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Tracking target with coordinated turn (CT) motion is highly dependent on the models and algorithms. First, the widely used
models are compared in this paper—coordinated turn (CT)modelwith known turn rate, augmented coordinated turn (ACT)model
with Cartesian velocity, ACT model with polar velocity, CT model using a kinematic constraint, and maneuver centered circular
motion model. Then, in the single model tracking framework, the tracking algorithms for the last four models are compared and
the suggestions on the choice of models for different practical target tracking problems are given. Finally, in the multiple models
(MM) framework, the algorithm based on expectation maximization (EM) algorithm is derived, including both the batch form
and the recursive form. Compared with the widely used interacting multiple model (IMM) algorithm, the EM algorithm shows its
effectiveness.

1. Introduction

Theproblem of tracking a single target with coordinated turn
(CT) motion is considered. The motion of a civil aircraft can
usually be modeled as moving by constant speed in straight
lines and circle segments. The former is known as constant
velocity (CV)model and the latter is coordinated turnmodel.
In tracking applications, only the position part of the state can
be measured by the sensor and the turn rate 𝜔 is often un-
known. So the measurement data can be seen as the incom-
plete data. This is a resource-constrained problem for track-
ing target with coordinated turn motion.

CTmodel is highly dependent on the choice of state com-
ponents [1]. The turn rate 𝜔 can be augmented in the CT
model, called ACT model. There are two types of ACT mod-
els: ACTmodel with Cartesian velocity and ACTmodel with
polar velocity. The state vectors are [𝑥, 𝑦, 𝑥̇, ̇𝑦, 𝜔]

󸀠 and
[𝑥, 𝑦, V, 𝜙, 𝜔]󸀠, respectively. The two are both nonlinear mod-
els and have been compared in [2, 3] based on EKF. For
unscentedKalman filter (UKF) is a very efficient tool for non-
linear estimation [4, 5], here the two models are compared
based on UKF.

When the target with CT motion has a constant speed, it
satisfies a kinematic constraint:𝑉⋅𝐴 = 0, where𝑉 is the target

velocity vector and 𝐴 is the target acceleration vector. If the
dynamic model incorporates the constraint directly, it will
become a highly nonlinear one. To avoid this nonlinearity, the
kinematic constraint was incorporated into a pseudomea-
surement model [6–8].

A maneuver-centered model is introduced in [9]. The
state components are [𝑟, 𝜃, 𝜔]󸀠.Themodel’s state equation has
a linear form, but its measurement equation is pseudolinear
because the noise covariance is actually state dependent [10].
The center of the turn should be accurately determined,
which is inherently a nonlinear problem.

Target dynamic models and tracking algorithms have
intimate ties [1]. In the single model tracking framework, the
tracking algorithms are interpreted and compared.

The interactingmultiplemodel (IMM) approach has been
generally considered to be the mainstream approach to
maneuvering target tracking. It utilizes a bank of 𝑁 Kalman
filters, each designed tomodel a differentmaneuver [11]. IMM
algorithm is a suboptimal algorithm based on the minimum
mean square error (MMSE) criterion.Under theMMSE crite-
rion, to get the optimal estimation of the target state, the com-
putational load grows exponentially when the measurements
are increasing. In recent years, tracking target based onmaxi-
mum a posteriori (MAP) criterion has received a lot of
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interest [12–17]. Expectation maximization (EM) algorithm
is the state estimation approach based on MAP criterion. Us
ing EMalgorithm, the computational load grows linearly dur-
ing per iteration and the optimal estimation based on MAP
criterion can be achieved finally.

The existing EM algorithm to track maneuvering target
can be classified into two categories: one formulates the
maneuver as the unknown input [12–14] and the other for-
mulates themaneuver as the system’s process noise [15]. Aim-
ing at the problem to track a target with CTmaneuver, an EM
algorithm is presented. The maneuver is formulated by the
turn rate. First, the turn rate sequence is estimated using the
EM algorithm. Then, with the estimated turn rate sequence,
the target state sequence is estimated accurately.

The rest of this paper is organized as follows. Section 2
presents all the CTmodels’ state equations and measurement
equations.The tracking algorithms based on single model are
interpreted in Section 3; the simulations are also presented. In
Section 4, the batch and recursive EM algorithms are derived
and compared with the IMM algorithm in simulation.
Section 5 provides the paper’s conclusions.

2. Dynamic Models for CT Motion

A maneuvering target can be modeled by

𝑋
𝑘+1

= 𝑓
𝑘
(𝑋
𝑘
) + 𝑤
𝑘
,

𝑧
𝑘
= ℎ
𝑘
(𝑋
𝑘
) + 𝑒
𝑘
,

(1)

where 𝑋
𝑘
and 𝑧

𝑘
are target state and observation, respec-

tively, at discrete time 𝑡
𝑘
; 𝑤
𝑘
and 𝑒

𝑘
are process noise and

measurement noise sequences, respectively; 𝑓
𝑘
and ℎ

𝑘
are

vector-valued functions.

