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The shear strength parameters (i.e., the internal friction coefficient 𝑓 and cohesion 𝑐) are very important in rock engineering,
especially for the stability analysis and reinforcement design of slopes and underground caverns. In this paper, a probabilistic
method, Copula-based method, is proposed for estimating the shear strength parameters of rock mass. The optimal Copula
functions between rock mass quality 𝑄 and 𝑓, 𝑄 and 𝑐 for the marbles are established based on the correlation analyses of the
results of 12 sets of in situ tests in the exploration adits of Jinping I-Stage Hydropower Station. Although the Copula functions are
derived from the in situ tests for the marbles, they can be extended to be applied to other types of rock mass with similar geological
and mechanical properties. For another 9 sets of in situ tests as an extensional application, by comparison with the results from
Hoek-Brown criterion, the estimated values of 𝑓 and 𝑐 from the Copula-based method achieve better accuracy. Therefore, the
proposed Copula-based method is an effective tool in estimating rock strength parameters.

1. Introduction

The shear strength parameters including friction coefficient
𝑓 (the tangent of friction angle 𝜑) and cohesion 𝑐 are the
most fundamental mechanical parameters for rock mass.
They are of very high importance for stability evaluation and
support design of rock mass in rock engineering, especially
for landslide risk mitigation. Different approaches including
laboratory tests, in situ tests, back analysis, and empirical
equations can be used to estimate these strength parameters.
In the laboratory tests, scale effects are involved since rock
specimens are of small sizes [1, 2]. The back analysis method
is also recommended by [3, 4] the fact that it might be
more reliable than laboratory or in situ test method. Some
empirical equations between shear strength parameters and
geological indices are widely used due to simplicity and

practicality [5–13]. The empirical equations based on famous
Hoek-Brown criterion are [13]
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where 𝑚
𝑏

is a reduction of the rock material constant 𝑚
𝑖

and
obtained by

𝑚
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= 𝑚
𝑖

exp (
GSI − 100

28 − 14𝐷
) , (2)
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where GSI is the Geological Strength Index and 𝐷 is a
disturbance factor, depending on the degree of disturbance
by which the rock mass has been subjected to blast damage
and stress relaxation.The 𝐷 varies from zero for undisturbed
in situ rock mass to 1 for very disturbed rock mass. 𝑠 and 𝑎 in
(1) can be calculated by

𝑎 =
1

2
+

1

6
(𝑒−GSI/15 − 𝑒−20/3) ,

𝑠 = exp(
GSI − 100

9 − 3𝐷
) .

(3)

In (1),𝜎
𝑐

is uniaxial compressive strength,𝜎
3𝑛

= 𝜎
3max/𝜎

𝑐

,
and 𝜎

3max is the upper-limit value of confining stress dis-
cussed by Hoek et al. [13].

It is important to take full advantage of in situ test data in
order to establish the correlativity between geological indices
and mechanical parameters of rock mass. With regard to
the correlativity of the above variables, an effective way is
to establish their joint distribution function. The common
statistical methods for obtaining joint distribution function
of variables are generally based on two assumptions; that is,
the variables have the samemarginal distributions and follow
the normal distribution [14]. However, rock mass param-
eters do not always follow the normal distribution especially
as the number of samples is small [15]. With respect to small
samples, normal information spread estimation method
(NISEM) [15] is suitable. Meanwhile, Copula theory [16–
21] is a fairly effective method to establish the joint distri-
bution function of nonnormal distribution variables. The
advantages of Copula theory are that the marginal distribu-
tions and dependence structure of variables can be studied
separately and the variables can follow any distributions. The
Copula theory has been widely used in many fields such as
insurance [16], finance [17], hydrology [18–20], and geotech-
nical/geological engineering [21].

In this paper, the correlations between the rock mass
quality indices (i.e., rock quality designation (RQD), rock
mass quality (𝑄), and Rock Block Index (RBI)) and the
shear strength parameters (𝑓 and 𝑐) are investigated based
on the results of in situ direct shear tests at Jinping I-Stage
Hydropower Station in China. It shows that 𝑄 presents the
strongest correlation with the shear strength parameters.
Then, the joint distribution functions of 𝑄 and 𝑓, 𝑄 and 𝑐 are
proposed based on Copula theory. By means of the functions
and the given guarantee rates, the shear strength parameters
can be estimated. Compared with those estimated by Hoek-
Brown criterion, the estimated values using the proposed
Copula-based method are closer to the in situ tests ones.

2. Correlations between Rock Mass Quality
Indices and Shear Strength

2.1. In Situ Test Data. The Jinping Hydropower Station is
located on the middle reach of the Yalong River, in Sichuan,
China. It has a double-curvature arch dam with a height of
305m and a total installed capacity of 3300MW [22, 23].
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Figure 1: The sketch of the in situ direct shear test.

