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Since the phase-locked loop (PLL) circuit was proposed in the 1930s, it is being used for a lot of situations when precise frequency
and phase references are required. Among these applications, synchronous telecommunication networks experienced a strong
development in order to support the explosive information traffic that the modern society demands. Consequently, bandwidth
became a decisive parameter, implying higher and higher frequencies for the clock signals exchanged between the nodes of
the networks and detected by PLLs. The necessity to improve clock precision that follows the bandwidth increase provoked
the improvement of the filter component of the PLLs, avoiding instability and high-frequency components in the reference
signals. Here, a technique of designing this kind of filter is presented, considering second-order filters, implying third-order PLLs.
Simulations show that following this technique produces very fast tracking processes, enabling precise operation even for very high
frequencies.

1. Introduction

Phase-locked loop (PLL) was conceived by de Bellescize in
1932 [1] and has been used to generate frequency and phase
signals for several types of applications such as demodulation,
digital signal transmission, and clock recovering in syn-
chronous networks. In the last thirty years, digital electronics
revolution produced high speed integrated service networks
based on master-slave time distribution systems with very
precise central clocks sending signals to slave nodes that, by
using cheap and precise PLLs, reconstruct the necessary time
basis [2].

Along this time, the implementation of circuits to execute
the PLL functions evolved from analog to digital circuits and
even software PLLs are now used in engineering applications
[1], including synchronous communication networks.

Considering telecommunication services, a first view
could indicate that multiplier phase detectors have been
replaced by digital phase and frequency detectors with charge
pump [3]. In spite of this, due to bandwidth requirements, the
development of optical clock detectors is based on multiplier

phase detection and they are very useful in high speed net-
works [4–6].

Consequently, the double-frequency jitter, which is less
critical in the digital versions of phase and frequency detec-
tors, becomes more significant with the development of high
speed optical networks and master oscillation drifts spoil the
synchronous state reachability [7, 9]. To solve this problem,
one can use high-order filters in the PLL, increasing the order
of the whole loop, but providing adequate high-frequency
operation.

Here, some design strategies for PLL filters are proposed,
in order to avoid double-frequency jitter effects, decreasing
considerably acquisition times and allowing good synchro-
nism performance for network nodes built with PLLs.

The filters to be chosen are all-pole for which there are
results about how to avoid bifurcations and undesired oscil-
lations [10]. The idea is to present different filter options to
implement PLLs with free-running frequencies of hundreds
of GHz.

In Section 2, some general PLL principles are discussed
in a very brief way, emphasizing the liner approximation
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and the transfer functions of the filter and of the whole
loop. Section 3 is about the root locus peculiarities of the
PLL all-pole transfer functions with order greater than 2. In
Section 4, the designing method is presented with Section 5
showing some examples to illustrate the robustness and
generality of the procedure. Section 6 shows and compares
results between the presented methodology and the usual
light-wave technology validating the described procedure
and showing its improvements. Section 7 presents some
concluding remarks.

2. General PLL Principles

The main PLL function is to generate an output signal V
𝑜
(𝑡)

having phase 𝜃
𝑜
(𝑡) that is related to phase 𝜃

𝑖
of an input signal

V
𝑖
(𝑡) so that the difference 𝜃

𝑖
(𝑡) − 𝜃

𝑜
(𝑡) maintains a constant

value as time passes; that is, the signals V
𝑖
(𝑡) and V

𝑜
(𝑡) reach

the same frequency [1].
As shown in Figure 1, PLLs are composed of three

fundamental blocks: a phase detector (PD), a linear low-pass
filter 𝐹, and a voltage controlled oscillator (VCO). The PD
compares the phase of the input signal V

𝑖
(𝑡) with the phase of

the VCO output signal V
𝑜
(𝑡), in order to achieve a constant

phase error as described above. Filter (𝐹) is supposed to
eliminate high-frequency components generated by the PD
operation. Filter (𝐹) also has the function of defining the PLL
dynamics [11].

When a PLL is used for clock extraction, the input signal
comes from the transmission medium, which may be pairs
of copper wires, microwave radio links, or optical fibers.
This input signal contains a component characterized by
the frequency of the clock used in the generation of the
transmission signal.

The other components of the input signal interact in
the PD with the signal V

𝑜
(𝑡) and a large portion of these

components are eliminated by the action of the loop filter.
A small fraction of these components, with small effective
power, will fall within the filter passing band and their effect
will be perceived as noise in the PLL dynamics [1, 11].