2.1. CT Model with Known Turn Rate. The coordinated turn
motion can be described by the following equation:

𝑋
𝑘+1

= 𝐹 (𝜔
𝑘
)𝑋
𝑘
+ 𝑤
𝑘
. (2)

The measurement equation is:

𝑧
𝑘
= 𝐻CT𝑋𝑘 + 𝑒𝑘. (3)

The components of state are𝑋 = [𝑥 𝑥̇ 𝑦 ̇𝑦]
󸀠. 𝜔
𝑘
stands

for the turn rate in time 𝑘.
Where

𝐹 (𝜔
𝑘
) =

[
[
[
[
[
[
[
[
[
[
[
[

[

1

sin (𝜔
𝑘
𝑇)

𝜔
𝑘

0 −

1 − cos (𝜔
𝑘
𝑇)

𝜔
𝑘

0 cos (𝜔
𝑘
𝑇) 0 − sin (𝜔

𝑘
𝑇)

0

1 − cos (𝜔
𝑘
𝑇)

𝜔
𝑘

1

sin (𝜔
𝑘
𝑇)

𝜔
𝑘

0 sin (𝜔
𝑘
𝑇) 0 cos (𝜔

𝑘
𝑇)

]
]
]
]
]
]
]
]
]
]
]
]

]

𝑤 = [𝑤𝑥
𝑤
𝑦]

󸀠

𝐸 [𝑤
𝑘
] = 0, 𝐸 [𝑤

𝑘
𝑤
󸀠

𝑙
] = 𝑄CT𝛿𝑘𝑙.

(4)

Assume only position could be measured, where

𝐻CT = [
1 0 0 0

0 0 1 0
]

𝐸 [𝑒
𝑘
] = 0, 𝐸 [𝑒

𝑘
𝑒
󸀠

𝑙
] = 𝑅𝛿

𝑘𝑙
.

(5)

This model assumes that the turn rate is known or could
be estimated. When the range rate measurements are avail-
able, the turn rate could be estimated by using range ratemea-
surements [18, 19]. The tracking performance will be deteri-
orated when the assumed turn rate is far away from the true
one.Thismodel is usually used as one of themodels in amul-
tiple models framework.

2.2. ACT Model with Cartesian Velocity. In this model, the
state vector is chosen to be 𝑋 = [𝑥, 𝑦, 𝑥̇, ̇𝑦, 𝜔]

󸀠; the state space
equation can be written as

𝑋
𝑘+1

= 𝑓ACT1 (𝑋𝑘) + 𝐺ACT1𝑤𝑘, (6)

where

𝑓ACT1 (𝑋) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑥 +

𝑥̇

𝜔

sin (𝜔𝑇) −
̇𝑦

𝜔

(1 − cos (𝜔𝑇))

𝑦 +

𝑥̇

𝜔

(1 − cos (𝜔𝑇)) +
̇𝑦

𝜔

(sin (𝜔𝑇))

𝑥̇ cos (𝜔𝑇) − ̇𝑦 sin (𝜔𝑇)

𝑥̇ sin (𝜔𝑇) + ̇𝑦 cos (𝜔𝑇)

𝜔

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (7)

𝐺ACT1 =
[
[
[
[

[

𝑇
2

2

0 𝑇 0 0

0

𝑇
2

2

0 𝑇 0

0 0 0 0 1

]
]
]
]

]

󸀠

, (8)

𝑤 = [𝑤𝑥
𝑤
𝑦
𝑤
𝜔]

󸀠

, (9)

𝐸 [𝑤
𝑘
] = 0, 𝐸 [𝑤

𝑘
𝑤
󸀠

𝑙
] = 𝑄ACT1𝛿𝑘𝑙. (10)

Assume only position could be measured, the measure-
ment equation can be written as

𝑧
𝑘
= 𝐻ACT1𝑋𝑘 + 𝑒𝑘, (11)

where

𝐻ACT1 = [
1 0 0 0 0

0 1 0 0 0
] , (12)

𝐸 [𝑒
𝑘
] = 0, 𝐸 [𝑒

𝑘
𝑒
󸀠

𝑙
] = 𝑅𝛿

𝑘𝑙
. (13)

2.3. ACT Model with Polar Velocity. This model’s state vector
is𝑋 = [𝑥, 𝑦, V, 𝜙, 𝜔]󸀠, and the dynamic state equation is given
by

𝑋
𝑘+1

= 𝑓ACT2 (𝑋𝑘) + 𝐺ACT2𝑤𝑘, (14)
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where

𝑓ACT2 (𝑋) =

[
[
[
[
[
[
[
[
[
[
[

[

𝑥 + (

2V
𝜔

) sin(𝜔𝑇
2

) cos(𝜙 + 𝜔𝑇
2

)

𝑦 + (

2V
𝜔

) sin(𝜔𝑇
2

) sin(𝜙 + 𝜔𝑇
2

)

V

𝜙 + 𝜔𝑇

𝜔

]
]
]
]
]
]
]
]
]
]
]

]

𝐺ACT2 =
[

[

0 0 𝑇
2

0 0

0 0 0

𝑇
2

2

𝑇
2

]

]

󸀠

𝑤 = [𝑤V 𝑤
𝜔
]
󸀠

𝐸 [𝑤
𝑘
] = 0, 𝐸 [𝑤

𝑘
𝑤
󸀠

𝑙
] = 𝑄ACT2𝛿𝑘𝑙.

(15)

However themeasurement equation is the same as (11) to (13).

2.4. Kinematic Constraint Model. For a constant speed target,
the acceleration vector is orthogonal to the velocity vector:

𝐶 (𝑋) = 𝑉 ⋅ 𝐴 = 0, (16)
where 𝑉 is the target velocity vector and𝐴 is the target accel-
eration vector.