The Hydropower Station is located in the east edge of the
Tibet Plateau tectonic belt. Due to the rapid crust uplift
during the Quaternary, the steep slopes exist on both sides
of the valley deeply cut by Yalong River. The stratum in the
dam zone consists of a series of metamorphic rocks of middle
of Triassic period, of which the great majority are marbles
with grey orwhite andfine-grained texture.Themainmineral
compositions of the marble are calcite and dolomite. The
uniaxial compressive strength of the freshmarble is about 60–
75MPa.

In order to investigate the shear strength parameters of
the representative marbles, 12 sets of in situ direct shear tests
with five similar specimens in each set were performed in
the exploration adits of Jinping I-Stage Hydropower Station.
Figure 1 shows the sketch of in situ direct shear test whichwas
performed using flat stacking method [24]. The side length
of each cube specimen is 1m which contains in general two
sets of joints (bedding joints and cross joints; see Figure 1).
RQD and RBI [25, 26] of each specimen can be obtained
using scanline field mapping method. The scanline used for
measuring RQD was parallel to shear direction. The shear
direction was parallel to the bedding joint along which the
shear deformation happened. The five similar specimens in a
set were tested at different normal stress 𝜎

𝑛

from 2 to 10MPa.
The shear strength parameters (𝑓 and 𝑐) of each set are
obtained by linear regression according to Mohr-Coulomb
criterion. A good fitting straight line between the peak shear
stress 𝜏 and normal stress 𝜎

𝑛

can be derived from each set test
data for which the 𝑅2 of fitting degree is greater than 0.9 (see
Figure 2). The test results are shown in Table 1, in which the
rock mass quality indices are the average of each set samples,
respectively.

2.2. Correlation Measure. Pearson linear correlation coeffi-
cient 𝛾

𝑛

[27], Spearman’s rank correlation coefficient 𝜌
𝑛

[28],
and Kendall’s rank correlation coefficient 𝜏

𝑛

[29] are widely
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Figure 2: Linear regression of normal stress 𝜎
𝑛

versus shear stress 𝜏
for set number 1 in Table 1.

Table 1: Results of in situ direct shear tests and rock mass quality
indices of the specimens.

Set
number

Rock mass quality indices Shear strength
parameters

RQD/% RBI 𝑄 𝑓 𝑐/MPa
1 75.3 17.6 30.5 1.79 1.95
2 89.3 31.5 23.8 1.38 1.98
3 96.8 41.6 38.7 1.17 1.50
4 99.3 31.8 39.7 2.20 2.25
5 96.4 43.4 38.6 1.39 1.80
6 98.1 22.6 26.5 1.60 1.80
7 59.8 8.0 8.1 1.80 2.80
8 56.0 10.3 5.2 1.17 1.20
9 65.9 14.3 8.9 1.23 2.41
10 77.4 13.2 5.2 0.56 3.00
11 67.9 9.0 5.4 1.07 3.25
12 51.8 7.0 4.6 1.15 4.32

used to measure how relevant the variables are. They can be
calculated by
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Table 2 shows the results of the 𝛾
𝑛

, 𝜌
𝑛

, and 𝜏
𝑛

of test data.
There are clearly positive correlations (the same variation

Table 2: Correlation coefficients of the rock mass quality indices
and the shear strength.

Variables Pearson 𝛾
𝑛

Spearman 𝜌
𝑛

Kendall 𝜏
𝑛

RQD-f 0.307 0.386 0.303
RBI-f 0.241 0.376 0.303
Q-f 0.550 0.656 0.545
RQD-c −0.517 −0.397 −0.333
RBI-c −0.573 −0.635 −0.515
Q-c −0.563 −0.517 −0.485

trend) between three rock mass quality indices (RQD, RBI,
and 𝑄) and 𝑓. The correlation coefficients between 𝑄 and 𝑓
are much greater than those between RQD and 𝑓, RBI and 𝑓.
There is clearly negative correlation (changes in the opposite
trend) between the three indices and 𝑐. The correlation
between RBI and 𝑐 is slightly better than 𝑄 and 𝑐, while
RQD and 𝑐 have the worst correlation. In summary, 𝑄 has
the best correlation with shear strength parameters (𝑓 and
𝑐). In fact, RQD and RBI evaluate the rock mass quality only
by the integrality of rock core. While many other factors,
such as joint surface roughness and degree of weathering
for dominantly oriented joint sets, joint water reduction,
stress reduction factor, and volumetric joint count, are fully
involved in 𝑄-system, the 𝑄-system, therefore, provides a
comprehensive description on rock mass quality [30]. The
shear strength parameters of jointed rock mass are generally
controlled by complex geological conditions and mechanical
behaviors of rock material and so on. The best correlation
between𝑄 and the shear strength parameters in this statistical
study also indicates that 𝑄-system associated with multiple
factors of influence on 𝑐 and𝑓 of jointed rocksmore precisely
depicts the quality of rock mass.