Consequently, clock extraction operation can be
described as the synchronization of the VCO with the
clock frequency component from the input signal. Thus, in
Figure 1, the input signal V

𝑖
(𝑡) and the VCO output signal

V
𝑜
(𝑡) are supposed to be periodic and given by

V
𝑖
(𝑡) = 𝐴 sin (𝜔

𝑜
𝑡 + 𝜃
𝑖
(𝑡)) ,

V
𝑜
(𝑡) = 𝑉

𝑜
cos (𝜔

𝑜
𝑡 + 𝜃
𝑜
(𝑡)) .

(1)

In high-frequency PLL implementations, object of this
work, the PD is commonly a signal multiplier with a multi-
plying factor denoted by𝐾

𝑚
[4, 5]. Considering, additionally,

that the filter eliminates the double-frequency terms, the
error signal V

𝑑
is

V
𝑑
(𝑡) = 𝐾

𝑑
sin (𝜃
𝑖
(𝑡) − 𝜃

𝑜
(𝑡)) , (2)

with 𝐾
𝑑
= 𝐾
𝑚
𝐴𝑉
𝑜
/2, called detection gain and measured in

volt/rad.
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Figure 1: PLL block diagram.

Here, the lock-in mode is considered and, consequently,
the PLL is operating around the synchronous state and the
right side of (2) can bewritten considering small phase errors;
that is, sin(𝜃

𝑖
(𝑡) − 𝜃

𝑜
(𝑡)) = 𝜃

𝑖
(𝑡) − 𝜃

𝑜
(𝑡) [7].

Besides, the filter is considered to be all-pole [10, 12] with
transfer function:

𝐹 (𝑠) =
𝑉
𝑐
(𝑠)

𝑉
𝑑
(𝑠)

=
𝑎
0

𝑃 (𝑠)
, (3)

with 𝑃(𝑠) = 𝑠𝑛 + 𝑎
𝑛−1
𝑠
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑎
1
𝑠 + 𝑎
0
and 𝑎
𝑖
being positive

constants.
Finally, as the VCO phase is controlled by V

𝑐
following

̇𝜃
𝑜
(𝑡) = 𝐾VV𝑐 (𝑡) , (4)

with𝐾V being called VCO constant and measured in rad/s⋅V,
the transfer function for the whole linear PLL is as follows:

𝐺 (𝑠) =
Θ
𝑜
(𝑠)

Θ
𝑖
(𝑠)

=
𝑎
0
𝐾

𝑠𝑃 (𝑠) + 𝑎
0
𝐾
. (5)

In PLL jargon, 𝐾 = 𝐾V𝐾𝑑 is called loop gain and is
measured in s−1 [1]. This parameter is important to calculate
the synchronization range of the linear PLL, that is, the
maximum angular frequency difference between V

𝑜
(𝑡) and

V
𝑖
(𝑡) for a synchronous state to be reachable. Calling |Δ𝜔| the

modulus of this angular frequency difference, synchroniza-
tion is possible if [10, 11]

|Δ𝜔| ≤ 𝐾. (6)

To give an idea of the meaning of (6), in typical optical
communication systems, a 20Gbits/s system with a tolerance
of 10 ppm for the clock signal is considered. Under these
conditions, the necessary loop gain to extract the clock needs
to be greater than 1.256⋅106 s−1. As a consequence of this high
gain, the filter needs to be carefully designed, in order to
combine synchronization conditions and stability.

3. All-Pole PLLs with Order Greater Than 2:
Root Locus Properties

As shown in the last section, the whole loop PLL transfer
function given by (5) has an all-pole form, with the following
properties:
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Figure 2: Root locus for all-pole PLL transfer functions: examples.

(i) the branches of the root locus of𝐺(𝑠) start at the zeros
of 𝑠𝑃(𝑠). In particular, one of the branches starts at the
origin, which is one of the poles of 𝑠𝑃(𝑠) [13];

(ii) the branch of the root locus of 𝐺(𝑠) starting at the
origin always enters the left half plane [10];

(iii) all branches of the root locus of𝐺(𝑠), as 𝑠 → ∞, tend
to infinity along asymptotes inclined relative to the
real axis by angles of𝜋/(𝑛+1), 3𝜋/(𝑛+1), 5𝜋/(𝑛+1), . . .
[13];

(iv) pairs of symmetrical root locus branches that go to
infinity along asymptotes not coincident with the real
axis and forming angles of magnitude less than 𝜋/2
with the real axis create pairs of imaginary poles when
crossing the imaginary axis. In general, the crossings
of different pairs of branches occur at different values
of 𝐾. The values of 𝐾 at each crossing will be the
solutions of the equation Δ

