇� ≤ 𝑙 (𝑒
2
) [𝑠 (ℎ + �̃� (𝑥, 𝑡)) − 𝑘

3
𝑠
𝑚+1

− 𝑘
4
𝑠
𝑛/2

|𝑠|] . (35)

So, �̇� < 0 can be satisfied when 𝑘
3
and 𝑘
4
are big enough.

Therefore, 𝑥
1
→ 𝑥
𝑑
, 𝑥
2
→ �̇�
𝑑
, as 𝑡 → 𝑡

𝑠
.

3.4. Complete Structure of the Proposed Controller. The struc-
ture of NFTSM control with ESO is depicted in Figure 2.

From Figure 2, we can clearly see that the whole control is
divided into two parts: NFTSM controller and ADRC. In this
study, we innovatively combined these two parts.

4. Numerical Simulation

The numerical simulation results are presented to illustrate
the feasibility and validity of the proposed control method
in this section. Consider the following second-order SISO
nonlinear system [13]:

�̇�
1
= 𝑥
2
,

�̇�
2
= 0.1 sin (20𝑡) + 𝑢,

𝑦 = 𝑥
1
,

(36)

where 𝑓(𝑥) = 0; 𝑔(𝑥, 𝑡) = 0.1 sin(20𝑡); 𝑏(𝑥) = 1.

Table 1: Control parameters of traditional NTSM controller and
NTSM controller with exponent reaching law.

Parameters Value
𝑞 3
𝑝 5
𝛽 1.0
𝑘 10
𝑙
𝑔

0.015
𝜌
1

0.001
𝜌
2

0.2

Table 2: Control parameters of the proposed NFTSM controller
with ESO and TD.

Parameters Value
𝑞 3
𝑝 5
k = [𝑘

1
, 𝑘
2
, 𝑘
3
, 𝑘
4
] [0.7, 0.8, 150, 150]

𝑚 3
𝑛 3
𝛾 6
𝛼 = [𝛼

1
, 𝛼
2
] [0.5, 0.25]

𝛽 = [𝛽
1
, 𝛽
2
, 𝛽
3
] [70, 3200, 10000]

𝑏
0
= 𝑏 1

𝛿 0.2
𝑟 10
ℎ
0

0.001

For (36), the proposed NFTSM control method is com-
pared with the NTSM control method [35] based on the
exponent reaching law and the traditional NTSM control
method [6], respectively.

(1) NTSM control method with exponent reaching law is
as follows.
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Figure 3: States response comparison under three NTSM control methods.

The sliding mode surface, the reaching law, and the
controller are given as

𝑠 = 𝑒
1
+
1

𝛽
𝑒
𝑝/𝑞

2
,

̇𝑠 = −𝑘𝑠 − 𝜌
1
sgn (𝑠) , 𝑘 > 0, 𝜌

1
> 0,

𝑢 = −𝑏(𝑥)
−1
[𝑓 (𝑥) + 𝛽

𝑞

𝑝
𝑒
2−𝑝/𝑞

2
+ 𝑘𝑠

+ (𝑙
𝑔
+ 𝜌
1
) sgn (𝑠) − �̈�

𝑑
] .

(37)

(2) Traditional NTSM control method is as follows.
The sliding mode surface, the reaching law, and the
controller are given as

𝑠 = 𝑒
1
+
1

𝛽
𝑒
𝑝/𝑞

2
,

̇𝑠 = −𝜌
2
sgn (𝑠) , 𝜌

2
> 0,

𝑢 = −𝑏(𝑥)
−1
[𝑓 (𝑥) + 𝛽

𝑞

𝑝
𝑒
2−𝑝/𝑞

2
+ (𝑙
𝑔
+ 𝜌
2
) sgn (𝑠) − �̈�

𝑑
] .

(38)

4.1. Dynamic Performance Comparisons. To compare the
control methods better, we select [𝑥

1
(0), 𝑥
2
(0)] = [0.1, 0] as

the initial values of system states. And the parameters of the
three controllers are shown in Tables 1 and 2.

Figure 3 shows the states response comparison under
NTSM with exponent reaching law, traditional NTSM, and
NFTSM methods, respectively. Figure 4 shows TSM surface
function 𝑠 comparison under three NTSM control methods.