This kinematic constraint can be used as a pseudom-
easurement. The state vector is chosen to be 𝑋 =

[𝑥 𝑥̇ 𝑥̈ 𝑦 ̇𝑦 ̈𝑦]
󸀠. So the dynamic model is the constant

acceleration (CA) model, given by
𝑋
𝑘+1

= 𝐹𝑋
𝑘
+ 𝐺𝑤
𝑘
, (17)

where

𝐹 =

[
[
[
[
[
[
[
[
[
[
[

[

1 𝑇

𝑇
2

2

0 0 0

0 1 𝑇 0 0 0

0 0 1 0 0 0

0 0 0 1 𝑇

𝑇
2

2

0 0 0 0 1 𝑇

0 0 0 0 0 1

]
]
]
]
]
]
]
]
]
]
]

]

𝐺 =

[
[
[

[

𝑇
2

2

𝑇 1 0 0 0

0 0 0

𝑇
2

2

𝑇 1

]
]
]

]

󸀠

𝑤 = [𝑤𝑥
𝑤
𝑦]

󸀠

𝐸 [𝑤
𝑘
] = 0, 𝐸 [𝑤

𝑘
𝑤
󸀠

𝑙
] = 𝑄CA𝛿𝑘𝑙.

(18)

The measurement equation is given by
𝑧
𝑘
= 𝐻𝑥
𝑘
+ 𝑒
𝑘
, (19)

where

𝐻 = [

1 0 0 0 0 0

0 0 0 1 0 0
]

𝐸 [𝑒
𝑘
] = 0, 𝐸 [𝑒

𝑘
𝑒
󸀠

𝑙
] = 𝑅𝛿

𝑘𝑙
.

(20)

The pseudomeasurement is

𝑉
𝑘|𝑘

𝑆
𝑘|𝑘

⋅ 𝐴
𝑘
+ 𝜇
𝑘
= 0, (21)

where 𝑉
𝑘|𝑘
= [𝑥̇
𝑘|𝑘

̇𝑦
𝑘|𝑘
]

󸀠 and 𝐴
𝑘
= [𝑥̈
𝑘

̈𝑦
𝑘
]
󸀠.

𝑆
𝑘|𝑘

is the filtered speed at time 𝑘 :

𝑆
𝑘|𝑘
= √𝑥̇
2

𝑘|𝑘
+ ̇𝑦
2

𝑘|𝑘
, (22)

𝜇
𝑘
∼ 𝑁 (0, 𝑅

𝜇

𝑘
) , (23)

𝑅
𝜇

𝑘
= 𝑟
1
(𝛿)
𝑘
+ 𝑟
0
, 0 ≤ 𝛿 < 1, (24)

where 𝑟
1
is chosen to be large for initialization and 𝑟

0
is chosen

for steady-state conditions.

2.5. Maneuver-Centered CT Model. This model’s state vector
is given by𝑋 = [𝑟 𝜃 𝜔]

󸀠. The process state space equation is

𝑋
𝑘+1

= Φ𝑋
𝑘
+ Γ𝑤
𝑘
, (25)

where

Φ =
[

[

1 0 0

0 1 𝑇

0 0 1

]

]

Γ =
[
[

[

1 0

0

𝑇

2

0 1

]
]

]

𝑤 = [𝑤
𝑟
𝑤
𝜔
]
󸀠

𝐸 [𝑤
𝑘
] = 0, 𝐸 [𝑤

𝑘
𝑤
󸀠

𝑙
] = 𝑄

𝑚
𝛿
𝑘𝑙
.

(26)

Assume the center of the CTmotion is (𝑥
𝑐
, 𝑦
𝑐
).The trans-

formation between Cartesian coordinates and maneuver-
centered coordinates is given by

𝑟 = √(𝑥 − 𝑥
𝑐
)
2

+ (𝑦 − 𝑦
𝑐
)
2

𝜃 = tan−1 (
𝑦 − 𝑦
𝑐

𝑥 − 𝑥
𝑐

) .

(27)

So the measurement equation is given by

𝑧
𝑘
= 𝐻
𝑚
𝑋
𝑘
+ 𝑒
𝑘
, (28)

where

𝐻
𝑚
= [

1 0 0

0 1 0
]

𝐸 [𝑒
𝑘
𝑒
󸀠

𝑙
] = 𝑅
𝑚
= 𝐽
𝑟𝜃
𝑅𝐽
󸀠

𝑟𝜃
.

(29)

𝐽
𝑟𝜃
is the Jacobian matrix based on (27), which leads to

𝐽
𝑟𝜃
=
[

[

cos 𝜃 sin 𝜃

− sin 𝜃
𝑟

cos 𝜃
𝑟

]

]

. (30)
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3. Tracking Algorithms in
a Single Model Framework

3.1. UKF Filter with ACT Models. If the turn rate is aug-
mented to the state vector, it will become a nonlinear pro-
blem. The extended Kalman filter (EKF) has been used to
track this kind of motion. Since unscented Kalman filter
(UKF) is very suitable for nonlinear estimation [4, 5], here the
UKF algorithm is introduced.