𝑛−1
(𝐾) = 0, where Δ

𝑛−1

is the (𝑛 − 1)-th Hurwitz minor of the polynomial
𝑠𝑃(𝑠) + 𝐾 [10];

(v) the onset of instability will happen at gain 𝐾
𝐼
, corre-

sponding to the first crossing of the imaginary axis in
the root locus of 𝑠𝑃(𝑠) + 𝐾;

(vi) all root locus branches that cross the imaginary axis
never come back [10]. This property only holds if the
zeros of 𝑃(𝑠) are all located in the left half-plane;

(vii) the consequence of the last property is that the
crossings of the imaginary axis will always occur two
at a time, corresponding to the conjugate complex
roots contained in symmetrical branches of the root
locus.

Considering these properties, root locus of transfer functions
given by (5) has the general appearance shown in Figure 2,
which exemplifies the root locus of normalized PLLs, that
is, with a 3 dB gain at angular frequency 1 rad/s. Figure 2(a)
presents a 6th-order Bessel filter [14, 15] in the loop and
Figure 2(b) presents a 4th-Butterworth filter [14, 15] in the
loop. As can be seen, it is possible to characterize the onset of

Table 1: Stability threshold for standard filters.

Order Butterworth Chebyshev Bessel Gaussian
2 1.4142 2.3998 3.0000 2.1974
3 0.7500 0.9205 2.0833 1.1665
4 0.5719 0.6106 1.8883 0.8688
5 0.4705 0.4499 1.8069 0.7195
6 0.3982 0.3501 1.7598 0.6264
7 0.3444 0.2910 1.7286 0.5613

instability for a transfer function according to (5) by the value
of 𝐾
𝐼
of the loop gain. Such a value of loop gain is associated

with a pair of imaginary poles of transfer function.
As a practical consequence of these properties, PLLs

present a range of positive values of𝐾, such that, for all values
in that range, all poles of transfer function 𝐺(𝑠) of (5) are
located in the left side of the complex plane, implying that
the system is stable. Another consequence is that a stability
threshold may be defined for any system described by this
transfer function.

This stability threshold 𝐾
𝐼
is defined as the value of the

gain 𝐾 for which the first pair of root locus branches crosses
the imaginary axis. Thus, all PLL systems described by a
transfer function (5), operating with𝐾 < 𝐾

𝐼
, are stable.

There are other additional considerations to choose 𝐾,
but only values lesser than 𝐾

𝐼
must be used. Determination

of stability threshold 𝐾
𝐼
is discussed in the Appendix, where

some algorithms are presented. As a matter of illustration,
Table 1 shows values of𝐾

𝐼
for some normalized standard filter

types, considering 𝐺(𝑠) order.

4. Design Method

In this section, a new method for designing filters for PLLs
is presented. The method is based on the definition of a
standard form for the transfer function [14, 15] for the
loop filter. The procedure is divided into two stages: gain
calculation and denormalization of the transfer function.
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4.1. Defining the Transfer Function Gain. As the permitted
VCO gain range is defined, as shown in the former section,
the next step is to choose a value for this parameter. In order
to do this, some objectives must be conciliated.

The first is to obtain a PLL able to operate with high gains
in optical digital communication systems [8] and also capable
of operating in face of the phenomenon so-called “jitter.”

A second point is that PLL transfer functions𝐺(𝑠) amplify
frequency variations in the input phase signal if there are
overshoots in the frequency response of |𝐺(𝑠)|2, or, in other
words, if there are angular frequencies 𝜔 such that |𝐺(𝑗𝜔)|2 >
1.

Consequently, |𝐺(𝑗𝜔)|2 showing overshoots must be
avoided. Calling 𝐷(𝑠) the denominator polynomial of 𝐺(𝑠),
one of the ways to attain this objective is to impose |𝐷(𝑗𝜔)|2
monotonically increasing.

Considering that 𝐷(𝑠) = 𝑠𝑃(𝑠) + 𝑎
0
𝐾 and |𝐷(𝑗𝜔)|2 =

𝐷(𝑗𝜔)𝐷(−𝑗𝜔), it follows that |𝐷(𝑗𝜔)|2 assumes the following
form: |𝐷(𝑗𝜔)|2 = 𝜔2𝑛+2 + ⋅ ⋅ ⋅ + (𝑎2

0
−2𝑎
1
𝑎
0
𝐾)𝜔
2

+ (𝑎
0
𝐾)
2, with

𝑎
0
and 𝑎
1
being the coefficients of 𝑃(𝑠) from (5).

