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One of the most common defects in digital photography is motion blur caused by camera shake. Shift-invariant motion blur
can be modeled as a convolution of the true latent image and a point spread function (PSF) with additive noise. The goal of
image deconvolution is to reconstruct a latent image from a degraded image. However, ringing is inevitable artifacts arising in
the deconvolution stage. To suppress undesirable artifacts, regularization based methods have been proposed using natural image
priors to overcome the ill-posedness of deconvolution problem. When the estimated PSF is erroneous to some extent or the PSF
size is large, conventional regularization to reduce ringing would lead to loss of image details. This paper focuses on the nonblind
deconvolution by adaptive regularization which preserves image details, while suppressing ringing artifacts. The way is to control
the regularization weight adaptively according to the image local characteristics. We adopt elaborated reference maps that indicate
the edge strength so that textured and smooth regions can be distinguished. Then we impose an appropriate constraint on the
optimization process. The experiments’ results on both synthesized and real images show that our method can restore latent image
with much fewer ringing and favors the sharp edges.

1. Introduction

Image blurring is one of the prime causes of poor image
quality in digital photography. The one main cause of blurry
images is motion blur caused by camera shake. If a motion
blur is linear shift invariant, the blurring process can be
generally modeled as a convolution of the true latent image
and a point spread function (PSF) with additive noise:

𝐵 = 𝐾 ⊗ 𝐼 + 𝑁, (1)

where 𝐵 is the degraded image, 𝐼 is the true latent image, 𝐾
is the PSF or a motion blur kernel which describes the trace
of a sensor, 𝑁 is the additive noise introduced during image
acquisition, and ⊗ denotes the convolution operator.The goal
of image deblurring is to reconstruct a latent image 𝐼 from
degraded image 𝐵.

To remove motion blur, we need to estimate the PSF
and restore a latent image through deconvolution. Existing
single image deblurring methods can be further categorized
into two classes. If both the PSF and the latent image are

unknown, the challenging problem is called blind deconvo-
lution. Although great progresses have been achieved in the
recent years [1–4], blind case is severely ill-posed problem
because the number of unknowns exceeds the number of
observed data. In contrast to the former, if the PSF is assumed
to be known or computed in other ways, the problem is
reduced to estimating the latent image alone. This is called
nonblind deconvolution. However, the nonblind case is still
an ill-conditioned problem that has to do with the presence
of image noise. Slight mismatches between the PSF used
by the method and the true blurring PSF also lead to poor
deblurring results.

Unfortunately, the deconvolved result usually contains
unpleasant artifacts even if the PSF is exactly known or well
estimated.Themain visually disturbing artifact is ringing that
appears around strong edges. Because the PSF is often band-
limited with a sharp frequency cutoff, that will be zero or
near-zero values in its frequency response. Thus the direct
inverse of the PSF causes large amplification of signal and
noise.
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Since the estimated PSF is usually inaccurate and the
real blurred image is also noisy, many underconstrained
factors will affect the amplification of ringing. To reduce
undesirable artifacts, various regularization techniques have
been proposed using image priors to improve nonblind
deconvolution methods [5–10]. The most commonly used
priors are those which encourage the image gradients to a
set of derivative filters to follow heavy-tailed distribution.
However, strong regularization to reduce severe artifacts
destroys the image details in the deconvolved result. Weak
regularization preserves image details well, but it does not
remove artifacts tellingly. The challenge of this work is how
to balance the details recovery and ringing suppression.