(i) Calculate the Weights of Sigma Points

𝑊
𝑚

0
=

𝜆

(𝑛 + 𝜆)

𝑊
𝑐

0

=

𝜆

(𝑛 + 𝜆)

+ (1 − 𝛼
2
+ 𝛽)𝑊

𝑚

𝑖

= 𝑊
𝑐

𝑖
=

0.5

(𝑛 + 𝜆)

, 𝑖 = 1, 2, . . . 2𝑛,

(31)

where 𝑛 is the dimension of the state vector. 𝜆 =

𝛼
2
(𝑛 + 𝜅) − 𝑛 is a scaling parameter. 𝛼 determines

the sigma points around 𝑥 and is usually set to a small
positive value (e.g., 1𝑒 − 3). 𝜅 is a secondary scaling
parameter which is usually set to 0, and 𝛽 = 2

is optimal forGauss distributions.Where the (√(𝑛 + 𝜆)𝑃
𝑥
)
𝑖
is

the 𝑖th row of the matrix square root.

(ii) Calculate the Sigma Points

𝜉
0

𝑘−1|𝑘−1
= 𝑋
𝑘−1|𝑘−1

𝜉
(𝑖)

𝑘−1|𝑘−1
= 𝑋
𝑘−1|𝑘−1

+ (√(𝑛 + 𝜆) 𝑃
𝑥
)

𝑖

𝑖 = 1, 2, . . . , 𝑛

𝜉
(𝑖)

𝑘−1|𝑘−1
= 𝑋
𝑘−1|𝑘−1

− (√(𝑛 + 𝜆) 𝑃
𝑥
)

𝑖

𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛.

(32)

(iii) Time Update

𝜉
(𝑖)

𝑘
= 𝑓
𝑘
(𝜉
(𝑖)

𝑘−1|𝑘−1
) , 𝑖 = 0, 1, . . . 2𝑛𝑋

𝑘|𝑘−1

=

2𝑛

∑

𝑖=0

𝑊
𝑚

𝑖
𝜉
(𝑖)

𝑘
𝑃
𝑘|𝑘−1

=

2𝑛

∑

𝑖=0

𝑊
𝑐

𝑖
(𝜉
(𝑖)

𝑘
− 𝑋
𝑘|𝑘−1

) (𝜉
(𝑖)

𝑘
− 𝑋
𝑘|𝑘−1

)

󸀠

+ 𝐺𝑄
𝑘−1
𝐺
󸀠
.

(33)

(iv) Measurement Update. Because we assume the measure-
ment equation is linear, the following is just the same as the
traditional Kalman filter:

𝑧̂
𝑘|𝑘−1

= 𝐻𝑋
𝑘|𝑘−1

𝑆
𝑘

= 𝐻𝑃
𝑘|𝑘−1

𝐻
󸀠
+ 𝑅
𝑘
𝐾
𝑘

= 𝑃
𝑘|𝑘−1

𝐻
󸀠
𝑆
−1

𝑘
𝑋
𝑘|𝑘

= 𝑋
𝑘|𝑘−1

+ 𝐾
𝑘
(𝑧
𝑘
− 𝑧
𝑘|𝑘−1

) 𝑃
𝑘|𝑘

= 𝑃
𝑘|𝑘−1

− 𝐾
𝑘
𝑆
𝑘
𝐾
󸀠

𝑘
.

(34)

For the cases where the measurement equation is also non-
linear, the measurement update can be referred to [10] for
details.

3.2. Kinematic Constraint Tracking Filter. The Kalman filter-
ing equations for processing this kinematic constraint as a
pseudomeasurement are given below, where the filtered state
estimate and error covariance after the constraint have been
applied are denoted by𝑋𝐶

𝑘|𝑘
and 𝑃𝐶

𝑘|𝑘
, respectively [8].

(i) Time Update

𝑋
𝑘|𝑘−1

= 𝐹𝑋
𝐶

𝑘−1|𝑘−1

𝑃
𝑘|𝑘−1

= 𝐹𝑃
𝐶

𝑘−1|𝑘−1
𝐹
󸀠
+ 𝐺𝑄
𝑘−1
𝐺
󸀠
.

(35)

(ii) Measurement Update. The measurement update is the
same as (34).

(iii) Constraint Update

𝐾
𝐶

𝑘
= 𝑃
𝑘|𝑘
𝐶
𝑇

𝑘
[𝐶
𝑘
𝑃
𝑘|𝑘
𝐶
󸀠

𝑘
+ 𝑅
𝜇

𝑘
]

−1

𝑋
𝐶

𝑘|𝑘

= [𝐼 − 𝐾
𝐶

𝑘
𝐶
𝑘
]𝑋
𝑘|𝑘
𝑃
𝐶

𝑘|𝑘

= [𝐼 − 𝐾
𝐶

𝑘
𝐶
𝑘
] 𝑃
𝑘|𝑘
,

(36)

where

𝐶
𝑘
=

1

𝑆
𝑘|𝑘

[0 0 ̂̇𝑥
𝑘|𝑘

0 0 ̂̇𝑦
𝑘|𝑘
] . (37)

3.3. Maneuver-Centered Tracking Filter

(i) EstimatingCenter ofManeuver.The center of themaneuver
should be estimated from the measurements. It can be esti-
mated through least square method which requires an iter-
ative search procedure. The following simple geometrically
oriented procedure of estimating the center was proposed in
[9]. The main idea is as follows: if two points are on a circle
then the perpendicular bisector of the chord between those
points will pass through the center of the circle.The slope (𝑚)
and 𝑦 intercept (𝑏) of the perpendicular bisector is given by

𝑚 =

(𝑥
1
− 𝑥
2
)

(𝑦
2
− 𝑦
1
)

𝑏 =

(𝑦
1
+ 𝑦
2
)

2

− 𝑚

(𝑥
1
+ 𝑥
2
)

2

,

(38)
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where (𝑥
1
, 𝑦
1
) and (𝑥

2
, 𝑦
2
) are the coordinates of the two

points. The center can be given by

𝑥
𝑐
=

(𝑏
1
− 𝑏
2
)

(𝑚
2
− 𝑚
1
)

𝑦
𝑐
=

(𝑚
1
𝑏
2
− 𝑚
2
𝑏
1
)

(𝑚
1
− 𝑚
2
)

.