By using an analogous reasoning to the “maximally flat
at 𝜔 = 0” approach used in the Butterworth approximation
[14, 15], in the ideal situation, all coefficients of powers of 𝜔
different from 2𝑛 + 2 and 0 must be zero, in order to vanish
the derivatives of |𝐷(𝑗𝜔)|2 up to the order 2𝑛 + 1 at 𝜔 = 0.

This is not possible, since several coefficients of |𝐷(𝑗𝜔)|2
do not depend on 𝐾. But, since the main objective is to
have |𝐷(𝑗𝜔)|2 with monotonically increasing behavior and,
in the normalized case, only the angular frequencies of the
first order are responsible to characterize the pass-band, the
stability condition can be guaranteed.

Therefore, the most significant nonconstant term in
|𝐷(𝑗𝜔)|

2 is related to 𝜔2, since the next term corresponds to
𝜔
4, being smaller or of the same order of magnitude as 𝜔2. If

the parameter 𝐾 is reduced, the coefficient of the 𝜔2 term is
(𝑎
2

0
− 2𝑎
1
𝑎
0
𝐾) for all loop filter transfer functions with orders

equal to or greater than 2, increasing up to reach 𝑎2
0
for𝐾 = 0.

This coefficient of𝜔2 passes through zero when𝐾 is given
by

𝐾
𝑅
=
𝑎
0

2𝑎
1

. (7)

If𝐾
𝑅
is further decreased up to a value smaller than𝐾

𝐼
, 10

to 20%reductions are enough to have |𝐷(𝑗𝜔)|2monotonically
increasing and therefore free of overshoots. When 𝐾

𝑅
is

greater than 𝐾
𝐼
, 50% reductions in the value given by (7)

imply that |𝐷(𝑗𝜔)|2 ismonotonically increasing and therefore
free of overshoots.

4.2. Denormalizing the Transfer Function. Suppose that the
aim is to obtain a PLL transfer function 𝐺(𝑠) following an
all-pole filter transfer function. Since all standard filter types
have transfer functions expressed in normalized form, that
is, transfer functions with 3 dB frequency equal to 1, then the
normalized coefficient 𝑎

0
and the normalized denominator

𝑃(𝑠
󸀠

) are known, where 𝑠󸀠 is the normalized complex variable.

Following this procedure, one can precisely define the
PLL transfer function 𝐺(𝑠), with the transfer function 𝐹(𝑠) of
the loop filter being automatically defined by 𝐺(𝑠).

The expression for the normalized PLL loop transfer
function 𝐺(𝑠󸀠) is given by

𝐺(𝑠
󸀠

) =
𝑏
󸀠

0

𝑠
󸀠𝑛+1

+ 𝑏
󸀠

𝑛
𝑠
󸀠𝑛
+ 𝑏
󸀠

𝑛−1
𝑠
󸀠𝑛−1

+ ⋅ ⋅ ⋅ + 𝑏
󸀠

1
𝑠
󸀠
+ 𝑏
󸀠

0

=
𝑏
󸀠

1
𝐾
𝑅

𝑠
󸀠𝑛+1

+ 𝑏
󸀠

𝑛
𝑠
󸀠𝑛
+ 𝑏
󸀠

𝑛−1
𝑠
󸀠𝑛−1

+ ⋅ ⋅ ⋅ + 𝑏
󸀠

1
𝑠
󸀠
+ 𝑏
󸀠

1
𝐾
𝑅

,

(8)

where 𝑛 + 1 is the order of the PLL. The normalized loop
gain𝐾

𝑅
= 𝑏
󸀠

0
/𝑏
󸀠

1
and the normalized coefficients 𝑏󸀠

𝑛
, . . . , 𝑏

󸀠

0
are

assumed to be determined by the chosen type of filter [12, 14–
16].

In order to implement the desired transfer function 𝐺(𝑠)
and the loop filter transfer function 𝐹(𝑠), it is necessary
to denormalize 𝐺(𝑠󸀠) given by (8) by using the appropriate
angular frequency 𝜔

𝑑
that plays an important role in defining

loop gain 𝐾. Additionally, designing all-pole filter [12, 16]
requires the definition of the group delay function 𝐷(𝜔),
evaluated at 𝜔 = 0, or simply𝐷(0).