In this paper, we focus on non-blind deconvolution
with adaptive regularization that controls the regulariza-
tion strength according to the image local characteristics.
This strategy reduces ringing artifacts in a smooth region
effectively and preserves image details in a textured region
simultaneously. First, we estimate the reference maps in the
scale space. At the coarsest scale, we are able to extract
reasonably main strong edges. Comparing the texture infor-
mation of multiscale results, we can make the elaborated
referencemap that differentiates the edge property of textured
region and smooth region. Second, regularization strength
is controlled adaptively referring to these maps. Then, we
apply appropriate regularization with hyper-Laplacian prior
to image deconvolution so that the sharp edges can be
eventually recovered. To solve the optimization process, we
adopt Krishnan’s [7] fast algorithm. It is performed fast in the
frequency domain using fast Fourier transforms (FFTs). The
experimental results show that our nonblind deconvolution
can produce latent image with much fewer ringing and
preserve the sharp edges.

2. Regularization Formulation

Assuming that the PSF is known or computed in other
ways, our method focuses on recovering the sharp image
from the blurred image. To reduce undesirable artifacts, most
advanced regularization techniques are proposed using the
prior of nature image in the gradient domain. We now intro-
duce the regularization formulation. From a probabilistic
perspective, we seek maximum a posteriori (MAP) estimate
of latent image 𝐼 in Bayesian framework:

𝑝 (𝐼 | 𝐵) ∝ 𝑝 (𝐵 | 𝐼) 𝑝 (𝐼) , (2)

where 𝑝(𝐵 | 𝐼) represents the likelihood and 𝑝(𝐼) denotes the
priors on the latent image. Maximizing 𝑝(𝐼 | 𝐵) is equivalent
to minimizing the cost − log𝑝(𝐼 | 𝐵):

− log𝑝 (𝐼 | 𝐵) = − log𝑝 (𝐵 | 𝐼) − log𝑝 (𝐼) . (3)

The MAP solution of 𝐼 can be obtained by minimizing
the cost function above. We now define these two terms. The
likelihood of a degraded image given the latent image is based
on the common blur model 𝑁 = 𝐵 − 𝐾 ⊗ 𝐼. Assuming that
the noise is modeled as a set of independent and identically
distributed (i.i.d.) noise random variables for all pixels, each

of which follows a Gaussian distribution, we can express the
likelihood with Gaussian variance 𝜎2 as

𝑝 (𝐵 | 𝐼) ∝ 𝑒
−(1/2𝜎

2
)‖𝐵−𝐾⊗𝐼‖

2

. (4)

Furthermore, recent research in natural image statistics
shows that image gradients follow a heavy-tailed distribution.
These distributions are well modeled by a hyper-Laplacian
prior and have proven effective priors for deblurring problem.
In this paper, we utilize the hyper-Laplacian prior to regular-
ize the solution and it can be modeled as

𝑝 (𝐼) ∝ 𝑒
−𝛼∑
2

𝑘=1
|𝑓
𝑘
⊗𝐼|
𝑞

with 0.5 ≤ 𝑞 ≤ 0.8, (5)

where 𝑞 is a positive exponent value set in the range of 0.5 ≤
𝑞 ≤ 0.8 as suggested by Krishnan and Fargus [7]. In this
work, we unify the use of 2/3 for 𝑞 value. The 𝑓

𝑘
denotes the

simple horizontal and vertical first-order derivative filters. It
can also be useful to include second-order derivative filters
or the more sophisticated filters. With the Gaussian noise
likelihood and the hyper-Laplacian image prior, (3) can be
represented by the following minimization problem:

argmin
𝐼

𝑛

∑

𝑖=1

((𝐵 − 𝐾 ⊗ 𝐼)
2

𝑖
+ 𝜂

2

∑

𝑘=1

(𝑓𝑘 ⊗ 𝐼)
𝑖



𝑞

) , (6)

where 𝑖 is an index running through all pixels, 𝑛 is the
whole pixels in the image, and weighting coefficient 𝜂 =

2𝛼𝜎
2 controls the strength of the regularization term. For

simplicity, 𝑓
1
= [1 − 1] and 𝑓

2
= [1 − 1]

𝑇 are two first-
order derivative filters. We search for the 𝐼 which minimizes
the reconstruction error ‖𝐵 − 𝐾 ⊗ 𝐼‖

2, with the image prior
preferring 𝐼 to favor the correct sharp explanation.