The correlation measure indicates that, for the in situ
tests presented in this paper, the marbles with higher rock
mass quality indices show higher friction angle and lower
cohesion. Many researchers had also found that, for rocks
and soils, there was a negative correlation between 𝑓 and 𝑐
[31, 32]. If this negative correlation is true between 𝑓 and 𝑐, it
is easily understood that a variable has a positive correlation
with one (𝑓) of shear strength parameters while a negative
correlation must appear with the other (𝑐) based on the pure
mathematical logic. As shown in Figure 1, there are some
intact rock segments on the sheared bedding joint in the
case of relatively low 𝑄 value due to cross joint, which might
explain why higher 𝑄 has higher 𝑓 and lower 𝑐. The shear
failure occurs along the weak bedding joint with a relatively
low 𝑐 value on condition that the tested specimen has a high𝑄
value (good rock mass quality). When a low 𝑄 value appears,
these intact rock block segments on the shear surface must
be thus cut through before reaching peak strength, which can
increase the cohesion 𝑐 of the failure surface.

3. Copula-Based Method

3.1. Copula Theory. Considering multivariate random vari-
ables 𝑋

1

, . . . , 𝑋
𝑖

, . . . , 𝑋
𝑘

withmarginal distribution functions



4 Mathematical Problems in Engineering

Determine the best relevant variable (Q) of target

Target variables (c,f) and their relevant variables (Q, RQD and RBI)

Reject

Generate a suitable marginal distribution functional form (FX𝑖
(xi)), as (9)

Accept

Determine suitable multivariable joint distribution
H (i.e., Copula functional forms), as (6) and (12)

Confirm the optimal Copula function C

A guarantee rate 𝛽

Calculate the AIC values, as (13) and (14)

Estimate the values of target variables, as (17a) and (17b)

Correlation measure, as (4)

NISEM, as (7) and (8)

K-S test, as (10)

Figure 3: The calculation flow chart of Copula-based method.
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.
The joint distribution function 𝐻 of the multivariate random
variables 𝑋

1

, 𝑋
2

, . . . , 𝑋
𝑘

can been expressed as [33]
𝐻
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The Copula function is to connect multivariate probabil-
ity distributions to their marginal probability distributions.
Thus, the multivariate joint distribution 𝐻 is expressed in
terms of its marginal distribution function 𝐹

𝑋𝑖
(𝑥
𝑖

) and the
associated dependence structure 𝐶 as

𝐻
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1

, . . . , 𝑥
𝑖
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(6)

where 𝐶, called Copula function, is a uniquely determined
mapping whenever 𝐹

𝑋𝑖
(𝑥
𝑖

) are continuous and captures
the essential features of the dependence between random
variables. 𝐶 is essentially the joint distribution of multi-
variate random variables of 𝑋

1

, . . . , 𝑋
𝑖

, . . . , 𝑋
𝑘

through their
marginal distributions 𝐹

𝑋1
(𝑥
1

), . . . , 𝐹
𝑋𝑖

(𝑥
𝑖

), . . . , 𝐹
𝑋𝑘

(𝑥
𝑘

) [33].
The joint distribution function established using Copula-

based method has twomajor advantages: the marginal distri-
bution and dependence structure can be studied separately,

and the variables can follow any distributions. Therefore, the
problem of determining 𝐻 reduces to determining marginal
distribution of variables and Copula function 𝐶.

In order to clearly demonstrate the calculation procedure
using the present Copula-based method, the calculation flow
chart is shown in Figure 3. The detailed procedures are as
follows.

Step 1. The correlation between target variables (𝑓, 𝑐) and
relevant variables (𝑄, RQD, and RBI) is analyzed according
to the correlation coefficients obtained by (4) or else. The
best relevant variable (i.e., 𝑄) can be selected, as shown in
Section 2.2.

Step 2. Utilize suitable functional forms and methods (such
as normal information spread estimation method (NISEM))
to establish marginal distribution function 𝐹

𝑋𝑖
(𝑥
𝑖

) of vari-
ables which could be accepted according to corresponding
test (e.g., Kolmogorov-Smirnov (K-S) test). It is addressed in
Section 3.2.

Step 3. Introduce suitable multivariable joint distribution
functional forms (i.e., Copula functions) and confirm the
optimal Copula function 𝐶 indicated by a minimum AIC
value. Such is stated in Section 3.3.

Step 4. Estimate the values of target variables (𝑓, 𝑐) using the
Copula method on condition that a guarantee rate 𝛽 and
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Table 3: Values of 𝛾 for different values of 𝑛 [35].