From Figures 3 and 4, it can be clearly seen the states 𝑥
1
,

𝑥
2
, and 𝑠 under the proposed scheme are stabilized with the

faster convergence speed and the shorter dynamical response
time.A brief fluctuation occurs for𝑥

2
, whosemaximumvalue

0 1 2 3 4 5

0

0.05

0.1

Time (s)

The NTSM control with exponent reaching law
The traditional NTSM control
The proposed NFTSM control with ESO

s

Figure 4: TSM surface function 𝑠 comparison under three NTSM
control methods.

is about 0.32, and the overshoot value is decreased to 0 rapidly.
In addition, the steady state precision under the proposed
scheme is satisfied despite the uncertainties and disturbances,
which is higher than that of other methods. Figure 5 shows
the control signal in the period of the system steady state
(3 s∼5 s).

From Figure 5, ESO can be used to estimate the uncer-
tainty and disturbance and thus reduce the undesired chat-
tering effectively.

To validate ESO performance, we present the states,
observer values as well as the observer error of disturbance
𝑔(𝑥) (see Figures 6 and 7).

As depicted in Figure 6, ESO has the estimation ability of
the system output 𝑦 = 𝑥

1
, and the steady observation error

is within 4.5 × 10
−4. Based on the above analysis, the sliding

mode surface 𝑠 is structured by the states errors 𝑒
1
and 𝑒

2
.



Mathematical Problems in Engineering 9

3 3.5 4 4.5 5

0

0.5

1

Time (s)

−1

−0.5

u
1

(a) NTSM controller 𝑢1 with exponent reaching law

Time (s)
3 3.5 4 4.5 5

0

0.2

0.4

−0.4

−0.2

u
2

(b) Traditional NTSM controller 𝑢2

Time (s)
3 3.5 4 4.5 5

0

0.1

0.2

−0.2

−0.1

u
3

(c) Proposed NFTSM controller 𝑢3 with ESO

Figure 5: Sliding mode surface function 𝑠 comparison under three NTSM control methods.

0 1 2 3 4 5

0

0.05

0.1

0.15

Time (s)

1.5 2 2.5 3 3.5

0

5

−0.05

−5

z1
x1

×10−4

x
1
,z

1

(a) 𝑥1 and its observer value

0 1 2 3 4 5

0

5

10

Time (s)

1.5 2 2.5 3 3.5

0

0.05

−0.05

z2

−5

x2

x
2
,z

2

(b) 𝑥2 and its observer value

Figure 6: System states and observer values via ESO.
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The chattering can be effectively reduced due to the small
observer errors.

Furthermore, the proposed method will be compared
with the ADRCmethod to show its superiority and reliability.
As we know, ADRC consists of a tracking differentiator (TD),
a nonlinear state-error feedback (NLSEF), and an extended
state observer (ESO). The schematic diagram of ADRC is
shown in Figure 8.

TD and ESO have been analyzed in the Section 2. In
this section, nonlinear combination is introduced. State error
feedback control law generates control voltage 𝑢 for system
based on the error from the output of ESO and TD. The
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Figure 8: Schematic diagram of ADRC.

errors are combined with nonlinear manners; large errors
correspond to lower gains and small errors correspond to
higher gains. A typical nonlinear combination of error signal
and its differential can be constructed as follows:

𝑢
0
= 𝑙
1
fal (𝑒
1
, 𝛼
3
, 𝛿) + 𝑙

2
fal (𝑒
2
, 𝛼
4
, 𝛿) , (39)

where 𝑙
1
and 𝑙
2
are proportional and differential coefficients,

respectively.
Thenonlinear function is used tomake the observermore

efficient. 𝑒
1
and 𝑒
2
are defined as follows:

𝑒
1
= V
1
− 𝑧
1
,

𝑒
2
= V
2
− 𝑧
2
.

(40)

To enhance the performance, the nonlinear coefficients
𝛼
1
and 𝛼

2
are selected as 0 < 𝛼

3
< 1 < 𝛼

4
.

The controller of ADRC is designed as follows:

𝑢 = 𝑢
0
−
𝑧
3

𝑏
0

, (41)

The control parameters ofNLSEF are given in Table 3, and
the parameters of ESO and TD are the same as the ones in
Table 2.

Figure 9 shows the responses of system states 𝑥
1
and 𝑥

1

for system (1) under ADRC method. Control performances
between proposed method and ADRC method is listed in
Table 4.

Comparedwith theADRCmethod, the proposedmethod
can be used to reduce the steady states errors, eliminate its
overshoot, and shorten its response time. The effects of the
NFTSM with ESO and TD are improved based on the single
NTSM control or the single ADRC.

4.2. Signal Tracking Analysis with the Noise. Consider the
reference tracking signal with the noise signal:

𝑥
𝑑
= 0.1 sin (2𝑡) + 𝛾𝑛 (𝑡) , (42)

where the noise 𝑛(𝑡) is a uniform distribution random
variable varying in [−1, 1] at any given time 𝑡, which is
independent with any other time; 𝛾 is the noise intensity.