As shown in [12, 16], the group delay at 𝜔󸀠 = 0,
corresponding to a normalized transfer function given by (8),
is as follows:

𝐷
𝑁
(0) =

𝑏
󸀠

1

𝑏
󸀠

0

=
1

𝐾
𝑅

. (9)

The denormalized PLL transfer function 𝐺(𝑠) has the
same form as (8) but with coefficients 𝑏

𝑛−1
, . . . , 𝑏

1
and loop

gain 𝐾. Thus, the group delay function at 𝜔 = 0 correspond-
ing to the 𝐺(𝑠) should be given by the same form as (9), but
with 𝐾 replacing 𝐾

𝑁
; that is,

𝐷(0) =
1

𝐾
. (10)

Besides, for a normalized low-pass frequency transforma-
tion, the normalized group delay𝐷

𝑁
(𝜔
󸀠

) and the group delay
𝐷(𝜔), as shown in [12], are related by

𝐷(𝜔) =

𝐷
𝑁
(𝜔
󸀠

)

𝜔
𝑑

, (11)

and, consequently:

𝐾 = 𝜔
𝑑
𝐾
𝑅
. (12)

Thus, since 𝐾
𝑅
, calculated by the procedure defined in

Section 4.1, is determined by coefficients 𝑏󸀠
0
and 𝑏󸀠
1
, in order to

obtain a PLL transfer function with a given 𝐾, the standard
filter must be denormalized to a frequency 𝜔

𝑑
, by using (12).

Then, the substitution 𝑠󸀠 = 𝑠/𝑤
𝑑
in (5) results in the PLL

transfer function:

𝐺 (𝑠) =
𝜔
𝑛+1

𝑑
𝑏
󸀠

1
𝐾
𝑅

𝑠
𝑛+1

+ 𝜔
𝑑
𝑏
󸀠

𝑛
𝑠
𝑛
+ 𝜔
2

𝑑
𝑏
󸀠

𝑛−1
𝑠
𝑛−1

+ ⋅ ⋅ ⋅ + 𝜔
𝑛+1

𝑑
𝑏
󸀠

1
𝐾
𝑅

=
𝑏
1
𝐾

𝑠
𝑛+1

+ 𝑏
𝑛−1
𝑠
𝑛
+ ⋅ ⋅ ⋅ + 𝑏

1
𝑠 + 𝑏
1
𝐾
,

(13)
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Figure 3: PLL with a 5th-order Butterworth filter.

with 𝑤
𝑑
being the quotient between the 3 dB angular fre-

quency of the chosen standard filter and the 3 dB angular
frequency of the normalized transfer function.

5. Application Examples

Here, the described procedure is applied to three types of
PLL all-pole filters: a 5th-order Butterworth, a 5th-order
Chebyshev, and an arbitrary 3rd-order filter. For each case,
the PLL frequency response and the capture performance
are presented, showing that the developed design procedure
allows very fast signal tracking. The results were obtained by
simulations with MATLAB [17] and considering the linear
PLL model with phase error belonging to the interval [−𝜋, 𝜋]
[18].

5.1. 5th-Order Butterworth. A 5th-order Butterworth filter
was designed by using the methodology described here and
the following parameters were assumed or calculated: 𝐾

𝐼
=

0.4705 (rad/s)/V; 𝐾
𝑅

= 0.1545 (rad/s)/V; 𝐾V = 1.256 ⋅

10
6 (rad/s)/V; 𝜔

𝑁
= 8.133 ⋅ 10

6 (normalized); 𝜔
3 dB PLL =

2.85 ⋅ 10
6 rad/s; and 𝜔

3 dB FILTER = 8.13 ⋅ 10
6 rad/s.

Simulation results are shown in Figure 3: PLL fre-
quency response (Figure 3(a)) and capture performance
(Figure 3(b)). It can be observed that the 3 dB bandwidth is
about half of the sum frequency of the input signal with the
VCO center frequency and tracking time is about 10𝜇s.

In this case, the reference loop gain 𝐾
𝑅
resulted in a PLL

frequency response free of overshoots, without the need of
reducing this value.

5.2. 1 dB-Ripple 5th-Order Chebyshev. A 1 dB-ripple 5th-
order Chebyshev filter was designed by using the method-
ology described here and the following parameters were
assumed or calculated: 𝐾

𝐼
= 1.2317 (rad/s)/V; 𝐾

𝑅
=

0.5022 (rad/s)/V; corrected 𝐾
𝑅
= 0.4018 (rad/s)/V; 𝐾V =

1.256 ⋅10
6 (rad/s)/V;𝜔

𝑁
= 2.8117 ⋅10

6 (normalized);𝜔
3 dB PLL

= 3.0643 ⋅ 106 rad/s; and 𝜔
3 dB FILTER = 3.8087 ⋅ 10

6 rad/s.

