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Impact of correlated noises on dynamical systems is investigated by considering Fokker-Planck type equations under the fractional
white noise measure, which correspond to stochastic differential equations driven by fractional Brownian motions with the Hurst
parameter𝐻 > 1/2. Firstly, by constructing the fractional white noise framework, one small noise limit theorem is proved, which
provides an estimate for the deviation of random solution orbits from the corresponding deterministic orbits. Secondly, numerical
experiments are conducted to examine the probability density evolutions of two special dynamical systems, as the Hurst parameter
𝐻 varies. Certain behaviors of the probability density functions are observed.

1. Introduction

Dynamical systems arising from financial, biological, phys-
ical, or geophysical sciences are often subject to random
influences. These random influences may be modeled by
various stochastic processes, such as Brownian motions,
Lévy motions, or fractional Brownian motions. A fractional
Brownian motion 𝐵

𝐻

𝑡
, 𝑡 ≥ 0, in a probability space (Ω,F, 𝑃),

with Hurst parameter 𝐻 ∈ (0, 1), is a continuous-time
Gaussian process with mean zero, starting at zero and having
the following correlation function:

E [𝐵
𝐻

𝑠
𝐵
𝐻

𝑡
] =

1

2
(|𝑡|
2𝐻

+ |𝑠|
2𝐻

− |𝑡 − 𝑠|
2𝐻
) . (1)

In particular, when𝐻 = 1/2 it is just the standard Brownian
motion.The time derivative of a fractional Brownianmotion,
𝑑𝐵
𝐻

𝑡
/𝑑𝑡, as a generalized stochastic process, has nonvanish-

ing correlation [1, 2] and it is thus called a correlated noise
or colored noise. In the special case of 𝐻 = 1/2, this noise
is uncorrelated and thus is called white noise [3]. Correlated
noises appear in the modeling of some geophysical systems
[4–6].

For systematic discussions about fractional Brownian
motions and their stochastic calculus, we refer to [7–12] and
the references therein. Fractional Brownianmotions have sta-
tionary increments and areHölder continuouswith exponent

less than 𝐻, but they are no longer semimartingales, even
no longer Markovian. They possess some other significant
properties such as long range dependence and self-similarity
which result in wide applications in fields such as hydrology,
telecommunications, and mathematical finance. During the
last decade or so, several reasonable stochastic integrations
with respect to fractional Brownian motions were developed.
See, for example, Lin [13], Duncan et al. [14], Decreusefond
and Üstunel [15], and the references mentioned therein.
Stochastic differential equations (SDEs) driven by fractional
Brownian motions also have been attracting more attention
recently [1, 10, 16–18].

In this paper, we consider the following scalar stochastic
differential equation (SDE):

𝑑𝑋
𝑡
= 𝑏 (𝑋

𝑡
) 𝑑𝑡 + 𝜀𝑑𝐵

𝐻

𝑡
, 𝑋

0
= 𝑥, (2)

where the drift 𝑏(⋅) is a Lipschitz continuous function on 𝑅,
𝜀 > 0 is the noise intensity, 𝐵𝐻

𝑡
is a fractional Brownian

motion with𝐻 > 1/2, and the initial state value 𝜉 is assumed
to be independent of the natural filtration of 𝐵𝐻

𝑡
. Since this

system has a unique solution [17, 19], here we intend to
understand some impact of correlated noises on this additive
dynamical system as the Hurst parameter𝐻 varies.

This paper is organized as follows. In Section 2, we set
up a fractional white noise analysis framework which makes
correlated noises as functionals of standard white noises and
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prove a small noise limit theoremwhich implies the stochastic
continuity of the system with respect to noise intensity. In
Section 3, we show that the probability density function of
𝑋
𝑡
satisfies a Fokker-Planck type partial differential equation

with respect to the fractional white noise measure. Then, we
implement numerical experiments to examine the probability
density evolutions as the Hurst parameter𝐻 varies. As to one
linear system and one double-well system, certain behaviors
of the probability density functions are observed.

2. Analysis Framework and Small Noise Limit

2.1. Analysis Framework. White noise framework is one natu-
ral and flexible stochastic analysis thoughtway, and fractional
white noise analysis takes correlated noise as functionals of
standard white noise. This approach has shown to be very
effective in investigating distributions and path properties
of stochastic processes. In the following, we describe the
fractional white noise analysis framework.