To show the superiority of TD, the control performances
of the system (1) are compared by adopting the above three
NTSM control schemes.We choose 𝛾with 0, 0.0001 and 0.001

respectively.The parameters of the three controllers are same
as those of the above simulation tests in Tables 1 and 2. The
dynamic control performances of the system and the noise
suppression capability of TD are illustrated in Figures 10–12.

Figure 10 shows the system dynamic performances when
the input reference signal is without the noise signal. Using
three NTSM control, the system states 𝑥

1
, 𝑥
2
can follow the

ideal reference signal 𝑥
𝑑
, �̇�
𝑑
after a certain time. But the

system responses are the most quickly using the proposed
NFTSM method with ESO and TD. Furthermore, the over-
shoot value of 𝑢 and the controller chattering are less than
those of two other methods obviously.

Figures 11 and 12 show system dynamic control perfor-
mances when 𝛾 are 0.0001 and 0.001. For the traditional
NTSM control method, the 𝑥

1
tracking performance get

badly quickly. Due to the adverse input noise and reasonless
differentiator, �̇�

𝑑
cannot be obtained effectively to worsen

the 𝑥
2
tracking performance and intensify the controller

chattering. TD of the proposed method shows the sufficient
superiority. Although the controller chattering occurs, the
maximal value can be limited in a small range about [−5, 5].
Hence, the tracking performances of the system states and
the noise restriction ability are satisfied in spite of the varying
noise intensity 𝛾 using the TD.

In summary, thanks to TD, the useful input reference
signal can be extracted and utilized to solve the required 𝑛-
order differential value of 𝑥

𝑑
. This is an outstanding feather

of ADRC design, and the reason why the stable tracking
can be achieved with good transient quality and TD can
be introduced to the proposed NFTSM control method to
improve the control performances.

The simulation results can also show that the sin curve
can be followed beautifully except for the constant value for
the proposed control method.

4.3. Theodolite Rotating Control Example. Rotating servo
system of electronic theodolite has been designed to achieve
automatic searching and collimation of surveying object and
accomplish automatic measuring with direct and inverted
position of telescope. It consists of the telescope and sighting,
the shafts, DC motor, and transmission device shown in
Figure 13.

A DC torque motor is used for the vertical shaft driving
device of theodolite rotating servo system. Considering the
disturbances, the motor model can be composed by mechan-
ical equation and electrical equation as follows:

𝐽 ̈𝜃 = 𝑇
𝑒
− 𝑘V𝜔𝑠 − 𝑇𝑙,

𝑢 = 𝑟
𝑎
𝑖 + 𝐿
𝑎

𝑑𝑖

𝑑𝑡
+ 𝑘
𝑒
𝜔
𝑠
,

𝑇
𝑒
= 𝑘
𝑇
𝑖,

(43)

where 𝑟
𝑎
, 𝐿
𝑎
, and 𝑖 represent armature resistance, inductance,

and current, respectively; 𝑘
𝑇
is the motor torque coefficient,

𝑘V is viscous friction coefficient, and 𝑘
𝑒
is the counter voltage

factor; 𝐽 denotes the total moment of inertia of motor 𝐽
𝑚

and load 𝐽
𝑙
; 𝑇
𝑙
is the comprehensive disturbance including

motor friction torque, system parameter uncertainty, and
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Figure 11: System dynamic control performances when 𝛾 is 0.0001.

other disturbance; 𝑇
𝑒
is the motor output torque; 𝑢 is the

controller output; 𝜃 is the actual angular position of motor;
𝜔
𝑠
is the actual angular velocity of motor.
With the small 𝐿

𝑎
, theodolite rotating servo system can

be simplified as follows:
̇𝜃 = 𝜔
𝑠
,

�̇�
𝑠
= 𝑎𝜔
𝑠
+ 𝑏𝑢 (𝑡) −

𝑇
𝑓
(𝜔
𝑠
)

𝐽
+ 𝑑 (𝑡) ,

(44)

where 𝑎 = −(𝑘
𝑒
𝑘
𝑇
/(𝑟
𝑎
𝐽)+𝑘V/𝐽), 𝑏 = 𝑘

𝑇
/(𝑟
𝑎
𝐽). 𝑇
𝑓
(𝜔
𝑠
) denotes

the friction torque, and 𝑑(𝑡) denotes the external kinematic
disturbance.