Simulation results are shown in Figure 4: PLL fre-
quency response (Figure 4(a)) and capture performance
(Figure 4(b)). It can be observed that the 3 dB bandwidth is
less than half of the sum frequency of the input signal with the
VCO center frequency and the tracking time is about 11 𝜇s.

In this case, the reference loop gain 𝐾
𝑅
was corrected

to 80% of the value determined by (7), resulting in a PLL
frequency response with 0.077 dB overshoot.

5.3. Nonstandard Filter. To show the robustness of the proce-
dure, a nonstandard third-order all-pole filter is designed to
work as the PLL filter, implying a 4th-order PLL. In this case,
the chosen filter transfer function is as follows:

𝐹 (𝑠) =
9

𝑠
3
+ 7𝑠
2
+ 8𝑠 + 9

. (14)

The following parameters were assumed or calculated:
𝐾
𝐼
= 2.0 (rad/s)/V; 𝐾

𝑅
= 0.75 (rad/s)/V; 𝐾V = 1.256 ⋅

10
6 (rad/s)/V; 𝜔

𝑁
= 1.883 ⋅ 10

6 (normalized); 𝜔
3 dB PLL =

2.89 ⋅ 10
6 rad/s; and 𝜔

3 dB FILTER = 3.84 ⋅ 10
6 rad/s.

Simulation results are shown in Figure 5: PLL fre-
quency response (Figure 5(a)) and capture performance
(Figure 5(b)). It can be observed that the 3 dB bandwidth is
less than half of the sum frequency of the input signal with the
VCO center frequency and the tracking time is about 11 𝜇s.

In this case, the reference loop gain 𝐾
𝑅
was corrected

to 89% of the value determined by (7), resulting in a PLL
frequency response with 0.011 dB overshoot.

The examples have shown that, despite the different
structures presented for the filters, the tracking time is almost
the same in the analyzed cases. Consequently, it could be
conjectured that the tracking time performance depends only
on a good choice for the gain.

6. Designing for Light-Wave Technology

In order to show comparisons between the methodology
developed here and results presented for synchronization
concerning light-wave networks, the reference work pre-
sented in [5] will be discussed.
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Figure 4: PLL with a 5th-order Chebyshev filter.
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Figure 5: PLL with a third-order nonstandard filter.

R R

C CVi Vo

Figure 6: 𝑅𝐶 filter for PLL.

There, the authors describe an 𝑅𝐶 filter used in the PLL,
shown in Figure 6, with a transfer function given by

𝐹 (𝑠) =
𝑉
𝑜
(𝑠)

𝑉
𝑖
(𝑠)

=
𝑎
0

𝑠
2
+ 𝑎
1
𝑠 + 𝑎
0

, (15)

with 𝑎
0
= 1/𝑅𝐶 and 𝑎

1
= 3/𝑅𝐶.

Results obtained in [5] show the loop behavior for loop
gains ranging from 500Hz to 1MHz and undesirable self-
sustained oscillations appear around 1MHz gain.

Here, the filter was redesigned starting with a normalized
form that considers 𝑅 = 𝐶 = 1, corresponding to 𝐾

𝐼
=

3 (rad/s)/V and 𝐾
𝑅
= 0, 1667 (rad/s)V. With the values used

in [5], 𝑅𝐶 = 1.034 ⋅ 10
6 s and, consequently, 𝑎

0
= 9.35317 ⋅

10
11 s−2 and 𝑎

1
= 2.90135 ⋅ 10

6 s−1. Since 𝑎
0
and 𝑎

1
are

denormalized by𝜔2
𝑁
and𝜔

𝑁
, respectively, it follows that𝜔

𝑁
=

967.118 ⋅ 10
3.

For the situation with loop gain𝐾 = 1.885 ⋅ 10
6 (rad/s)/V,

considering the calculated 𝜔
𝑁
, the corresponding denormal-

ized 𝐾 is 1.9491 (rad/s)/V, well above the value of 𝐾
𝑅
=

0.1667 (rad/s)/V and near 𝐾
𝐼
= 3 (rad/s)/V. This proximity

suggests that the PLL with this loop filter and with 𝐾 =

1.885⋅10
6 (rad/s)/V is still stable, but with damped oscillatory

behavior during input phase transients.
This behavior is observed in the capture process shown

in Figure 7, obtained in a simulation with a loop filter with
the same 𝑅 and 𝐶 values as used in [5] and with 𝐾 =

1.885 ⋅ 10
6 (rad/s)/V. Comparing these results with the results
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Figure 7: PLL capture with the 𝑅𝐶 filter.
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Figure 8: PLL with a redesigned 𝑅𝐶 filter.

presented in [5], it can be concluded that they are the same,
validating the design and simulation procedures followed
here.