However, to analyze the formulation of Equation (6), the
above conventional regularization’s weighting coefficient 𝜂
is applied to all pixels with the same strength. When the
estimated PSF is inaccurate or the PSF size is large, it usually
adds strong regularization weight for suppressing ringing
around the edges. But it also destroys the image details in
the deconvolved result, and this is inevitable problem since
perfect PSF estimation is impossible. In addition, the weak
regularization weight preserves major details well, but it does
not remove artifacts effectively.

3. The Proposed Method

To balance the details recovery and ringing suppression, the
main ideal of our approach is to control the regularization
weight adaptively according to the image local characteristics.
Thismeans that we need strong regularization for the smooth
regions and weak regularization for the sharp edges. Our
estimated maps further consider the edge property of image
textured regions. In this chapter, we will explain each step
of our algorithm in detail. That includes how to estimate
reference map and perform the adaptive regularization in
the deconvolution stage. Finally, we supply some added
improvement to obtain better results. Figure 1 shows the
overall process of our nonblind deconvolution method.
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Figure 1: Overview of our adaptive deconvolution framework.

3.1. Reference Map Estimation. Inspired by the local con-
straint idea [8, 9, 11], the reference map is designed for
classifying the smooth regions and different edge regions cor-
rectly. Referencemap is used for deconvolution with adaptive
regularization and can apply the right image characteristics
information to control the local weight of deblurring. In
fact, the classified texture regions also contain the main
strong edges and some smaller or fainter edges. Compared
to the smaller or fainter edges, the extracted main edges
are the important visible regions, and those need more
weak regularization to preserve the sharp features. In addi-
tion, we should add strong regularization for the classified
smooth regions to reduce the most noticeable artifacts since
the ringing artifacts are usually propagated in the smooth
areas.

Based on these observations, we estimate the reference
maps in the multiscale space. We first build a pyramid
{𝐵
𝑙
}
𝐿

𝑙=0
of the full resolution input blurred image 𝐵 using

bilinear downsampling. Our goal is to combine different
edge information from coarse to fine layers. So we perform
the map estimation approach in each scale and distinguish
its different regions. At the coarsest scale, we are able to
extract reasonably main strong edges of the image. In the
next finer scale, we gradually extract more and more small
edge details. Finally, all estimated maps from different scale
results combine to form one elaborated reference map. The
estimation is guided to a good map by concentrating on
the main edges of the input image and progressively dealing
with smaller and smoother details. But it is difficult to obtain

correct edge information from the blurred image directly, so
the map is renewed from every deconvolved result during
each iteration time.

We now describe how to produce and combine the esti-
mated reference maps. The initial reference map is estimated
from the input blurred image. Since the locally smooth region
which has no edges information is still smooth after blurring,
the edge areas of blurred image will be affected. Inspired by
this idea, we compute the edge strength and use predefined
threshold to classify different regions. The edge strength at
located pixel 𝑖 is defined as follows:

Eg (𝑖) =
(∑
ℎ∈𝑊
𝑥

ℎ + ∑V∈𝑊
𝑦

V)

𝑁total
,

(7)

where Eg(𝑖) denotes the edge strength response at pixel 𝑖 on
the observed image. 𝑊 is the 3 × 3 window whose center is
located on 𝑖, 𝑊

𝑥
= 𝑊 ⊗ [1 − 1], 𝑊

𝑦
= 𝑊 ⊗ [1 − 1]

𝑇, and
𝑁total is the total number of pixels in default window. If the
computed edge strength value is smaller than a predefined
threshold 𝑇, which is set to 3 × 10

−2 in our experiment, we
will regard the center pixel 𝑖 as in smooth region Ω, that is,
𝑖 ∈ Ω:

𝑀
𝑙

𝑖
= {

1 if Eg (𝑖) < 𝑇

0 otherwise.
(8)