In this paper, we choose a familiar friction model con-
sidering the system static friction, coulomb friction, and the
Stribeck effect [36]. The friction model can be described as
follows:

𝑇
𝑓
= 𝑓
𝑐
+ (𝑓
𝑠
− 𝑓
𝑐
) exp(−



𝜔
𝑠

𝜔
0



2

) , (45)

where 𝜔
0
is Stribeck velocity; 𝑓

𝑐
and 𝑓
𝑠
represent the levels of

Coulomb friction and stiction, respectively.
Define the angular position and angular velocity as

the system state variables; that is, [𝑥
1
, 𝑥
2
]
𝑇

= [𝜃, 𝜔
𝑠
]
𝑇,

so theodolite rotating control system can be expressed as
follows:

�̇�
1
= 𝑥
2
,

�̇�
2
= 𝑎𝑥
2
+ 𝑔 (𝑥

2
) + 𝑏𝑢 (𝑡) + 𝑑 (𝑡) ,

𝑦 = 𝑥
1
,

(46)

where 𝑥
1
= 𝑦 = 𝜃 is output variable and 𝑑(𝑡) is the external

disturbance. 𝑔(𝑥
2
) = 𝑇
𝑓
(𝜔
𝑠
)/𝐽. Define the error 𝑒

𝑟
= 𝑥
𝑑
− 𝑥
1
,

where 𝑥
𝑑
is target angular position.

To obtain better rotating speed, accuracy, and stabil-
ity, the trajectory planning need to be carried out in the
process of theodolite rotating to determine a reasonable
angular displacement function. This paper presents third-
order trajectory planning algorithm with a uniform presence
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Figure 12: System dynamic control performances when 𝛾 is 0.001.

segment for point-point precision rotating of theodolite [37].
By trajectory planning, the ideal goal curve of theodolite
azimuth angle can be expressed as follows:

𝜃
𝑑
=

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

64

3
𝑡
3

0 ≤ 𝑡 ≤
1

8

−
64

3
(𝑡 −

1

8
)

3

+ 8(𝑡 −
1

8
)

2

+ (𝑡 −
1

12
)

1

8
≤ 𝑡 ≤

1

4

2 (𝑡 −
1

4
) +

1

4

1

4
≤ 𝑡 ≤

3

4

−
64

3
(𝑡 −

3

4
)

3

+ 2 (𝑡 −
3

4
) +

5

4

3

4
≤ 𝑡 ≤

7

8

64

3
(𝑡 −

7

8
)

3

− 8(𝑡 −
7

8
)

2

+ (𝑡 +
1

6
)

7

8
≤ 𝑡 ≤ 1.

(47)

Furthermore, the reference curve 𝑥
𝑑
of rotor angular dis-

placement can be obtained according to 𝜃
𝑑
and transmission

Table 3: Control parameters of NLSEF.

Parameters Value
𝑙 = [𝑙
1
, 𝑙
2
] [3, 5]

𝛼 = [𝛼
3
, 𝛼
4
] [0.75, 1.25]

𝑏
0
= 𝑏 1

ratio.The system parameters are listed in Table 5.The friction
parameters are obtained by offline system identification.

To evaluate the efficiency of proposed controlmethod, the
SMC based on the exponential reaching law and PID control
methods are also employed in the simulations for the purpose
of comparisons. The parameters of the proposed controller
are as follows:

𝑘
3
= 150; 𝑘

4
= 220; 𝛽 = [𝛽

1
, 𝛽
2
, 𝛽
3
] = [35, 150, 6500];

𝑏
0
= 0.362. The other parameters of proposed controller are

the same as those in Table 2.



14 Mathematical Problems in Engineering

Table 4: Control performance comparisons between the proposed
method and the ADRC method.

Parameters Proposed method ADRC method
Steady state error of 𝑥

1
1.1 × 10−4 4.2 × 10−4

Steady state error of 𝑥
2

1.0 × 10−3 5.9 × 10−3

Max. overshoot of 𝑥
1

0 0.012
Max. overshoot of 𝑥

2
0.33 0.54

Response time 0.84 1.2

Table 5: The main parameters of theodolite rotating system.