Additionally, these procedures can be applied as an
improvement to the design presented in [5], taking the same
PLL 𝑅𝐶 filter and considering a loop gain corresponding to
1MHz as, in this case, the PLL proposed in [5] fails to capture
the synchronous state.

The denormalization factor is 𝜔
𝑁

= 37.692 ⋅ 10
6,

considerably higher than that presented in [5]. Consequently,
𝑅𝐶 = 2.653 ⋅ 10

−8 s that is feasible with 𝑅 = 22Ω and
𝐶 = 1.21 nF. Simulation results are shown in Figure 8: PLL
frequency response (Figure 8(a)) and capture performance
(Figure 8(b)). It can be observed that the tracking time has
order of magnitude equal to 1.5𝜇s.

7. Conclusions

Methods for the implementation of PLL with order greater
than 2were presented, providing the possibility of adjustment
of loop gain 𝐾 for arbitrary large values. The obtained PLLs
are stable with a relatively large margin of robustness.

It was shown that, starting with normalized forms of
the loop transfer functions, parameters defining the limits
of instability for the PLLs can be calculated, permitting
one to obtain transfer functions free of or with acceptable
overshoots.

The procedure has shown that the loop filters to be used
in PLLs may be scaled to permit the use of arbitrarily high
loop gains.

With the availability of wide-band operational amplifiers,
with gain-bandwidth products greater than 100MHz, it
can be anticipated that there are no serious limitations to
the practical implementation of PLLs with the filter types
discussed here.

Such PLLs could be useful in the implementation of clock
recovery in large speed optical communication systems, as
well as in other digital high speed systems.

Appendix

Algorithm for the Calculus of 𝐾
𝐼
for 𝑛 = 2 to 5. Using some

properties from the theory of equations and considering the
expression of 𝑃(𝑠) as described in this work,
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(i) 𝑛 = 2: 𝐾
𝐼
= 𝑎
1
;

(ii) 𝑛 = 3: 𝐾
𝐼
= (𝑎
2
𝑎
1
− 𝑎
0
)/𝑎
2

2
;

(iii) 𝑛 = 4: 𝐾
𝐼
= (𝑎
1
− 𝑎
3
⋅ 𝑑)𝑑/𝑎

2

2
, where 𝑑 is one of the

roots of the equation 𝑑2 − 𝑎
2
𝑑 + 𝑎
0
= 0. Both values

of 𝑑 must be used, giving two possible values for 𝐾
𝐼
.

The smallest positive value must be chosen;
(iv) 𝑛 = 5: 𝐾

𝐼
= (𝑎
1
− 𝑎
3
⋅ 𝑑 + 𝑑

2

) ⋅ 𝑑/𝑎
0
, where 𝑑 is one

of the roots of the equation 𝑎
4
𝑑
2

− 𝑎
2
𝑑 + 𝑎
0
= 0. Both

values of 𝑑 must be used, giving two possible values
for𝐾
𝐼
. The smallest positive value must be chosen.

If only negative values are obtained for 𝐾
𝐼
, the proposed

transfer function is not suitable for the use as a PLL loop filter,
since the resulting loop will be unstable.
General Algorithm for the Calculus of 𝐾

𝐼
. Consider that the

denominator of 𝐺(𝑠) can be written as

𝑠𝑃 (𝑠) + 𝑎
0
𝐾 = 𝐴 (𝑠) + 𝑎

0
𝐾 + 𝑠𝐵 (𝑠) , (A.1)

where 𝐴(𝑠) and 𝐵(𝑠) are even polynomials and the loop gain
𝐾
𝐼
causes the branches of the root locus of 𝐺(𝑠) to cross the

imaginary axis at a pair of pure imaginary roots ±𝑗𝜔
𝐶
.

Making 𝑠 = 𝑗𝜔
𝐶
results in

𝐴 (𝑗𝜔
𝐶
) + 𝑎
0
𝐾
𝐼
+ 𝑗𝜔
𝐶
𝐵 (𝑗𝜔
𝐶
) = 0. (A.2)

Then, real and imaginary parts of the last equation are
zero and

(i) 𝐵(𝑗𝜔
𝐶
= 0);

(ii) 𝐾
𝐼
= −𝐴(𝑗𝜔

𝐶
)/𝑎
0
.