𝑛 𝛾 𝑛 𝛾

3 0.849 321 800 11 1.420 835 443
4 1.273 982 782 12 1.420 269 570
5 1.698 643 675 13 1.420 698 795
6 1.336 252 561 14 1.420 669 671
7 1.445 461 208 15 1.420 693 321
8 1.395 189 816 16 1.420 692 226
9 1.422 962 345 17 1.420 693 101
10 1.416 278 786 >17 1.420 693 101

Table 4: Values of 1/(√2𝜋𝑛ℎ) and 1/2ℎ2.

Variables 1/(√2𝜋𝑛ℎ) 1/2ℎ2

RQD 0.005 420 722 0.013 293 110
RBI 0.007 073 744 0.022 636 592
𝑄 0.007 335 735 0.024 344 428
𝑓 0.157 002 612 11.151 315 78
𝑐 0.082 527 014 3.081 091 687

the best relevant variable 𝑄 have been given, which is
presented in Section 4.

3.2. Verification ofMarginalDistribution Functions. For small
samples, the normal information spread estimation method
(NISEM) [15] is an effective way to generate probability
density functions. The main difference between NISEM and
the available classical methods [15, 34] is that the variables
are not assumed to follow a distribution (such as normal,
log normal, and exponential distribution) in advance. It
has been proved that the NISEM used for generating the
probability density functions of geotechnical parameters with
small samples is more accurate and effective than the other
classical methods [15]. The probability density function of
random variables 𝑋

𝑖

by using NISEM is expressed as

𝑓 (𝑥
𝑖

) =
1

√2𝜋𝑛ℎ

𝑛

∑
𝑗=1

exp[

[

−
(𝑥
𝑖

− 𝑥
𝑖𝑗

)
2

2ℎ2
]

]

, (7)

where ℎ is the windowwidth of standard normal information
spread function and 𝑥

𝑖𝑗

is the observed value of variable
𝑋
𝑖

. By the approaching principle of normal information
diffusion, ℎ can be calculated by

ℎ =
𝛾 (𝑥
𝑖max − 𝑥

𝑖min)

𝑛 − 1
, (8)

where 𝑥
𝑖max and 𝑥

𝑖min are the maximal and minimum
observed values of variable 𝑋

𝑖

. The value of 𝛾 is related to 𝑛,
as shown in Table 3 [35].

For the variables in Table 1, 𝛾 = 1.420269570 while 𝑛 =
12. Therefore, the estimation of probability density functions
can be obtained from (7). The values of 1/[(2𝜋)0.5 𝑛ℎ] and
1/2ℎ2 (parameters of 𝑓(𝑥

𝑖

)) are shown in Table 4.

Table 5: Results of Kolmogorov-Smirnov test.

Variables 𝑛 𝛼 𝐷
𝑛,𝛼

𝐷
𝑛

Accept or
reject

RQD 12 0.05 0.375 0.13617 Accept
RBI 12 0.05 0.375 0.09205 Accept
𝑄 12 0.05 0.375 0.11670 Accept
𝑓 12 0.05 0.375 0.12352 Accept
𝑐 12 0.05 0.375 0.11224 Accept

By means of the probability density functions 𝑓(𝑥
𝑖

)
(see (7)), the marginal distribution functions 𝐹

𝑋𝑖
(𝑥
𝑖

) can be
established as

𝐹
𝑋𝑖

(𝑥
𝑖

) = ∫
+∞

−∞

𝑓 (𝑥
𝑖

) 𝑑𝑥
𝑖

. (9)

Kolmogorov-Smirnov (K-S) test commonly used to check
whether a set of data follows a certain distribution [36] is
adopted to test the established marginal distribution func-
tions. The procedure of K-S test involves forming the cumu-
lative frequency distribution 𝐹

𝑋𝑖
(𝑥
𝑖

) and computing the test
statistic 𝐷

𝑛

:

𝐷
𝑛

= max 󵄨󵄨󵄨󵄨󵄨𝐹𝑋𝑖 (𝑥
𝑖

) − 𝐹
𝑋𝑖

(𝑥
𝑖

)
󵄨󵄨󵄨󵄨󵄨 . (10)

The cumulative frequency distribution 𝐹
𝑋𝑖

(𝑥
𝑖

) is defined as

𝐹
𝑋𝑖

(𝑥
𝑖

) =
1

𝑛

𝑛

∑
𝑖=1

𝐼
𝑥𝑖𝑗≤𝑥𝑖

, (11)

where 𝐼
𝑥𝑖𝑗≤𝑥𝑖

is the indicator function, equal to 1 if 𝑥
𝑖𝑗

≤ 𝑥
𝑖

and equal to 0 otherwise.
The established marginal distribution functions 𝐹

𝑋𝑖
(𝑥
𝑖

)
will be accepted if 𝐷

𝑛

< 𝐷
𝑛,𝛼

, otherwise they will be denied.
Where 𝐷

𝑛,𝛼

is the critical value of a given significance level 𝛼
(usually𝛼 = 5%[37]), the𝐷

𝑛,𝛼

can be obtained using the table
established by [38]when 𝑛 and𝛼have been determined.Here,
the significance level 𝛼 is 5% and 𝑛 is 12, so𝐷

𝑛,𝛼

= 0.375 based
on the relevant table in [38].The K-S test results are shown in
Table 5. Obviously, all the established marginal distribution
functions can be accepted.