(39)

(ii) Maneuver Detection. In the absence of a maneuver, the
target is assumed to be traveling in a straight line andmodeled
by a constant velocity (CV)motion. (CVmodel is very simple
and commonly used, which will not be listed here.)When the
maneuver is detected, the filter switches to the maneuver-
centerCTmodel.While the endof amaneuver is detected, the
filter will then switch back to CV model.

Here a fading memory average of the innovations is used
to detect if a maneuver occurs. The equation is given by

𝑢
𝑘
= 𝜌𝑢
𝑘−1

+ 𝑑
𝑘

(40)

with

𝑑
𝑘
= ]󸀠
𝑘
𝑆
−1

𝑘
]
𝑘
, (41)

where 0 < 𝜌 < 1, ]
𝑘
is the innovation vector, and 𝑆

𝑘
is its cov-

ariance matrix.
𝑢
𝑘
will have a chi-squared distribution with degrees

𝑛
𝑢
= 𝑛
𝑧

1 + 𝜌

1 − 𝜌

, (42)

where 𝑛
𝑧
is the dimension of the measurement vector. When

𝑢
𝑘
exceeds a threshold (e.g., 95% or 99% confidence interval),

then a maneuver onset is declared. The end time of a maneu-
verwill be determined in a similar fashion.Theprocedure can
be referred to [9] for details.

3.4. Simulation Results

(i)The Scenario.The scenario simulated here is very similar to
that described in [20]. It includes few rectilinear stages and
few CT maneuvers. Four consecutive 180∘ turns with rates
𝜔 = 1.87,−2.8, 5.6,−4.68 are simulated, respectively, for scans
[56, 150], [182, 245], [285, 314], and [343, 379]. The target
trajectory can be seen in Figure 1.

The initial target position and velocities are 𝑋
0
= 60 km,

𝑌
0
= 40 km, 𝑋̇

0
= −172 km, and 𝑌̇

0
= 246 km. It is assumed

that the sensor measures Cartesian coordinates 𝑋 and 𝑌 di-
rectly. It is also assumed that𝜎

𝑋
= 𝜎
𝑌
= 100mand the sample

rate 𝑇 = 1.

(ii) Algorithms’ Parameters. UKF controlled ACT model’s
parameter:

𝛼 = 10
−3
, 𝛽 = 2, 𝜅 = 0

𝑄ACT1 = diag {1 1 10
−4
}

𝑄ACT2 = diag {1 10
−4
} .

(43)
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Figure 1: The test trajectory.

Kinematic constraint model’s parameter:

𝑄CA = diag {1 1}

𝛿 = 0.92, 𝑟
0
= 1, 𝑟

1
= 200.

(44)

Maneuver centered model’s parameter:

𝑄
𝑚
= diag {106 10−4}

𝜌 = 0.8.

(45)

(iii) Results. The four models are listed as follows.

Method 1: ACT model with Cartesian velocity.
Method 2: ACT model with polar velocity.
Method 3: kinematic constraint model.
Method 4: maneuver-centered CT model.

Rootmean squared errors (RMSE) are used here for com-
parison. The RME position errors are defined as follows:

RMS.P.E (𝑘) = √ 1

𝑀

𝑀

∑

𝑖=1

[(𝑥
𝑖

𝑘
− 𝑥
𝑖

𝑘
)
2

+ (𝑦
𝑖

𝑘
− 𝑦
𝑖

𝑘
)
2

] , (46)

where𝑀 = 200 are the Monte-Carlo simulation runs. 𝑥𝑖
𝑘
and

𝑦
𝑖

𝑘
stand for the true position, while 𝑥𝑖

𝑘|𝑘
and 𝑦𝑖

𝑘
are the posi-

tion estimates.
The RMS position errors of all but the first ten are shown

in Figure 2.
Table 1 summarizes the average RMS of the position

errors.
Table 2 summarizes the relative computational complex-

ity, normalized to method 4.
It can be seen from the figure and tables thatmethod 2 has

the best performance and its computational load is roughly
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Figure 2: RMS position errors of the four methods.

Table 1: Average RMS of position errors.

Method Average RMS of position errors (m)
1 94.26
2 81.57
3 109.51
4 183.46

Table 2: Relative computational load.

Method Relative computational load
1 7.26
2 7.07
3 1.42
4 1

the same as method 1. So we can conclude that ACT model
with polar velocity is better than ACT model with Cartesian
velocity. Method 4 has the least computational load but its
performance is poor. Method 3 is slightly more complex
than method 4 but can decrease the error greatly. So if the
computational load is of great concern, kinematic constraint
model is a good choice.