Let S(𝑅) be the Schwartz space of rapidly decreasing
smooth functions on 𝑅 and S󸀠(𝑅) the space of tempered
distributions. And denote by ⟨⋅, ⋅⟩ the dual pairing onS󸀠(𝑅)×
S(𝑅). For 1/2 < 𝐻 < 1, define

𝜑 (𝑠, 𝑡) = 𝐻 (2𝐻 − 1) |𝑠 − 𝑡|
2𝐻−2

, 𝑠, 𝑡 ∈ 𝑅;

𝑐
2

𝐻
=

𝐻 (2𝐻 − 1)

𝐵 (𝐻 − 1/2, 2 − 2𝐻)
,

(3)

where 𝐵(⋅, ⋅) is beta function; 𝐾
±
(𝑡) = 𝑐

𝐻
𝑡
𝐻−3/2

±
, 𝑡
+
= 𝑡 ∨ 0,

𝑡
−
= −(𝑡 ∧ 0).

Lemma 1. For 𝑓 ∈ S(𝑅), let

Γ
𝜑
𝑓 (𝑢) = (𝐾

−
∗ 𝑓) (𝑢) = 𝑐

𝐻
∫

∞

𝑢

(𝑠 − 𝑢)
𝐻−3/2

𝑓 (𝑠) 𝑑𝑠,

Γ
∗

𝜑
𝑓 (𝑡) = (𝐾

+
∗ 𝑓) (𝑡) = 𝑐

𝐻
∫

𝑡

−∞

(𝑡 − 𝑢)
𝐻−3/2

𝑓 (𝑢) 𝑑𝑢.

(4)

Then, for 𝑓, 𝑔 ∈ S(𝑅),

(Γ
𝜑
𝑓, 𝑔)
𝐿
2
(𝑅)

= (𝑓, Γ
∗

𝜑
𝑔)
𝐿
2
(𝑅)
; (5)

that is, Γ∗
𝜑
is the dual map of Γ

𝜑
.

Now we can only prove the linear map Γ
𝜑
is continuous

from S(𝑅) to 𝐿
2
(𝑅). Since Γ

𝜑
is not continuous from S(𝑅)

to S(𝑅) (even not a proper operator in S(𝑅)), we could not
obtain a dual map from S󸀠(𝑅) to S󸀠(𝑅) by duality. By using
Itô’s regularization theorem, we construct a unique S󸀠(𝑅)-
valued random variable 𝑇 : S󸀠(𝑅) → S󸀠(𝑅) such that

⟨𝑇𝜔, 𝜉⟩ = ⟨𝜔, Γ
𝜑
𝜉⟩ 𝜇 − a.e. 𝜔, (6)

which extends the map Γ∗
𝜑
in view of (5).

Theorem 2. Let 𝜇
𝜑

= 𝜇 ∘ 𝑇
−1 be the image measure of 𝜇

induced by the map T.Then, for any 𝜉 ∈ S(𝑅), the distribution
of ⟨⋅, 𝜉⟩ under 𝜇

𝜑
is the same as ⟨⋅, Γ

𝜑
𝜉⟩ under 𝜇. In particular,

𝐵
𝐻

𝑡
≡ ⟨𝜔, Γ

𝜑
1
[0,𝑡]

⟩ , 𝑡 ≥ 0 (7)

is a fractional Brownian motion with Hurst constant 𝐻.
Moreover,

𝐵
𝐻

𝑡
= 𝑐
𝐻
(𝐻 −

1

2
)

−1

∫

𝑡

−∞

[(𝑡 − 𝑢)
𝐻−1/2

− 𝑢
𝐻−1/2

−
] 𝑑𝐵
𝑢
,

(8)

where 𝐵
𝑡
(𝜔) ≡ ⟨𝜔, 1

[0,𝑡]
⟩ is the standard Brownian motion.

(See proof in [20].)

Let {F
𝑡
, 𝑡 ∈ 𝑅

+
} and {F𝐻

𝑡
, 𝑡 ∈ 𝑅

+
} be the filtrations

generated by {𝐵
𝑡
} and {𝐵𝐻

𝑡
}, respectively.Then, in view of (8),

we have

(1) F
𝑡
⊃ 𝑇
−1
(F𝐻
𝑡
), for all 𝑡 ∈ 𝑅

+
;

(2) for any 𝑓 ∈ 𝐿
∞
(𝜇
𝜑
), E
𝜇
[𝑇
∗
𝑓 | F

𝑡
] = 𝑇

∗
E
𝜇
𝜑

[𝑓 |

F𝐻
𝑡
] a.s. [𝜇], where (𝑇

∗
𝑓)(𝜔) := 𝑓(𝑇𝜔). So, the

filtrated probability space (S󸀠(𝑅),F
𝑡
, 𝜇) is the exten-

sion of (S󸀠(𝑅),F𝐻
𝑡
, 𝜇
𝜑
). Thus the stochastic analysis

with respect to measure 𝜇
𝜑
could be reduced to the

standard white noise framework naturally. Therefore,
we choose the standard white noise measure 𝜇 as the
reference measure rather than 𝜇

𝜑
, and this treatment

is more useful and more convenient for applications.
For more details, we refer to [20] and the reference
therein.