Since the texture regions which is classified by (7) also
contain the main strong edges and some smaller edges, we
aim to further improve the estimated results. The improved
extracting method includes the following steps. Firstly, we
build a pyramid {𝐵

𝑙
}
𝐿

𝑙=0
of the blurred image. At each scale

𝑙, the edge strength Eg(𝑖) is computed in every level and then
is upsampled. It means that this step will produce 𝑙 number
binary maps. Finally, we sum all the edge intensities at the
same pixel location and run through all pixels. Now we get
a new reference map after normalization process, which is
shown in Figure 2(b), and the smooth region Ω is shown as
the set of all white pixels.The strongest edges are indicated by
the most dark pixels and the other gray level pixels mean the
smaller or fainter edges. Hence, we define this extracting step
using the multiscale approach of the observed image as:

𝑀ref =
∑
𝐿

𝑙=0
𝑀
𝑙

𝐿
, (9)

where 𝑀
𝑙 is the binary map at the 𝑙th level of the images

pyramid by (8), and 𝐿 denotes the total scale layers, for
example, 𝐿 is set to 3 levers in our implementation. In (9),
the final map𝑀ref is extracted by summing up all the inten-
sity values of those upsampling maps and normalizing the
results.

We gradually recover more and more image details by an
iterative deconvolution algorithm because it can refine the
result until convergence. Obviously, the deconvolved image
with initial adaptive regularization shows much better edge
information than does the input blurred image. Thus, at the
following reference map estimation, we use the deconvolved
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(a) (b)

(c) (d)

Figure 2: Reference map estimation. (a) Input blurred image. (b) First reference map is estimated from the blurred image. It can locally
compute smooth regions and distinguish different edge regions. (c)The deconvolved image with the first adaptive regularization. (d) Second
reference map is estimated from previous deconvolved result.

result from the previous iteration to distinguish different
edge regions elaborately. We also adopt the same criterion
to extract map. Second estimated result is represented in
Figure 2(d). The map will be renewed from the earlier
deconvolved result after each iteration.

3.2. Image Deconvolution with Adaptive Regularization. Now,
we would like to seek the MAP solution for the latent image
in the deconvolution stage. But the limitation of conventional
regularization is that the same value of weighting coefficient 𝜂
is applied to whole pixels. To overcome this fault and balance
the image quality, our method introduces an improvement,
that is, to apply appropriate regularization weight according
to the local characteristics. So, the adaptive regularization is
performed based on the estimated referencemap during each
iteration time. Based on this idea, we simply modify (6) as
follows:

argmin
𝐼

𝑛

∑

𝑖=1

((𝐵 − 𝐾 ⊗ 𝐼)
2

𝑖
+ 𝜂
𝑝

2

∑

𝑘=1

(𝑓𝑘 ⊗ 𝐼)
𝑖



𝑞

) , (10)

where the weighting coefficient 𝜂
𝑝
is adjusted based on the

estimated reference map. It provides a basis to adaptively
suppress the ringing effects in different regions. The effect of
adaptive regularization in deconvolution result is represented
in Figure 3. In comparison, our result exhibits sharper image
detail and fewer artifacts.

However, the use of sparse distributions with 𝑞 < 1

makes the optimization problem nonconvex. It becomes slow

to solve the approximation. Using the half-quadratic split-
ting, Krishnan’s [7] fast algorithm introduces two auxiliary
variables 𝜔

1
and 𝜔

2
at each pixel to move the (𝑓

𝑘
⊗ 𝐼)
𝑖
terms

outside the | ⋅ |𝑞 expression.Thus, (10) can be converted to the
following optimization problem:

arg min
𝐼,𝜔

𝑛

∑

𝑖=1

((𝐵 − 𝐾 ⊗ 𝐼)
2

𝑖

+
𝛽

2
((𝑓
1
⊗ 𝐼 − 𝜔

1
)
2

𝑖
+ (𝑓
2
⊗ 𝐼 − 𝜔

2
)
2

𝑖
)