3.3. Determination of the Optimal Copula Functions. In order
to obtain the optimal Copula functions, the commonmethod
of the goodness-of-fit is adopted. Therefore, two steps are
taken to determine the optimal Copula function: (1) selecting
the suitably qualified Copula functions according to the char-
acteristics of marginal distribution functions and dependent
structure of variables and (2) determining the parameters of
Copula functions selected.

With respect to two-dimensional Copula functions, the
parameter 𝜃 of Copula functions can be obtained by means
of Kendall’s rank correlation coefficient 𝜏

𝑛

, which has been
calculated in (4). The relation between 𝜏

𝑛

and 𝜃 is [39]

𝜏
𝑛

= 4 ∫
1

0

∫
1

0

𝐶 (𝑢
𝑖

, V
𝑖

; 𝜃) 𝑑𝐶 (𝑢
𝑖

, V
𝑖

; 𝜃) − 1, (12)
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Figure 4: The scatter plots of empirical distribution: (a) 𝑇
1

/𝑄 versus 𝑇
2

/𝑓 and (b) 𝑇
1

/𝑄 versus 𝑇
3

/𝑐.

where 𝑢
𝑖

and V
𝑖

are the marginal distribution functional
values on condition that the values of two variables are equal
to 𝑥
1𝑖

and 𝑥
2𝑖

(i.e., 𝑢
𝑖

= 𝐹
𝑋1

(𝑥
1𝑖

) and V
𝑖

= 𝐹
𝑋2

(𝑥
2𝑖

)), while
𝐶(𝑢
𝑖

, V
𝑖

, 𝜃) is the introduced Copula functional value with the
parameter 𝜃.

Akaike information criteria (AIC) [40] are commonly
used for goodness-of-fit test. AIC are based on entropy
principle and are a simple and effectivemethod for goodness-
of-fit test [41]. And the optimal Copula is the one which has
the minimum AIC value; the value of AIC can be calculated
as

AIC = 𝑛 ln{
1

𝑛 − 𝑡

𝑛

∑
𝑖=1

[𝐹emp (𝑥
1𝑖

, 𝑥
2𝑖

) − 𝐶 (𝑢
𝑖

, V
𝑖

)]
2

} + 2𝑡,

(13)

where 𝑡 is the number of parameters of Copula function
(𝑡 = 1 for two-dimensional Copula function) and 𝐶(𝑢

𝑖

, V
𝑖

)
is the Copula functional value. 𝐹emp(𝑥1𝑖, 𝑥

2𝑖

) is the empirical
probability functional value; it can be obtained as

𝐹emp (𝑥
1𝑖

, 𝑥
2𝑖

) = 𝑃 (𝑋
1

≤ 𝑥
1𝑖

, 𝑋
2

≤ 𝑥
2𝑖

) =
1

𝑛 + 1

𝑛

∑
𝑗=1

𝑛

∑
𝑙=1

𝑁
𝑗,𝑙

,

(14)

where 𝑁
𝑗,𝑙

is the number of joint observations under the
condition of 𝑋

1

≤ 𝑥
1𝑖

as well as 𝑋
2

≤ 𝑥
2𝑖

.
In order to visualize the dependence structure of the

measured data (𝑥
1

, 𝑥
2

) and to obtain an insight on a suitable
Copula, the measured data in original space should be
transformed into the standard uniform random vector T =
(𝑇
1

, 𝑇
2

). Tang et al. [21] defined the random vector T by

adopting the empirical distributions ofmeasured data.𝑇
1

and
𝑇
2

are expressed as

𝑡
1𝑖

=
rank (𝑥

1𝑖

)

𝑛 + 1
,

𝑡
2𝑖

=
rank (𝑥

2𝑖

)

𝑛 + 1
,

(15)

where rank(𝑥
1𝑖

) (or rank(𝑥
2𝑖

), (𝑥
3𝑖

)) denotes the rank of
𝑥
1𝑖

(or 𝑥
2𝑖

, 𝑥
3𝑖

) among 𝑥
1

(or 𝑥
2

, 𝑥
3𝑖

) in an ascending
order. (𝑡

1𝑖

, 𝑡
2𝑖

) are the values of variables (𝑇
1

, 𝑇
2

) or (𝑇
1

, 𝑇
3

)
corresponding to (𝑄, 𝑓) or (𝑄, 𝑐).