4. The Expectation Maximization (EM)
Algorithm for Tracking CT Motion Target

In this part, the model in Section 2.1 is used.
The turn rate 𝜔

𝑘
can be described by a Markov chain [21,

22] and has 𝑟 possible values:

𝜔
𝑘
∈ 𝑀
𝑟
= {𝜔 (1) , 𝜔 (2) , . . . , 𝜔 (𝑟)} . (47)

Assume the initial probability 𝜏
𝑖
and the one-step transi-

tion matrix are known, as follows:

𝜏
𝑖
= 𝑝 (𝜔

0
= 𝜔 (𝑖)) , 𝑖 = 1, 2, . . . , 𝑟

𝜋
𝑖,𝑗
= 𝑝 (𝜔

𝑘+1
= 𝜔 (𝑗) | 𝜔

𝑘
= 𝜔 (𝑖)) , 𝑖, 𝑗 = 1, 2, . . . , 𝑟.

(48)

The measurement sequence is defined by 𝑍
1:𝑁

=

{𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑁
}, state sequence is 𝑋

1:𝑁
= {𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑁
},

and maneuver sequence isΩ
1:𝑁

= {𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑁
}.

4.1. Batch EMAlgorithm. Assume themeasurement sequence
is known, this algorithm focuses on finding the best maneu-
ver sequence based onMAP criterion.There is one best man-
euver sequenceΩ(B)

1:𝑁
in 𝑟𝑁 possible sequences that makes the

conditional probability density function be the maximum.
WhenΩ(B)

1:𝑁
is achieved, the state sequence𝑋

1:𝑁
can be estim-

ated accurately.
According to EM algorithm, 𝑍

1:𝑁
is considered to be the

incomplete data,𝑋
1:𝑁

to be the “lost” data, andΩ
1:𝑁

to be the
data that needs to be estimated. EM algorithm carries out the
following two steps iteratively.

(1) Expectation Step (E step)

𝐽 (Ω
1:𝑁
, Ω
(𝑗)

1:𝑁
)

= 𝐸X
1:𝑁

{ln𝑝 (𝑋
1:𝑁
, 𝑍
1:𝑁
, Ω
1:𝑁
) | 𝑍
1:𝑁
, Ω
(𝑗)

1:𝑁
} ,

(49)

where 𝐽(Ω
1:𝑁
, Ω
(𝑗)

1:𝑁
) is defined as the cost function,Ω(𝑗)

1:𝑁
is the

maneuver sequence estimation after 𝑗 times iteration.

(2) Maximization step (M step)

Ω
(𝑗+1)

1:𝑁
= argmax

Ω
1:𝑁

𝐽 (Ω
1:𝑁
, Ω
(𝑗)

1:𝑁
) . (50)

If the initial value is given, the above E step and M step are
carried out repeatedly, until convergence.

(i) E step. The union probability density function can be de-
composed as follows:

𝑝 (𝑋
1:𝑁
, 𝑍
1:𝑁
, Ω
1:𝑁
)

=

𝑁

∏

𝑘=1

𝑝 (𝑧
𝑘
| 𝑋
𝑘
) ×

𝑁

∏

𝑘=1

𝑝 (𝑋
𝑘
| 𝑋
𝑘−1
, 𝜔
𝑘−1
) × 𝑝 (𝑋

0
)

×

𝑁

∏

𝑖=1

𝑝 (𝜔
𝑖
𝜔
𝑖−1
) × 𝑝 (𝜔

0
) .

(51)

𝑝(𝑋
𝑘
| 𝑋
𝑘−1
, 𝜔
𝑘−1
) and 𝑝(𝜔

𝑖
| 𝜔
𝑖−1
) rely on the maneuver

sequenceΩ
1:𝑁

. The state equation is Gaussian distribution:

𝑝 (𝑋
𝑘
| 𝑋
𝑘−1
, 𝜔
𝑘−1
) = 𝑁 {𝑋

𝑘
− 𝐹 (𝜔

𝑘−1
)𝑋
𝑘−1
, 𝑄
𝑘
} , (52)

where 𝑁{𝜇; Σ} is the Gaussian probability density function
with mean 𝜇 and covariance Σ.
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From the above analysis,

𝐽 (Ω
1:𝑁
, Ω
(𝑗)

1:𝑁
)

= 𝐸
𝑋
1:𝑁

{ln𝑝 (𝑋
1:𝑁
, 𝑍
1:𝑁
, Ω
1:𝑁
) | 𝑍
1:𝑁
, Ω
(𝑗)

1:𝑁
}

=

𝑁

∑

𝑘=1

{ln𝑝 (𝜔
𝑘
| 𝜔
𝑘−1
) −

1

2

(𝑋
𝑘|𝑁

− 𝐹(𝜔
𝑘−1
)𝑋
𝑘−1|𝑁

)

󸀠

× 𝑄
−1

𝑘
(𝑋
𝑘|𝑁

− 𝐹 (𝜔
𝑘−1
)𝑋
𝑘−1|𝑁

) } ,

(53)

where

𝑋
𝑘|𝑁

= 𝐸 [𝑋
𝑘
| 𝑍
1:𝑁
, Ω
(𝑗)

1:𝑁
] . (54)

Those terms which are independent of Ω
1:𝑁

are omitted
here.

In the E step, if Ω(𝑗)
1:𝑁

is given, the cost function can be
achieved using Kalman smoothing algorithm.