+ 𝜂
𝑃
(
(𝜔1)𝑖



𝑞

+
(𝜔2)𝑖



𝑞

)) ,

(11)

where (𝑓
𝑘
⊗ 𝐼 − 𝜔

𝑘
)
2 term is for constraint of 𝑓

𝑘
⊗ 𝐼 = 𝜔

𝑘

and 𝛽 is a control parameter that we will vary during the
iteration process. As 𝛽 parameter becomes large, the solution
of (13) converges into that of (12). This scheme is also called
alternating minimization [12] where we adopt a common
technique for image restoration. Minimizing (13) for a fixed
𝛽 can be performed by alternating two steps.This means that
we solve 𝜔 and 𝐼, respectively.

One subproblem is to solve 𝜔
1
and 𝜔

2
, which is called 𝜔

subproblem. First, the initial 𝐼 is set to the input blurred image
𝐵. Given a fixed 𝐼, finding the optimal𝜔 can be simplified into
the following optimization problem:

argmin
𝜔

(
𝜆
𝑃

2
|𝜔|
𝑞
+
𝛽

2
(𝜔 − ])2) , (12)
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(a) (b)

(c)

Figure 3: Effect of deconvolutionwith adaptive regularization. (a)Thedeconvolved result byKrishnan’s [7] algorithmwith the sameweighting
value. (b) Our deconvolved result with different 𝜂

𝑝
weighting values according to the local characteristics as defined above. (c) Close-ups of

two image regions for comparison.

where the value ] = (𝑓
𝑘
⊗ 𝐼). For convenient calculation, 𝜂

𝑝

is replaced with 𝜆
𝑝
/2, and it does not affect the performance.

Inparticular for the case 𝑞 = 2/3, the 𝜔 satisfying the above
equation is the analytical solution of the following quartic
polynomial:

𝜔
4
− 3]𝜔3 + 3]2𝜔2 − ]3𝜔 +

𝜆
3

𝑝

27𝛽3
= 0; (13)

to find and select the correct roots of the above quartic
polynomial, we adopt Krishnan’s approach, as detailed in [7].
They numerically solve (12) for all pixels using a lookup table
to find 𝜔.

Second, we briefly describe the 𝐼 subproblem and its
straightforward solution. Given a fixed value of 𝜔 from
previous iteration, we aim to obtain the optimal 𝐼 by the

following optimization problem. Equation (11) is modified
as

argmin
𝐼

((𝐵 − 𝐾 ⊗ 𝐼)
2

+
𝛽

2
((𝑓
1
⊗ 𝐼 − 𝜔

1
)
2

+ (𝑓
2
⊗ 𝐼 − 𝜔

2
)
2

)) ;

(14)

the 𝐼 subproblem can be optimized by setting the derivative of
the cost function to zero. So, (14) is quadratic in 𝐼.Theoptimal
𝐼 is

(𝐹
𝑇

1
𝐹
1
+ 𝐹
𝑇

2
𝐹
2
+
2

𝛽
𝐾
𝑇
𝐾)𝐼 = 𝐹

𝑇

1
𝜔
1
+ 𝐹
𝑇

2
𝜔
2
+
2

𝛽
𝐾
𝑇
𝐵; (15)

for brevity, we set 𝐹
𝑘
𝐼 = (𝑓

𝑘
⊗ 𝐼) and𝐾𝐼 = (𝐾⊗ 𝐼). Assuming

circular boundary conditions, (15) can apply 2D FFTs which
diagonalize the convolution matrices 𝐹

1
, 𝐹
2
, and 𝐾, helping

us to find optimal 𝐼 directly:

𝐼 = IFFT(
FFT(𝐹

1
)
∗

∘ FFT (𝜔
1
) + FFT(𝐹

2
)
∗

∘ FFT (𝜔
2
) + (2/𝛽) FFT(𝐾)∗ ∘ FFT (𝐵)