The scatter plots of empirical cumulative distribution of
(𝑄, 𝑓) and (𝑄, 𝑐) are shown in Figure 4. 𝑄 and 𝑓, 𝑄 and 𝑐 are
substantially symmetric about the diagonal lines. Although
the data points (𝑄 and 𝑐) in right Figure 4(b) seem to be
not symmetric as well as those in left Figure 4(a), most of
them are located around diagonal line (i.e., symmetrical line)
in Figure 4(a). Archimedean Copulas have a wide range of
application [19–21, 42] due to several competitive advantages:
(1) the ease with which they can be constructed; (2) the great
variety of families of copulas which belong to this class; and
(3) the many nice properties possessed by members of this
class [39]. As results, the symmetrical Archimedean Copulas,
Nelsen No. 1, Nelsen No. 2, Nelsen No. 4, Nelsen No. 5,
Nelsen No. 12, Nelsen No. 14, Nelsen No. 15, and Nelsen
No. 18 [39] are selected to model the positive correlation
between 𝑄 and 𝑓, while Nelsen No. 1, Nelsen No. 2, Nelsen
No. 5, Nelsen No. 7, Nelsen No. 8, and Nelsen No. 15 [39] are
selected to model the negative correlation between 𝑄 and 𝑐.
By means of AIC calculated by (13), the goodness-of-fit test is
used to determine the optimal Copula functions. The chosen
symmetrical Archimedean Copula functions and the values
of AIC are shown in Table 6. It shows that Nelsen No. 1 has
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Table 6: The parameter 𝜃 of 2D Copula functions and the values of AIC.

Copula type 𝐶(𝑢, V) 𝜃 (Q-f ) AIC (Q-f ) 𝜃 (Q-c) AIC (Q-c)
Nelsen No. 1 max [(𝑢−𝜃 + V−𝜃 − 1)

−1/𝜃

, 0] 2.396 −67.990 −0.653 −61.777

Nelsen No. 2 max {1 − [(1 − 𝑢)𝜃 + (1 − V)𝜃]
1/𝜃

, 0} 4.396 −19.240 1.347 −66.184

Nelsen No. 4 𝑒−[(− ln 𝑢)
𝜃
+ (− ln V)𝜃]

1/𝜃

2.198 −66.341 — —

Nelsen No. 5 −
1

𝜃
ln[1 +

(𝑒−𝜃𝑢 − 1) (𝑒−𝜃V − 1)

𝑒−𝜃 − 1
] 4.978 −65.175 −5.442 −59.637

Nelsen No. 7 max [𝜃𝑢V − (1 − 𝜃) (𝑢 + V − 1) , 0] — — 0.634 −44.658

Nelsen No. 8 max[
𝜃2𝑢V − (1 − 𝑢) (1 − V)

𝜃2 − (𝜃 − 1)2 (1 − 𝑢) (1 − V)
, 0] — — 1.629 −64.809

Nelsen No. 12 {1 + [(𝑢−1 − 1)
𝜃

+ (V−1 − 1)
𝜃

]
1/𝜃

}
−1

1.465 −67.648 — —

Nelsen No. 14 {1 + [(𝑢−1/𝜃 − 1)
𝜃

+ (V−1/𝜃 − 1)
𝜃

]
1/𝜃

}
−𝜃

1.698 −67.287 — —

Nelsen No. 15 max({1 − [(1 − 𝑢−1/𝜃)
𝜃

+ (1 − V−1/𝜃)
𝜃

]
1/𝜃

}
𝜃

, 0) 2.698 −65.360 1.173 −60.240

Nelsen No. 18 max{1 +
𝜃

ln (𝑒𝜃/𝑢−1 + 𝑒𝜃/V−1)
, 0} 2.930 −60.246 — —

theminimumAICvalue for establishing the joint distribution
function of 𝑄 and 𝑓, while Nelsen No. 2 shows the minimum
for that of 𝑄 and 𝑐. Therefore, Nelsen No. 1 and Nelsen No. 2
can be used as the optimal Copula functions to construct the
joint distribution functions 𝐻 of 𝑄-𝑓 and 𝑄-𝑐, respectively.