(ii) M step. In themaximization step, a newΩ
1:𝑁

is chosen for
a higher conditional probability.Then a better parameter esti-
mation is achieved compared to the former iteration.The fol-
lowing Viterbi algorithm can solve this problem perfectly.

Viterbi algorithm is a recursive algorithm looking for the
best path. As shown in Figure 3, the path connects the adjac-
ent points with theweights to be the logarithm function of the
likelihood, named cost. The path’s total cost is the sum of its
each point’s cost. The best path has the maximum cost. The
detailed method to find the best path can be found in [12].

(iii) Calculating Algorithm

(1) Initialization: the initial maneuver sequenceΩ(1)
1:𝑁

and
threshold 𝜀 should be given.

(2) Iteration: for each circle (𝑗 = 1, 2, . . .), carry out
the following steps: (1) E step, according to (53),
calculate the cost between the adjacent point. (2) M
step, according to Viterbi algorithm, find a better
maneuver sequence.

(3) Stop: if ‖Ω(𝑗+1)
1:𝑁

−Ω
(𝑗)

1:𝑁
‖ ≤ 𝜀, then stop the iteration.The

best maneuver sequence is Ω(B)
1:𝑁

= Ω
(𝑗+1)

1:𝑁
; then the

state estimation sequence is calculated according to
Ω
(B)
1:𝑁

.

4.2. Recursive EM Algorithm. In target tracking applications,
the target’s state always needs online estimation. So a recur-
sive EM algorithm is needed for calculating 𝜔

𝑘
.

(i) Recursive Equation. Under the MAP criterion,

Ω
(B)
1:𝑘
= argmax

Ω
1:𝑘

{𝑝 (Ω
1:𝑘
| 𝑍
1:𝑘
)} , (55)
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Figure 3: Viterbi algorithm for path following.

where 𝑝(Ω
1:𝑘
| 𝑍
1:𝑘
) can be calculated online.

𝑝 (Ω
1:𝑘
| 𝑍
1:𝑘
) = 𝑝 (Ω

1:𝑘
| 𝑧
𝑘
, 𝑍
1:𝑘−1

)

=

𝑝 (𝑧
𝑘
| Ω
𝑘
, 𝑍
1:𝑘−1

) 𝑝 (Ω
𝑘
| 𝑍
1:𝑘−1

)

𝑝 (𝑧
𝑘
| Ω
1:𝑘−1

)

= 𝑝 (𝑧
𝑘
| Ω
1:𝑘
, 𝑍
1:𝑘−1

) 𝑝 (𝜔
𝑘
| Ω
1:𝑘−1

)

× 𝑝 (Ω
1:𝑘−1

| 𝑍
1:𝑘−1

) (𝑝 (𝑧
𝑘
| 𝑍
1:𝑘−1

))
−1

.

(56)

Because Ω
1:𝑘

is Markov chain,

𝑝 (𝜔
𝑘
| Ω
1:𝑘−1

) = 𝑝 (𝜔
𝑘
| 𝜔
𝑘−1
) . (57)

The possible maneuver sequence grows exponentially as the
time grows. For the computation to be feasibility, it is assumed
that

𝑝 (𝑧
𝑘
| Ω
1:𝑘
, 𝑍
1:𝑘−1

) ≈ 𝑝 (𝑧
𝑘
| 𝜔
𝑘
, 𝑍
1:𝑘−1

)

= 𝑁 (𝜐
𝑘
, S
𝑘
) ,

(58)

where 𝜐
𝑘
is the Kalman filter’s innovation and S

𝑘
is the covari-

ance of the innovation.
The cost function is defined as

𝐽 (𝜔
𝑘
(𝑖)) = ln𝑝 (Ω

1:𝑘
, 𝜔
𝑘
(𝑖) 𝑍
1:𝑘
) , 𝑖 = 1, 2, . . . , 𝑟,

(59)

which stands for the cost to model 𝑖 until time 𝑘.
From (57) to (59),

𝐽 (𝜔
𝑘
(𝑗)) = 𝐽 (𝜔

𝑘−1
(𝑖)) + ln𝜋

𝑖𝑗

−

1

2

𝜐
󸀠

𝑘
(𝑖, 𝑗) S−1

𝑘
(𝑖, 𝑗) 𝜐

𝑘
(𝑖, 𝑗) 𝑖, 𝑗 = 1, 2, . . . , 𝑟,

(60)

where 𝜐
𝑘
(𝑖, 𝑗) stands for the innovation when model 𝑖 is

chosen in time 𝑘−1 andmodel 𝑗 is chosen in time 𝑘. S
𝑘
(𝑖, 𝑗) is

the corresponding covariance.
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Because of using the assumption (58), the iteration algo-
rithm is not the optimal algorithm under MAP criterion, but
a suboptimal one.

(ii) Calculating Algorithm. Only one-step iteration is listed
here.

(1) E Step Calculation. Using (10), calculate each cost
from time 𝑘 − 1 to 𝑘; 𝑟2 costs are needed.

(2) M Step Calculation. According to Viterbi algorithm,
find out themaximum cost 𝐽max(𝜔𝑘(𝑖)) related to each
model. 𝐽max(𝜔𝑘(𝑖)) is the initial value to be the next
iteration.

(3) Filtering. According to the path which reaches each
model, calculate each model’s state estimation 𝑋

𝑘
(𝑖)

and covariance 𝑃
𝑘|𝑘
(𝑖), 𝑖 = 1, 2, . . . , 𝑟.