FFT(𝐹
1
)
∗

∘ FFT (𝐹
1
) + FFT(𝐹

2
)
∗

∘ FFT (𝐹
2
) + (2/𝛽) FFT(𝐾)∗ ∘ FFT (𝐾)

) , (16)

where ∗ denotes the complex conjugate and ∘ denotes
component-wise multiplication. The FFT(⋅) and IFFT(⋅) rep-
resent Fourier and inverse Fourier transforms respectively.
Solving (16) requires only three FFTs at each iteration since
some FFTs operation of 𝐹

1
, 𝐹
2
, and𝐾 can be precomputed.

The nonconvex optimization problem arises from the
use of a hyper-Laplacian prior with 𝑞 < 1, then we

adopt a splitting approach that allows the nonconvexity to
become separable over pixels. We now give the summary
of alternating minimization scheme. As described above, we
minimize (11) by alternating the 𝜔 and 𝐼 subproblems, before
increasing the value of 𝛽 and repeating. At the beginning
of each iteration, we first compute 𝜔 given the initial or
deconvolved 𝐼 by minimizing (14). Then, given a fixed value
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of 𝜔, it can minimize (14) to find the optimal 𝐼. The iteration
process stops when the parameter 𝛽 is sufficiently large. In
practice, starting with small value 𝛽 we scale it by an integer
power until it exceeds some fixed values 𝛽Max.

Finally, we mention one last improvement detail. In
the blurring process, the convolution operator makes use
of not only the image inside the field of view (FOV) of
the given observation but also part of the scene in the
area bordering it. The part outside the FOV cannot be
available to the deconvolution process. When any algorithm
performs deconvolution in the Fourier domain, this missing
information would cause artifacts at the image boundaries.
To analyze this cause, the FFTs assume the periodicity of the
data, themissing pixels will be taken from the opposite side of
the image when FFTs are performed, since the data obtained
may not coincide with the missing ground truth data. These
give rise to boundary artifacts, which poses a difficulty in
various restoration methods.

To reduce the visual artifacts caused by the boundary
value problem, we use Liu’s approach, as detailed in [13]. The
basic concept to solve the problem is to expand the blurred
image such that the intensity and gradient are maintained
at the border between the input image and expanded block.
This algorithm suppresses the ripples near the image border.
It does not require the extra assumption of the PSF and can
be adopted by any FFTs based restoration methods.

4. Experimental Results

4.1. Parameters Setting. Since we want to suppress the con-
trast of ringing in the extracted smooth regions while avoid-
ing suppression of sharp edges, the regularization strength
should be large in smooth regions and small in others. We
also concern themain edges of the textured regions and other
smaller or fainter features. So we controlled regularization
strength referring to the different edge property. This means
that we need the most weak regularization for the main edges
regions.

Through all the experiments, the weighting coefficient
𝜂
𝑝
is controlled adaptively referring to estimated maps. We

have used a geometric progression for the different regions
of values of 𝜂

𝑝
 = 𝜂

𝑝
/𝑟. The rate 𝑟 is set to 3; that is, we

decrease the regularization strength according to the local
characteristics. In our experiments, the 𝜂

𝑝
is set to 1 × 10

−3

in smooth regions. Then we decrease the value to 3.3 × 10
−4

in next smaller or fainter edges, 1.1 × 10
−4 in the strong

edges, and so on. The main edges will be applied to the
least value of 𝜂

𝑝
, and the 𝜆

𝑝
/2 is equal to 𝜂

𝑝
in (14). The

𝜂
𝑝
also progressively decrease as the number of iterations is

increased. It can produce the best results. In addition, our
methoduses a hyper-Laplacian priorwith 𝑞 = 2/3. To find the
optimal solution, parameter 𝛽 will vary during the iterative
process.The 𝛽 value is varied from 1 to 256 by integer powers
of 2√2. As 𝛽 is larger than 𝛽Max = 256, the iterations will
stop.

