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A fractional-order scalar controller which involves only one state variable is proposed. By this fractional-order scalar controller, the
unstable equilibrium points in the fractional-order Chen chaotic system can be asymptotically stable. The present control strategy
is theoretically rigorous. Some circuits are designed to realize these control schemes. The outputs of circuit agree with the results
of theoretical results.

1. Introduction

In the last few decades, chaotic behaviors have been dis-
covered in many areas of science and engineering such
as mathematics, physics, chemistry, electronics, medicine,
economy, biological science, and social science. In 1990, Ott
et al. presented the OGY method of chaotic control [1].
After that, chaos control has attracted increasing attention
among scientists in various fields.Many control schemes [1, 2]
have been presented, such as feedback control, parametric
perturbation control, adaptive control, and fuzzy control.
On the other hand, the chaotic or hyperchaos behaviors
have been found in many fractional-order dynamical sys-
tems. Many fractional-order chaotic systems have been pre-
sented, the fractional-order Chua’s chaotic circuit [3], the
fractional-order Duffing chaotic system [4], the fractional-
order memristor-based chaotic system [5], the fractional-
order Lorenz chaotic system [6], the fractional-order Chen
chaotic system [7], and so forth [8, 9]. Moreover, control
and synchronization of fractional-order chaotic systems have
attracted much attention in the recent years [10–16].

Compared to the traditional controller (integer-order
controller), the fractional-order controller has many advan-
tages, such as less sensitivity to parameter variations and
better disturbance rejection ratios [17]. It is possible that tra-
ditional controller (integer-order controller) will be replaced

by fractional-order controller in the future. Recently, a
fractional-order vector controller is addressed to stabilize the
unstable equilibrium points for integer-order chaotic systems
by Tavazoei and Haeri [17]. Zhou and Kuang have presented
another fractional-order vector controller to stabilize the
nonequilibrium points for integer-order chaotic systems [18].
However, only integer-order chaotic systems are discussed
in [17, 18], and only fractional-order vector controller is
investigated.

Up to now, to the best of our knowledge, very few results
on chaotic control are reported by fractional-order scalar
controller. Motivated by the above-mentioned discussions,
some fractional-order scalar controllers are presented to
control the fractional-order Chen chaotic systems in this
paper. Only one system state variable is used in the fractional-
order scalar controller. The control scheme is simple and
theoretical. Moreover, some circuits are designed to realize
these control schemes, and the circuit results agree with the
theoretical results.

The outline of this paper is as follows. In Section 2, some
mathematical preliminaries are addressed for the fractional-
order system. In Section 3, some fractional-order scalar
controller are proposed to stabilize the unstable equilib-
rium points in the fractional-order Chen chaotic system. In
Section 4, some circuits are designed to realize the control
schemes. The conclusion is finally drawn in Section 5.
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2. Mathematical Preliminaries

In this paper, we use the Caputo definition of fractional
derivative, which is

𝐷
𝑞
ℎ (𝑡) =

1

Γ (𝑙 − 𝑞)
∫

𝑡

0

ℎ
(𝑙)
(𝜏) (𝑡 − 𝜏)

𝑙−𝑞−1
𝑑𝜏, 𝑙 − 1 < 𝑞 < 𝑙,

(1)

where 𝐷𝑞 denoted the Caputo operator, 𝑙 is the first integer
which is not less than 𝑞, and ℎ(𝑙)(𝑡) is the l-order derivative
for ℎ(𝑡); that is, ℎ(𝑙)(𝑡) = 𝑑

𝑙
ℎ(𝑡)/𝑑𝑡

𝑙.
Consider the following nonlinear fractional-order sys-

tem:

𝐷
𝑞
𝑥 = 𝐹 (𝑥) , (2)

where 𝐹 : 𝑅
𝑛
→ 𝑅
𝑛 are continuous function, 0 < 𝑞 < 1 are

fractional order, and 𝑥 ∈ 𝑅𝑛 are state vectors.
First, we recall the stability results of nonlinear fractional-

order systems [19–24]. Let the equilibrium point of sys-
tem (2) be 𝑥0 and let the Jacobian matrix be 𝜕𝐹/𝜕𝑥|𝑥=𝑥0

.
𝜆𝑖 (𝑖 = 1, 2, . . . , 𝑛) are the eigenvalues of the Jacobian matrix
𝜕𝐹/𝜕𝑥|𝑥=𝑥0

. If | arg 𝜆𝑖| > 0.5𝜋𝑞 (𝑖 = 1, 2, . . . , 𝑛) are satisfied,
then the equilibriumpoint𝑥0 is asymptotically stable [19–24].