4. Application to Estimating Shear
Strength Parameters

4.1. Guarantee Rate. Instability would happen if the strength
parameters of rock mass are overvalued, while economic
waste could be caused if they are undervalued. Assuming that
the estimated values of shear strength parameters are 𝑓

1

and
𝑐
1

, the actual values are 𝑓 and 𝑐; the guarantee rates 𝛽
𝑓

and
𝛽
𝑐

are then defined as the probability of 𝑓 > 𝑓
1

and 𝑐 > 𝑐
1

,
respectively, which can be expressed as

𝛽
𝑓

= 𝑃 (𝑓 > 𝑓
1

) ,

𝛽
𝑐

= 𝑃 (𝑐 > 𝑐
1

) .
(16)

The estimated value is overvalued if guarantee rates 𝛽 are
low, while being undervalued if high. In consequence, the
estimated values can be evaluated by means of the guarantee
rates 𝛽. On the other hand, the estimated 𝑓 and 𝑐 with
a certain guarantee rates 𝛽 can be calculated by solving
the conditional probability of the optimal Copula functions.
Based on the optimal Copula functions 𝐶 of 𝑄-𝑓 and 𝑄-𝑐
established in Section 3.3, 𝛽

𝑓

and 𝛽
𝑐

can be calculated as

𝛽
𝑓

= 𝑃 {𝑓 > 𝑓
1

| 𝑄 = 𝑄
0

} = 1 − 𝑃 {𝑓 ≤ 𝑓
1

| 𝑄 = 𝑄
0

}

= 1 − 𝐶 (𝑈 ≤ 𝑢 | 𝑉 = V)

= 1 − lim
ΔV→0

𝐶 (𝑢, V + ΔV) − 𝐶 (𝑢, V)

ΔV

= 1 −
𝜕

𝜕V
𝐶 (𝑢, V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨V=V
,

(17a)

𝛽
𝑐

= 𝑃 {𝑐 > 𝑐
1

| 𝑄 = 𝑄
0

} = 1 − 𝑃 {𝑐 ≤ 𝑐
1

| 𝑄 = 𝑄
0

}

= 1 − 𝐶 (𝑈 ≤ 𝑢 | 𝑉 = V)

= 1 − lim
ΔV→0

𝐶 (𝑢, V + ΔV) − 𝐶 (𝑢, V)

ΔV

= 1 −
𝜕

𝜕V
𝐶 (𝑢, V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨V=V
,

(17b)

where 𝑄
0

is the measured value of 𝑄.
For direct shear test, in general, the predominant slope

method and the least square method [43] are used to statisti-
cally process the test data. Using the least square method, the
best linear fitting relations of normal stress 𝜎

𝑛

and shear stress
𝜏 for each class of rock mass quality are obtained, and the
slope of fitting straight line is𝑓, and the intercept at 𝜎

𝑛

axial is
𝑐 based on Mohr-Coulomb criterion.The predominant slope
method is obviously different from the least square method
although they are all based on Mohr-Coulomb criterion and
linear fitting method. For the predominant slope method,
the upper- and lower-limit values of cohesion 𝑐 should
be conducted (Figure 5); the lower one is often suggested.
Considering the obvious differences of 𝑄 values in Table 1, 1–
6 sets are grouped as Class II while 7–12 sets being grouped as
Class III in rock mass quality. Their scatter plots of normal
stress 𝜎

𝑛

versus shear stress 𝜏 are shown in Figure 5. The
estimated results using the twomethods are shown inTable 7.

As the prescribed standard [44] for the hydroelectric
engineering in China, the suggested design parameters must
have a guarantee rate 𝛽 of more than 0.8. Therefore, it could
be suggested that the 𝛽 of more than 0.95 are too high, while
those of less than 0.20 are too low. Relative to the 12 sets
test results in Table 1, the guarantee rates 𝛽

𝑓

and 𝛽
𝑐

(by (17a)
and (17b)) associated with the estimated 𝑓 and 𝑐 (in Table 7)
are shown in Table 8. Most of them are not acceptable: all
𝛽
𝑐

are too low using least square method, which means that
the estimated 𝑐 are overvalued; the 𝛽

𝑐

are larger than 0.95 for
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Figure 5: The scatter plots of 𝜎
𝑛

versus 𝜏: (a) Class II and (b) Class III.

Table 7: The estimated values of 𝑓 and 𝑐 using predominant slope
and least square methods.

Class of rock
mass quality

Set
number

Predominant
slope method Least square method

𝑓 𝑐 𝑓 𝑐

II 1–6 1.35 2.00 1.38 3.16
III 7–12 1.07 1.50 0.89 4.19

Table 8: The guarantee rates of estimated f and c using the
predominant slope and least square methods.

Set
number 𝑄

Predominant
slope method

Least square
method

𝛽
𝑓

𝛽
𝑐

𝛽
𝑓

𝛽
𝑐

1 30.5 0.762 0.397 0.721 0.037
2 23.8 0.650 0.564 0.600 0.070
3 38.7 0.857 0.187 0.828 0.013
4 39.7 0.868 0.206 0.839 0.015
5 38.6 0.857 0.209 0.827 0.015
6 26.5 0.698 0.499 0.652 0.055
7 8.1 0.796 0.963 0.963 0.054
8 5.2 0.532 0.980 0.867 0.098
9 8.9 0.834 0.957 0.971 0.046
10 5.2 0.532 0.980 0.867 0.098
11 5.4 0.557 0.979 0.879 0.094
12 4.6 0.453 0.982 0.819 0.110