(4) The Final Results. From 𝐽max(𝜔𝑘(𝑖)), 𝑖 = 1, 2, . . . , 𝑟,
choose the maximum one as the final filtering result:

𝑗 = argmax
𝑖

{𝐽max (𝜔𝑘(𝑖))}
𝑟

𝑖=1
. (61)

𝑋
(B)
𝑘
= 𝑋
𝑘
(𝑗) , 𝑃

(B)
𝑘|𝑘

= 𝑃
𝑘|𝑘
(𝑗) . (62)

4.3. Simulation Results

(i) Simulation Scenario. Target initial state is 𝑋
0

=

[60000m −172m/s 40000m 246m/s]󸀠 . The sample rate
𝑇 = 1 s. The covariance of process noise

𝑄 = [

𝑄
𝑥

0

0 𝑄
𝑦

] , 𝑄
𝑥
= 𝑄
𝑦
=

[
[
[
[
[

[

𝑇
4

3

𝑇
3

2

𝑇
3

2

𝑇
2

]
]
]
]
]

]

. (63)

Assume only position can bemeasured, themeasurement
equation is the following:

𝑧
𝑘
= [

1 0 0 0

0 0 1 0
]𝑋
𝑘
+ V
𝑘
. (64)

The covariance of measurement noise 𝑅 = 2500I, where I
is the 2 × 2 unit matrix.

The simulation lasts for 300 s. Target’s true turn rate is

𝜔
𝑘
=

{
{

{
{

{

0 0 ≤ 𝑘 < 103

0.033 rad/s 104 ≤ 𝑘 < 198

0 198 ≤ 𝑘 < 300.

(65)

Figure 4 gives the target’s true trajectory.
Assume target’s maximum centripetal acceleration is

30m/s2. Under the speed 300m/s, the corresponding turn
rate is 0.1 rad/s. Seven models are used for this simulation.
From -0.1 to 0.1, the sevenmodels are distributed evenly.Their
values are −0.1, −0.067, −0.033, 0, 0.033, 0.067, and 0.1. The
initial probability matrix is

𝜏 = [

1

7

1

7

1

7

1

7

1

7

1

7

1

7

] . (66)

20 25 30 35 40 45 50 55 60
25

30

35

40

45

50

55

60

65

x (km)

y
(k

m
)

Figure 4: Target trajectory.

The model transition matrix is

𝜋
𝑖,𝑗
= {

0.7 𝑖 = 𝑗

0.05 𝑖 ̸= 𝑗

𝑖, 𝑗 = 1, 2, . . . , 7.

(67)

(ii) Simulation Results and Analysis. Batch EM algorithm,
recursive algorithm, and IMMalgorithmare compared in this
scenario. Rootmean squared errors (RMSE) are used here for
comparison.The RME position errors are defined as (46) and
velocity error are defined as follows:

RMS.V.E (𝑘) = √ 1

𝑀

𝑀

∑

𝑖=1

[(𝑥̇
𝑖

𝑘
− ̂̇𝑥

𝑖

𝑘
)

2

+ ( ̇𝑦
𝑖

𝑘
− ̂̇𝑦

𝑖

𝑘
)

2

], (68)

where𝑀 = 200 are Monte-Carlo simulation runs and 𝑥̇𝑖
𝑘
, ̇𝑦
𝑖

𝑘

and ̂̇𝑥𝑖
𝑘
, ̂̇𝑦𝑖
𝑘
stand for the true and estimated velocity at time 𝑘

in the 𝑖th simulation runs, respectively.
Figures 5 and 6 show the position and velocity perfor-

mance comparison. It can be concluded that the batch EM
algorithm has much less tracking errors compared to IMM
algorithm. During maneuver onset time and termination
time, the IMM algorithm is better than recursive EM algo-
rithm. But on stable period, the recursive EM algorithm
performs better.

5. Conclusions

Aiming at the CTmotion target tracking, several models and
algorithms are introduced and simulated in this paper.

In single model framework, four CT models have been
compared for tracking applications: ACT model with Carte-
sian velocity, ACT model with polar velocity, kinematic con-
straint model, and maneuver-centered model. The Monte-
Carlo simulations show that the ACT model with polar
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Figure 5: Position performance comparison.
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Figure 6: Velocity performance comparison.

velocity has the best tracking performance but the compu-
tational load is a bit heavier. The kinematic constraint model
has a moderate tracking performance, but its computational
load decreases greatly compared with UKF controlled ACT
model. So if the computational load is of a great concern,
the kinematic constraint model is suggested. If the tracking
performance is very important and the computational load is
not a problem, the ACTmodel with polar velocity is suitable.

In multiple models framework, EM algorithm is used for
tracking CT motion target. First a batch EM algorithm is
derived. The turn rate is acted as the maneuver sequence and
estimated based on the MAP criterion. Under the E step, the
cost function is calculated using the Kalman smoothing algo-
rithm. Under the M step, Viterbi algorithm is used for path
following to find out the pathwithmaximumcost. Simulation
results show that the Batch EM algorithm has better tracking
performance than IMM algorithm. Through modification of

the cost function, a recursive EM algorithm is presented.The
algorithm can track the target online. Compared with the
IMM algorithm, on the stable period, the recursive EM algo-
rithm has better tracking performance.
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