System parameters Symbol Size
Rated motor voltage/V 𝑈

0
9

Motor armature resistance/Ω 𝑟
𝑎

2.76
Motor torque coefficient/Nm/A 𝑘

𝑇
1.2

Viscous friction coefficient 𝑘V 0.2
Counter voltage factor 𝑘

𝑒
0.7

System moment of inertia/Kgm2
𝐽 0.2

Coulomb friction/Nm 𝑓
𝑐

2.0
Coulomb stiction/Nm 𝑓

𝑠
2.6

Stribeck velocity 𝜔
0

0.06
Number of pole pairs 𝑃 4
Motor EMF coefficient/V/(rad/s) 𝑘

𝑒
0.7

Sampling time/sec 𝑇 0.001

In the comparing simulation, PID controller is designed
as follows:

𝑢 (𝑡) = 𝑘
𝑝
𝑒 (𝑡) + 𝑘

𝑖
∫ 𝑒 (𝑡) 𝑑𝑡 + 𝑘

𝑑
̇𝑒 (𝑡) , (48)

where proportion coefficient 𝑘
𝑝
= 200, integral coefficient

𝑘
𝑖
= 5, and differential coefficient 𝑘

𝑑
= 5 × 10

−4 by using
cut-and-try method.

The conventional slidingmode control adopts SMCbased
on exponential reaching law, and the designed reaching law
is given as follows:

̇𝑠 = −𝛿 sgn (𝑠) − 𝑘𝑠, 𝜀 > 0, 𝑘 > 0, (49)

where 𝛿 = 5.1 × 10
5, and 𝑘 = 2.2.

So the controller is shown in

𝑢
2
(𝑡) = 𝑎

3
[𝑘
1
𝑒
2
+ �̈�
1𝑑
− 𝑎𝑥
2
− 𝑔 (𝑥

2
) + 𝑘𝑠 + 𝛿 sgn (𝑠)] ,

(50)

where 𝑠 = 𝑘
1
𝑒
1
+ 𝑒
2
; 𝑒
1
= 𝑥
1𝑑
− 𝑥
1
; 𝑒
2
= �̇�
1𝑑
− 𝑥
2
; 𝑘
1
= 350.

Due to the periodicity in rotating system, the lumped
uncertainties 𝑑(𝑡) can be supposed for −0.5 sin(𝜋𝑡), and the
initial values of the system are [𝑥

1
, 𝑥
2
] = [0, 0]. Three

controllers are designed to control theodolite rotating system.
respectively, and the results are shown in Figures 14–17.

The angle tracking accuracy and the positioning accuracy
are two important indexes for theodolite rotating systems.
Figure 14 shows that three controllers can track well the
target angle curve by adjusting parameter. From Figure 15,
the tracking precision with the proposed SMC method is

xTelescope Alidade

Horizontal shaft

Vertical shaft

y

Spur gear

DC motor

Worm and gear

Figure 13: The rotating servo system of automatic electronic
theodolite.
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Figure 15: Tracking error curves.

better than the other two control methods. Since the integral
term is introduced in the controller, the static error using
the proposed control method can limit at 5.6 × 10

−6∘; the
maximum tracking angle error is about 5.1 × 10−5∘; the final
positioning error after rotating is about 2.5 × 10

−4∘; with the
system interference and the uncertainty, the designed sliding
mode controller can quickly stabilize the target signal.

Speed stability is also an important performance index for
theodolite rotating, which directly affects CCD image quality
and causesmechanical vibration of theodolite. Rotating angle
speed curves are shown in Figure 16.

FromFigure 16, by comparing three controllers, the speed
tracking curve is the best adopting the proposedmethod.The
maximum tracking error of rotating speed is about 1.82/s,
and rotating speed fluctuation value is less than 2.5‰. Partial
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Figure 17: Output of proposed sliding mode controller.

enlarged steady speed shows that the system states cannot
convergence effectively by the conventional slidingmode and
the speed tracking error is larger. For PID controlmethod, the
target speed curve can be tracked, but there are significant
speed fluctuations.

Figure 17 shows the controller output curve is smooth,
and overcomes the chattering. In addition, the control input
of any practical system is bounded. We design the rational
control parameters to ensure the physical implementation of
the controller and the tolerance range of the actuator.

5. Conclusion

In this paper, a new continuous terminal fast sliding mode
controller with ESO and TD is proposed for nonlinear
uncertain systems, based on an extended state observer
which is used to estimate the disturbances and the states.
In order to get better control performance, an improved
nonsingular fast terminal sliding mode surface and a novel
global fast reaching law are designed in the controller. Under
the proposed terminal sliding mode controller, we know that
the finite time convergence to the sliding mode is guaran-
teed. As compared with the traditional TSMC and ADRC,
the proposed controller has exhibited three superiorities in
the simulation including faster convergence speed, better
dynamic performance and weakened chattering effect, and
noise pollution of the reference input. Simulation results of
theodolite rotating system have also demonstrated that the

proposedmethod has good dynamic and static performances
to satisfy the requirement of precise angle measurement.
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