2.2. Small Noise Limit. Now, we consider the SDE (2) in
fractional white noise framework

𝑑𝑋
𝑡
= 𝑏 (𝑋

𝑡
) 𝑑𝑡 + 𝜀𝑑𝐵

𝐻

𝑡
, 𝑋

0
= 𝑥. (9)

And to investigate the impact of noise on deterministic
dynamical system

𝑑

𝑑𝑡
𝑥 (𝑡) = 𝑏 (𝑥 (𝑡)) , 𝑥 (0) = 𝑥, (10)

which is solvable on any finite time interval [0, 𝑇]. We have
the following result.

Theorem 3. The solution 𝑋
𝑡
of (2) converges in probability to

the solution 𝑥(𝑡) of (10) uniformly on any finite time interval
[0, 𝑇].

Proof. Firstly, we rewrite the equation as

𝑋
𝑡
− 𝑥 (𝑡) = ∫

𝑡

0

[𝑏 (𝑋
𝑠
) − 𝑏 (𝑥 (𝑠))] 𝑑𝑠 + 𝜀𝐵

𝐻

𝑡
. (11)

Then, by assuming the Lipschitz condition on 𝑏(𝑥) with
Lipschitz constant 𝐾 > 0, it follows from the Gronwall
inequality that

sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨𝑋𝑡 − 𝑥 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝜀𝑒
𝐾𝑇 sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨
. (12)
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Figure 1: Plot of 𝑝(𝑥, 𝑡) with 𝑏(𝑥) = 𝑥 − 𝑥
3, at 𝑡 = 0.1, 0.2, 0.5, 1.25.

Hence, for any small enough 𝛿 > 0, we have

𝑃{ sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨𝑋𝑡 − 𝑥 (𝑡)
󵄨󵄨󵄨󵄨 > 𝛿} ≤ 𝑃{ sup

0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨
>
𝛿

𝜀
𝑒
−𝐾𝑇

}

≤
𝜀𝑒
𝐾𝑇

𝛿
E sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨

≤
𝜀𝑒
𝐾𝑇

𝑇
𝐻

𝛿
E
󵄨󵄨󵄨󵄨󵄨
𝐵
𝐻

1

󵄨󵄨󵄨󵄨󵄨
,

(13)

which completes the proof when 𝜀 → 0. In the final step,
we have used the self-similarity of the fractional Brownian
motion

E sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨
≤ 𝑇
𝐻
E
󵄨󵄨󵄨󵄨󵄨
𝐵
𝐻

1

󵄨󵄨󵄨󵄨󵄨
. (14)

This theorem provides an estimate for the deviation of
random solution orbits from the corresponding deterministic
orbits. Note that the expectation E in the above theorem
corresponds to the fractional white noise measure. And,
henceforth, we take all expectations E with respect to the
fractional white noise measure (i.e., for simplicity, we omit
the subscript 𝜇mentioned above).

3. Probability Density Evolution

For SDE, such as (2), the probability density function of the
solution 𝑋

𝑡
carries significant dynamical information. This

is considered here by examining a fractional Fokker-Planck
type equation. The key step in the derivation of this Fokker-
Planck type equation is the application of Ito’s formula for
SDEs driven by fractional Brownianmotion, under fractional
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Figure 2: Plot of 𝑝(𝑥, 𝑡) with 𝑏(𝑥) = 𝑥: 𝑡 = 0.2, 𝑡 = 0.5, 𝑡 = 0.95, and 𝑡 = 1.25.

white noise analysis framework [1, 10, 16, 20, 21]. We sketch
the derivation here.

By Ito’s formula [10], Theorem 6.3.6, for a second order
differentiable function ℎ(⋅) with compact support, we have

𝑑ℎ (𝑋
𝑡
) = [𝑏 (𝑋

𝑡
)
𝜕ℎ

𝜕𝑥
(𝑋
𝑡
) + 𝐻𝑡

2𝐻−1
𝜀
2 𝜕
2
ℎ

𝜕𝑥2
(𝑋
𝑡
)] 𝑑𝑡

+ 𝜀
𝜕ℎ

𝜕𝑥
(𝑋
𝑡
) 𝑑𝐵
𝐻

𝑡
.

(15)

Taking expectations on both sides yields

E[
𝑑ℎ (𝑋

𝑡
)

𝑑𝑡
] = E [𝑏 (𝑋

𝑡
)
𝜕ℎ

𝜕𝑥
(𝑋
𝑡
)]

+ 𝐻𝑡
2𝐻−1

𝜀
2
E[

𝜕
2
ℎ

𝜕𝑥2
(𝑋
𝑡
)] .