7–12 sets using predominant slopemethod, whichmeans that
the estimated 𝑐 are too undervalued. The data points must
be located around the fitted straight line as far as possible
on account that the least square method focuses on the best
linear fitting of normal stress 𝜎

𝑛

and shear stress 𝜏 (Figure 5),

which can cause the relatively low guarantee rates𝛽 defined as
(17a) and (17b), while the data pairs of 𝜎

𝑛

and 𝜏 are above the
lower-limit fitting line (Figure 5) when the lower-limit values
are adopted using the predominant slope method, which can
lead to the large guarantee rates 𝛽. Therefore, the guarantee
rate of the value 𝑐 is low by the least square method but high
by the predominant slope method.

4.2. Estimated Shear Strength Parameters Using Copula-
Based Method. The Copula-based fitting formulas estab-
lished above are based on the test data of the 12 sets before;
therefore, these tested shear strength parameters cannot be
used to examine the extensional suitability of the Copula
function obtained.The additional in situ direct shear tests are
thus performed for the other 9 sets of themarbles with similar
properties to check the application of Copula-based method
to estimating shear strength parameters of rock mass. The 𝑄
andGSI of the tested samples are also investigated at the same
time. The test results are shown in Table 9.

The estimated 𝑓 and 𝑐 using Copula-based method have
the guarantee rate 𝛽 of 0.8. The Hoek-Brown criterion (see
(1) to (3), the disturbance factor 𝐷 = 0), as a comparative
method, is also adopted to calculate shear strength parame-
ters (in Figure 6). The indicator to assess the predicted suit-
ability of Copula-basedmethod andHoek-Brown criterion is
the root mean square errors (RMSE) obtained by

RMSE
𝑓

= √
1

𝑛

𝑛

∑
𝑖=1

(𝑓
𝑖

− 𝑓󸀠
𝑖

)
2

,

RMSE
𝑐

= √
1

𝑛

𝑛

∑
𝑖=1

(𝑐
𝑖

− 𝑐󸀠
𝑖

)
2

,

(18)
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Figure 6: The shear strength parameters derived from Copula-based method and Heok-Brown criterion: (a) friction coefficient 𝑓 and
(b) cohesion 𝑐.

Table 9: The results of other 9 sets of in situ direct shear tests.

Set
number

Rock mass quality indices Shear strength parameters
𝑄 GSI 𝑓 𝑐/MPa

13 4.7 57.8 1.04 1.6
14 5.3 59.6 0.98 2.4
15 6.7 61.5 0.85 2.31
16 25.4 75.8 1.43 2.1
17 6.0 60.3 1.05 3.9
18 7.3 62.1 1.07 2.14
19 14.6 70.2 1.25 2.66
20 23.4 76.3 1.32 2.2
21 33.1 80.3 1.93 1.68

where 𝑓
𝑖

and 𝑐
𝑖

are obtained from the in situ shear test and
𝑓󸀠
𝑖

and 𝑐󸀠
𝑖

are derived from Copula-based method or Hoek-
Brown criterion. Clearly, the smaller the RMSE is, the more
suitable the estimated result is.

Figure 6 indicates that the estimated shear strength
parameters by Copula-based method are closer to in situ
test values than those by Hoek-Brown criterion for the rock
mass specimens in Table 9, which means that the proposed
Copula-based method would be a more effective tool in
estimating shear strength parameters of the marbles involved
in this paper. The Hoek-Brown criterion with a wide range
of applications is empirically established on the basis of the
test results of a large number of different types of rock mass;
the calculated accuracies of 𝑓 and 𝑐 are however seriously
affected by the uncertain test conditions of 𝜎

3𝑛

(see (1)) and
undetermined disturbance factor 𝐷 and so forth (see (1)–(3))
[45, 46].However, the optimal Copula-based fitting functions
established in the paper are on the basis of probabilistic

analysis on the in situ direct shear test results of the 12 sets of
similar marbles under the same test conditions, which should
show better estimations of shear strength parameters of the
rock mass with similar geological andmechanical properties.

5. Conclusion

Using the proposedCopula-basedmethod, the shear strength
parameters with a given 𝛽 can be estimated provided that 𝑄
has been obtained. The calculated guarantee rate 𝛽 can be
also used to analyze the suitability of the estimated values
from the statistical methods for direct shear test data (such as
predominant slopemethod and the least squaremethod). For
the marbles tested in this paper, compared with Hoek-Brown
criterion, the Copula-basedmethod is amore effective tool in
estimating shear strength parameters.

The paper only considers the relationships between two
of the parameters. Actually, the Copula functions could be of
multidimensions and can be used to evaluate the parameters
related with multiple variables. Furthermore, the Copula
functions can be used for reliability analysis of estimated rock
mass parameters.
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