Besides, for all testing images, in our experiments, we
covert the RGB color image to the YCbCr color space
and only the luminance channel is taken into computation.
Furthermore, with the alternating minimization and FFTs
operation, those schemes can accelerate total computational
time. In the next two parts we will demonstrate the effective-
ness of our approach.

4.2. Synthetic Images. The synthesized degradations are gen-
erated by convolving the artificial PSF and the sharp images.
In the first part of the experiments, both subjective quality
and objective quality are compared. For testing the subjective
performance, we compare our result against those of three
existing nonblind image deconvolution methods, as shown
in Figure 4.

Figure 4 shows the comparison of the visual quality for
the simulated image. The standard RL method preserves
edges well but produces the severe ringing artifacts. More
iteration introduces not only more image details but also
more ringing. Besides, the Matlab RL function is per-
formed in the frequency domain, so it gives rise to severe
boundary artifacts. Levin’s and Krishnan’s methods reduce
ringing effectively due to advanced image priors. But they
suppress or blur some details since regularization strength
is applied to all pixels with the same value. The IRLS
solution of Levin’s algorithm also expands expensive running
times. Our approach can recover finer image details and
thin image structures while successfully suppressing ringing
artifacts.

In addition, for testing the visual objective quality, the
peak signal to noise ratio (PSNR) measurement is also used
to evaluate quantitatively the quality of above restored result.
Given signal 𝐼, the PSNR value of its estimate is defined as:

PSNR (dB) = 10 ⋅ log 255
2

(1/𝑚𝑛)∑
𝑚−1

𝑖=0
∑
𝑛−1

𝑗=0
(𝐼
𝑖𝑗
−

_
𝐼 𝑢𝑗)

2
,

(17)

where 𝑚 × 𝑛 is the size of the input image, 𝐼
𝑖𝑗
is the intensity

value of true clear image at the pixel location (𝑖, 𝑗), and
_
𝐼 𝑖𝑗

corresponds to the intensity value of the restored image at the
same location. The average PSNR values of above results are
listed in Table 1.

4.3. Real Blurred Images. Besides testing the method on
synthetic degradations, we also apply our method to real life
blurred degradations.We estimate the PSF of these images by
Xu’s method [4]. For the real blurred image, only subjective
quality is measured, as shown in Figures 5, 6, and 7.

Figures 5 and 6 show more results of the images from
[3]. The PSF is estimated by [4]. Then, the inferred PSF is
used as the input of all nonblind methods for comparison.
With estimated PSF, which is usually not accurate, the
deconvolution methods need to perform robustly. The fine
details of the thin branch are compared in Figure 5. It can
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(a) (b) (c)

(d) (e)

(f)

Figure 4: Deblurring results of synthetic photo “Lena.” (a) The size of blurred image is 512 × 512, and the estimated PSF size is 33 × 39. (b)
The standard Richardson-Lucy method. (c) The result of Levin’s method [5] with the sparse prior. (d) The result of Krishnan’s method [7]
with the hyper-Laplacian prior. (e) The result of our deconvolution with adaptive regularization. (f) Close-ups of (a)–(e) image regions for
comparison.

be verified that our approach shows superior edge preserving
ability compared to other nonblind methods. In Figure 6,
standard RL produces the most noticeable ringing even
preserving the sharp edges. Our restoration result balances
the details recovery and ringing suppression. Finally, the
degraded image of Figure 7 uses a large aperture and the
focused object is blurry due to camera shake. In comparison,
our deconvolution result exhibits richer and clearer image
structures than other methods.