Second, we recall the improved version of Adams-
Bashforth-Moulton algorithm [14] for the fractional-order
systems. Consider the following two-dimensional nonlinear
fractional-order system:

𝐷
𝑞1𝑥1 = ℎ1 (𝑥1, 𝑥2) ,

𝐷
𝑞2𝑥2 = ℎ2 (𝑥1, 𝑥2) ,

(3)

with initial condition (ℎ1(0), ℎ2(0)). Let 𝜏 = 𝑇/𝑁 and let 𝑡𝑛 =
𝑛𝜏 (𝑛 = 0, 1, 2, . . . , 𝑁).Then, the two-dimensional fractional-
order system can be discretized as follows

𝑥1 (𝑛 + 1)

= ℎ1 (0) +
𝜏
𝑞1

Γ (𝑞1 + 2)

[

[

ℎ1 (𝑥
𝑚

1
(𝑛 + 1) , 𝑥

𝑚

2
(𝑛 + 1))

+

𝑛

∑

𝑗=0

𝜅1,𝑗,𝑛+1ℎ1 (𝑥1 (𝑗) , 𝑥2 (𝑗))
]

]

,

𝑥2 (𝑛 + 1)

= ℎ2 (0) +
𝜏
𝑞2

Γ (𝑞2 + 2)

[

[

ℎ2 (𝑥
𝑚

1
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𝑚

2
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+

𝑛

∑

𝑗=0

𝜅2,𝑗,𝑛+1ℎ2 (𝑥1 (𝑗) , 𝑥2 (𝑗))
]

]

,

(4)

where

𝑥
𝑚

1
(𝑛 + 1)

= 𝑥1 (0) +
1

Γ (𝑞1)

𝑛

∑
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𝑥
𝑚

2
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= 𝑥2 (0) +
1

Γ (𝑞2)

𝑛
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𝑗=0

𝜎2,𝑗,𝑛+1ℎ2 (𝑥1 (𝑗) , 𝑥2 (𝑗)) ,

𝜅𝑖,𝑗,𝑛+1

=

{{{{{

{{{{{
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, 1≤ 𝑗≤ 𝑛, (𝑖 =1, 2) ,

1, 𝑗 = 𝑛 + 1,

𝜎𝑖,𝑗,𝑛+1 =
𝜏
𝑞𝑖

𝑞𝑖

[(𝑛 − 𝑗 + 1)
𝑞𝑖
− (𝑛 − 𝑗)
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0 ≤ 𝑗 ≤ 𝑛, (𝑖 = 1, 2) .

(5)

The error of this algorithm is
󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡𝑛) − 𝑥𝑖 (𝑛)

󵄨󵄨󵄨󵄨 = 𝑜 (𝜏
𝛼𝑖) ,

𝛼𝑖 = min (2, 1 + 𝑞𝑖) , (𝑖 = 1, 2) .

(6)

3. Control of the Unstable Equilibrium
Points for the Fractional-Order Chen
Chaotic System via a Fractional-Order
Scalar Controller

In this section, some fractional-order scalar controllers which
involve only one state variable are addressed. The unstable
equilibrium points of the fractional-order Chen chaotic
system can be asymptotically stable by these fractional-order
scalar controllers.

In 1963, E. N. Lorenz reported the first chaotic model
that revealed the complex and fundamental behaviors of the
nonlinear dynamical systems. In 1999, Chen found another
chaotic model in a simple three-dimensional autonomous
system, which nevertheless is not topologically equivalent to
the Lorenz chaotic model. The fractional-order Chen chaotic
model is described as

𝐷
𝑞
𝑥1 = 35 (𝑥2 − 𝑥1) ,

𝐷
𝑞
𝑥2 = −7𝑥1 + 28𝑥2 − 𝑥1𝑥3,

𝐷
𝑞
𝑥3 = 𝑥1𝑥2 − 3𝑥3,

(7)

where 0 < 𝑞 < 1 is the fractional order. The fractional-order
Chen chaotic system has chaotic attractor for 𝑞 ≥ 0.83 [19].
The fractional-order Chen chaotic attractor with 𝑞 = 0.9 is
shown as in Figure 1.
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Figure 1: The fractional-order Chen chaotic attractor with 𝑞 = 0.9.

There are three unstable equilibrium points in the above
fractional-order Chen chaotic system. The unstable equilib-
rium points are 𝑆0 = (0, 0, 0) and 𝑆± = (±√63, ±√63, 21),
respectively. Our goal is how to control the unstable equilib-
rium points via a fractional-order scalar controller.