(16)

Let 𝑝 = 𝑝(𝑥, 𝑡) be the probability density function of
the solution 𝑋

𝑡
of the system (2). Recall that E[ℎ(𝑋

𝑡
)] =

∫
R
ℎ(𝑥)𝑝(𝑥, 𝑡)𝑑𝑥; by integration by parts and 𝑝 = 0 at 𝑥 =

±∞, we obtain

∫
R

ℎ (𝑥) [
𝜕𝑝

𝜕𝑡
+
𝑏 (𝑥) 𝑝

𝜕𝑥
− 𝜀
2
𝐻𝑡
2𝐻−1 𝜕

2
𝑝

𝜕𝑥2
]𝑑𝑥 = 0; (17)

that is,

𝜕𝑝 (𝑥, 𝑡)

𝜕𝑡
= −

𝜕 [𝑏 (𝑥) 𝑝 (𝑥, 𝑡)]

𝜕𝑥
+ 𝜀
2
𝐻𝑡
2𝐻−1 𝜕

2
𝑝 (𝑥, 𝑡)

𝜕𝑥2
.

(18)

In the following, we numerically simulate this partial differ-
ential equation for two special cases: 𝑏(𝑥) = 𝑥 − 𝑥

3 and
𝑏(𝑥) = 𝑥, with finite noise intensity (for simplicity we take
𝜀 = 1).Through these two special cases, we expect to illustrate
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the impact of correlated noises on additive dynamical systems
as the Hurst parameter𝐻 varies.

Here, we perform the popular Crank-Nicolson scheme in
Matlab for (17) with zero boundary values;, the grid size is
0.05, total grid points are 801, and the time step size is 0.01.
And the initial probability density function is taken to be
standard normal; that is, 𝑝(𝑥, 0) = (1/√2𝜋)𝑒

−𝑥
2
/2.

Since the system is tridiagonal, we could solve it using
Thomas Algorithm efficiently. Moreover, for other initial
conditions and other drift coefficients, for instance, the initial
uniform distribution or 𝑏(𝑥) = 𝑥 − 𝑥

2, this method also
applies smoothly.

3.1. Numerical Simulation: 𝑏(𝑥) = 𝑥 − 𝑥
3. We first simulate

the dynamical evolutions of the probability density function
𝑝(𝑥, 𝑡) for the corresponding stochastic differential equation
(2) with the double-well drift 𝑏(𝑥) = 𝑥 − 𝑥

3, for various
values of 𝐻 > 1/2. The double-well dynamics is a rich
and typical model for understanding numerous physical
or geophysical systems [22, 23], focusing on the maxima
(minima), symmetry, kurtosis, and so forth.

As observed in Figure 1, the probability density function
𝑝(𝑥, 𝑡) evolves from the unimodal (one peak) to the flat top
and then to the bimodal (two peaks) shape for various Hurst
parameter values 𝐻, as time 𝑡 increases. Simultaneously, the
effect of Hurst parameter 𝐻 on the dynamics is significant.
As 𝐻 value increases, the plateau for 𝑝(𝑥, 𝑡) becomes lower
when time exceeds 𝑡 = 0.5.

3.2. Numerical Simulation: 𝑏(𝑥) = 𝑥. Now, for comparison
we investigate the dynamical evolutions of the probability
density function 𝑝(𝑥, 𝑡) of the corresponding stochastic
differential equation (2) with the linear drift 𝑏(𝑥) = 𝑥, which
is a rich toy example for understanding dynamical systems.

Also as observed in Figure 2, at given time instants,
𝑝(𝑥, 𝑡)’s peak becomes higher as𝐻 increases. This illustrates
the significant and distinguishing influence of Hurst param-
eter 𝐻 on the dynamics when time 𝑡 evolves. The bigger 𝐻
makes the solution 𝑋

𝑡
of (2) has more centralized value, but

the long time effect shows that the values of the solution 𝑋
𝑡

distribute more scatteredly.
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[21] G. Ünal, “Fokker-Planck-Kolmogorov equation for fBM:
derivation and analytical solution,” in Proceedings of the 12th
Regional Conference, pp. 53–60, Islamabad, Pakistan, 2006.

[22] D. Farrelly and J. E. Howard, “Double-well dynamics of two ions
in the Paul and Penning traps,” Physical Review A, vol. 49, no. 2,
pp. 1494–1497, 1994.

[23] E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, and
M. K. Oberthaler, “Single-particle tunneling in strongly driven
double-well potentials,” Physical Review Letters, vol. 100, no. 19,
Article ID 190405, 2008.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