Finally, the computational costs of our proposed
method and other nonblind image deconvolution methods

considered in the experiments are compared in Table 2. All
codes are tested in the computer with AMD Phenom II
X4 965 3.40GHz processor and 4.0GB RAM. The Matlab
RL method is performed in the frequency domain with 20
iterations. For the IRLS scheme, we used the implementation
of [5] with default parameters. Krishnan’s method and
our proposed method both use hyper-Laplacian prior to
regularize the solution, and we set the same 𝛽 value in the
experiment. Experimental results show that the proposed
adaptive scheme consumes acceptable processing time while
preserving more details in the deblurred images.
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(a) (b) (c)

(d) (e)

(f)

Figure 5: Deblurring results of real photo “Red tree.” (a)The size of blurred image is 454 × 588, and the estimated PSF size is 27 × 27. (b)The
standard Richardson-Lucy method. (c)The result of Levin’s method [5] with the sparse prior. (d)The result of Krishnan’s method [7]. (e)The
result of our deconvolution with adaptive regularization. (f) Close-ups of (a)–(e) image regions for comparison.

5. Conclusions

The image deblurring is a long-standing problem for many
applications. In this paper, a high-quality nonblind decon-
volution to remove camera motion blur from a single image

has been presented. We follow the regularization based
framework using natural image prior to constrain the optimal
solution. Our main contribution is an effective scheme for
balancing the image details recovery and ringing suppres-
sion. We first introduce the reference map indicating the
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(a) (b) (c)

(d) (e)

(f)

Figure 6: Deblurring results of real photo “Statue.” (a) The size of blurred image is 800 × 800, and the estimated PSF size is 31 × 31. (b) The
standard Richardson-Lucy method. (c)The result of Levin’s method [5] with the sparse prior. (d)The result of Krishnan’s method [7]. (e)The
result of our deconvolution with adaptive regularization. (f) Close-ups of (a)–(e) image regions for comparison.

Table 1: Comparison of average PSNRs (dB).

Image Blurry Richardson-Lucy [16, 17] Levin et al., 2007 [5] Krishnan and Fergus, 2009 [7] Ours
Lena 23.99 29.69 31.06 31.23 31.76
Fruits 23.51 28.11 29.03 30.29 30.71
Airplane 23.22 28.50 33.45 33.39 34.02

smooth regions and different textured edge regions. Then,
according the image local characteristics, we can control
regularization weighting factor adaptively. In addition, the
proposed method is practically considering the complexity
by FFTs operations. Deconvolved results obtained by our

approach show a noticeable improvement in recovering
visually pleasing details with fewer ringing.

In the future, the deblurring topic is still more challenging
and exciting. We have found that the severe noise, PSF
estimation errors, or large PSF may be propagated and
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(a) (b) (c)

(d) (e)

(f)

Figure 7: Deblurring results of real photo “Flower.” (a) The size of blurred image is 533 × 800, and the estimated PSF size is 31 × 31. (b) The
standard Richardson-Lucy method. (c)The result of Levin’s method [5] with the sparse prior. (d)The result of Krishnan’s method [7]. (e)The
result of our deconvolution with adaptive regularization. (f) Close-ups of (a)–(e) image regions for comparison.

amplified the unpleasant artifacts. Thus, the research direc-
tion of future work is how to estimate accurate PSF and
propose the robust blind deblurring model. Recently, the
spatially variant PSF models have also drawn some attention
for better modeling practical motion blurring operator [14,
15]. This means that the PSFs are not uniform in appearance,

for example, from slight camera rotation or nonuniform
objects movement. It needs to explore the removal of shift-
variant blur using a general kernel assumption. Moreover,
we are also interested to apply the proposed framework to
other restoration problems, such as image denoising, video
deblurring, or surface reconstruction.
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Table 2: Comparison of the computational costs (Seconds).

Image Richardson-Lucy Levin et al., 2007 [5] Krishnan and Fergus, 2009 [7] Ours
Lena 12.54 323.21 7.82 8.90
Fruits 14.20 354.86 8.03 10.69
Airplane 12.98 328.11 6.31 8.62
Red tree 13.21 672.75 6.68 10.09
Statue 15.22 1060.54 8.93 11.69
Flower 14.27 989.14 8.32 11.12
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