3.1. Case 1: Control of the Unstable Equilibrium Point 𝑆0 =

(0, 0, 0)

Theorem 1. Let the controlled system be

𝐷
𝑞
𝑥1 = 35 (𝑥2 − 𝑥1) + 𝑙1𝐷

𝑞
𝑥2 + 𝑙2𝑥2,

𝐷
𝑞
𝑥2 = −7𝑥1 + 28𝑥2 − 𝑥1𝑥3,

𝐷
𝑞
𝑥3 = 𝑥1𝑥2 − 3𝑥3,

(8)

where 𝑙1𝐷𝑞𝑥2+𝑙2𝑥2 is the scalar fractional-order controller and
𝑙1 and 𝑙2 are feedback coefficients. If 𝑙1 > −1 and 𝑙2 > 105, then
the controlled system (8)will be asymptotically converged to the
equilibrium point 𝑆0 = (0, 0, 0).

Proof. The unstable equilibrium point 𝑆0 = (0, 0, 0) in the
fractional-order Chen chaotic system is also the equilibrium
point in the controlled system (8). The Jacobi matrix of the
controlled system at equilibrium point 𝑆0 = (0, 0, 0) is

𝐽(0,0,0) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−35 − 7𝑙1 35 + 28𝑙1 + 𝑙2 0

−7 28 0

0 0 −3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (9)

The eigenvalues are

𝜆± = −0.5 (7 + 7𝑙1)

± 0.5√(7 + 7𝑙1)
2
− 4 (7𝑙2 − 21 × 35), 𝜆3 = −3,

(10)

because

𝑙1 > −1, 𝑙2 > 105. (11)

So

Re (𝜆±) < 0. (12)

Therefore, all eigenvalues of the Jacobi matrix at equilibrium
point 𝑆0 = (0, 0, 0) in the controlled system (8) have negative
real part. This result implies that the controlled system will
be asymptotically converged to the equilibrium point 𝑆0 =
(0, 0, 0). The proof is completed.

Theorem 2. Consider the controlled system is as follows:

𝐷
𝑞
𝑥1 = 35 (𝑥2 − 𝑥1) ,

𝐷
𝑞
𝑥2 = −7𝑥1 + 28𝑥2 − 𝑥1𝑥3 + 𝑙3𝐷

𝑞
𝑥1 + 𝑙4𝑥1,

𝐷
𝑞
𝑥3 = 𝑥1𝑥2 − 3𝑥3,

(13)

where 𝑙3𝐷
𝑞
𝑥2 + 𝑙4𝑥2 is a fractional-order scalar controller

and 𝑙3 and 𝑙4 are feedback coefficients. If 𝑙3 < 0.2 and
−(35𝑙3 − 7)

2
/140 ≤ 𝑙4 + 21 < 0, then the controlled system

(13) will be asymptotically converged to the equilibrium point
𝑆0 = (0, 0, 0).

Proof. It is easily to obtain that the unstable equilibriumpoint
𝑆0 = (0, 0, 0) in the fractional-order Chen chaotic system
is also the equilibrium point in the controlled system (13).
The Jacobi matrix of the controlled system (13) at equilibrium
point 𝑆0 = (0, 0, 0) is

𝐽(0,0,0) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−35 35 0

−7 − 35𝑙3 + 𝑙4 28 + 35𝑙3 0

0 0 −3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (14)

The eigenvalues are

𝜆± = 0.5 (35𝑙3 − 7)

± 0.5√(35𝑙3 − 7)
2
+ 140 (21 + 𝑙4), 𝜆3 = −3,

(15)

because

𝑙3 < 0.2, −
(35𝑙1 − 7)

2

140
≤ 𝑙4 + 21 < 0. (16)

So

Re (𝜆±) < 0. (17)
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Therefore, all eigenvalues of the Jacobi matrix at equilibrium
point 𝑆0 = (0, 0, 0) in the controlled system (13) have negative
real part. This result indicates that the controlled system (13)
will be asymptotically converged to the equilibrium point
𝑆0 = (0, 0, 0). The proof is completed.

3.2. Case 2: Control of the Unstable Equilibrium Points 𝑆± =
(±√63, ±√63, 21)

Theorem 3. Consider the controlled system is

𝐷
𝑞
𝑥1 = 35 (𝑥2 − 𝑥1) ,

𝐷
𝑞
𝑥2 = −7𝑥1 + 28𝑥2 − 𝑥1𝑥3 + 𝑙5𝐷

𝑞
𝑥1,

𝐷
𝑞
𝑥3 = 𝑥1𝑥2 − 3𝑥3,

(18)

where 𝑙5𝐷𝑞𝑥1 is the scalar fractional-order controller and 𝑙5 is
feedback coefficient. If 35𝑙5 < 19 − √1551, then the controlled
system (18) will be asymptotically converged to the equilibrium
point 𝑆+ = (√63,√63, 21).