As 𝐴(𝑗𝜔
𝐶
) and 𝐵(𝑗𝜔

𝐶
) are even polynomials in 𝜔, the

value of 𝜔
𝐶
is obtained as the positive root of (A.1) and

by substituting this value in (A.2) it is possible to obtain
𝐾
𝐼
. Negative values of 𝐾

𝐼
mean that the proposed transfer

function is not suitable for usage as loop filter of a PLL.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] R. E. Best, Phase-Locked Loops, McGraw Hill, New York, NY,
USA, 5th edition, 2003.

[2] R. B. Pinheiro, J. J. Da Cruz, and J. R. C. Piqueira, “Robust clock
generation system,” International Journal of Control, vol. 80, no.
1, pp. 35–44, 2007.

[3] W. Zhang and N. J. Wu, “A novel hybrid phase-locked-loop
frequency synthesizer using single-electron devices and CMOS
transistors,” IEEE Transactions on Circuits and Systems I: Regu-
lar Papers, vol. 54, no. 11, pp. 2516–2527, 2007.

[4] F. G. Agis, C. Ware, D. Erasme, R. Ricken, V. Quiring, and W.
Sohler, “10-GHz clock recovery using an optoelectronic phase-
locked loop based on three-wave mixing in periodically poled
lithium niobate,” IEEE Photonics Technology Letters, vol. 18, no.
13, pp. 1460–1462, 2006.

[5] A. Bogoni, L. Pot̀ı, F. Ponzini, and P. Ghelfi, “Electrical equiva-
lentmodel for an optical VCO in a PLL synchronization scheme
for ultrashort optical pulse sources,” Journal of Lightwave
Technology, vol. 24, no. 1, pp. 286–294, 2006.

[6] M. Saruwatari, “All-optical signal processing for terabit/second
optical transmission,” IEEE Journal on Selected Topics in Quan-
tum Electronics, vol. 6, no. 6, pp. 1363–1374, 2000.

[7] J. R. C. Piqueira, S. A. Castillo-Vargas, and L. H. A. Monteiro,
“Two-way master-slave double-chain networks: limitations
imposed by linear master drift for second order PLLs as slave
nodes,” IEEE Communications Letters, vol. 9, no. 9, pp. 829–831,
2005.

[8] J. R. C. Piqueira, E. Y. Takada, and L.H. A.Monteiro, “Analyzing
the effect of the phase-jitter in the operation of second order
phase-locked loops,” IEEE Transactions on Circuits and Systems
II, vol. 52, no. 6, pp. 331–335, 2005.

[9] R. Carareto, F. M. Orsatti, and J. R. C. Piqueira, “Reachability of
the synchronous state in a mutually connected PLL network,”
International Journal of Electronics and Communications, vol.
63, no. 11, pp. 986–991, 2009.

[10] J. R. C. Piqueira and L. H. A. Monteiro, “All-pole phase-locked
loops: calculating lock-in range by using Evan’s root-locus,”
International Journal of Control, vol. 79, no. 7, pp. 822–829, 2006.

[11] F. M. Gardner, Phaselock Techniques, John Wiley & Sons,
Hoboken, NJ, USA, 3rd edition, 2005.

[12] H. J. Blinchikoff and G. R. Vaughan, “All-pole phase-locked
tracking filter,” IEEE Transactions on Communications, vol. 30,
no. 10, pp. 2312–2318, 1982.

[13] K. Ogata, Modern Control Engineering, Prentice-Hall, Engle-
wood Cliffs, NJ, USA, 3rd edition, 1997.

[14] W. K. Chen, Passive and Active Filters Theory and Implementa-
tions, John Wiley & Sons, Hoboken, NJ, USA, 1986.

[15] D. E. Johnson, Introduction to Filter Theory, Prentice Hall,
Upper Saddle River, NJ, USA, 1976.

[16] A. I. Zverev, Handbook of Filter Synthesis, John Wiley & Sons,
New Jersey, NJ, USA, 1967.

[17] S. Attaway,Matlab: APractical Introduction to Programming and
Problem Solving, Elsevier, Waltham, Mass, USA, 2nd edition,
2012.

[18] G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yul-
dashev, “Analytical method for computation of phase-detector
characteristic,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 59, no. 10, pp. 633–637, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