Proof. The Jacobian matrix at the equilibrium point 𝑆+ =

(√63,√63, 21) in the controlled system (18) is

𝐽 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−35 35 0

−28 − 35𝑙5 28 + 35𝑙5 −√63

√63 √63 −3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (19)

Its characteristic equation is

𝜆
3
+ 𝑐1𝜆
2
+ 𝑐2𝜆 + 𝑐3 = 0, (20)

where 𝑐1 = 10 − 35𝑙5, 𝑐2 = 3(28 − 35𝑙5), and 𝑐3 = 4410.
Because 35𝑙5 < 19 − √1551, the following yields

𝑐1 > 0, 𝑐2 > 0, 𝑐1𝑐2 − 𝑐3 > 0. (21)

This result indicates that all eigenvalues of the Jacobi
matrix at equilibrium point 𝑆+ = (√63,√63, 21) in the
controlled system (18) have negative real part. So, the
controlled system (18) will be asymptotically converged to
the equilibrium point 𝑆+ = (√63,√63, 21). The proof is
completed.

Similarly, we can easily control the fractional-order Chen
chaotic system that will be asymptotically converged to the
unstable equilibrium point 𝑆− = (−√63, −√63, 21).

Remark 4. In this section, we only discuss that all eigenvalues
of the Jacobi matrix at equilibrium point in the controlled
system have negative real part. Recently, Li and Ma [25]
reported the more rigorous result on the local asymptotical
stability of the nonlinear fractional differential system. Their
result also can be applied to control the unstable equilibrium
point in the fractional-order Chen chaotic system.

Remark 5. Only one system state variable and its fractional-
order derivative are used in our fractional-order scalar
controller. This is the main contribution in our work.

4. Circuit Implementation of the Control
Scheme for the Fractional-Order Chen
Chaotic System

In this subsection, some circuits are designed to realize
these control schemes for the fractional-order Chen chaotic
system, and the circuit results fit the theoretical results
mentioned in Section 3.

Now, many references on the guidelines to design circuits
for the fractional-order chaotic systems are reported. By the
circuit design methods [9, 26–29], the circuits are designed
as mentioned below to realize the fractional-order chaotic
system (8), (13), and (18), and the circuit experiments are
obtained.

4.1. Case 1: Realize Physically the Controlled Fractional-Order
Chen Chaotic System (8). Now, let 𝑙1 = 1 and 𝑙2 = 200

in the controlled system (8). According to Theorem 1, the
controlled system (8) will be asymptotically converged to
the unstable equilibrium point 𝑆0 = (0, 0, 0). By the circuit
design method [9, 27, 28], the circuit diagram designed to
realize the controlled system (8) is presented as shown in
Figures 2 and 3.

The first equation, the second equation, and the third
equation in controlled system (8) are realized by Figures 2(a),
2(b), and 2(c), respectively.The operator 𝑑𝑞/𝑑𝑡𝑞 is realized by
Figure 3.

According to the circuit design methods, the resistors in
Figure 2 are chosen as 𝑅1 = 100 kΩ, 𝑅2 = 2.86 kΩ, 𝑅3 =
3.57 kΩ, 𝑅4 = 14.3 kΩ, 𝑅5 = 33.3 kΩ, 𝑅6 = 100 kΩ, and
𝑅7 = 0.5 kΩ, respectively. Here and later, the capacitors and
resistors in Figure 3 are chosen as 𝑅11 = 62.84MΩ, 𝑅22 =
0.25MΩ, 𝑅33 = 0.0025MΩ, 𝐶11 = 1.232 𝜇F, 𝐶22 = 1.84 𝜇F,
and 𝐶33 = 1.1 𝜇F. The operational amplifiers are of the type
of LF353N, the multipliers are of the type of AD633, and the
power is supplied by ±15V.

By choosing the circuit output 𝑥1 in Figure 2(a) as the
vertical axis input, Figure 4(a) shows the circuit experiment
displayed on the oscilloscope. Similarly, Figure 4(b) shows
the circuit experiment displayed on the oscilloscope with
the circuit outputs 𝑥2 in Figure 2(b) and Figure 4(c) shows
the circuit experiment displayed on the oscilloscope with the
circuit outputs 𝑥3 in Figure 2(c). In this paper, the vertical
coordinate unit is V (volt) and the horizontal coordinate unit
is second (s).

According to Figure 4, the circuit results fit the theoretical
results mentioned inTheorem 1.

4.2. Case 2: Realize Physically the Controlled Fractional-Order
Chen Chaotic System (13). Now, let 𝑙3 = −1 and 𝑙4 = −30

in the controlled system (13). According to Theorem 2, the
controlled system (8) will be asymptotically converged to the
unstable equilibrium point 𝑆0 = (0, 0, 0). Similarly, the circuit
diagram designed to realize the controlled system (13) is as
shown in Figure 5.

Here, the first equation, the second equation, and the
third equation in controlled system (13) are realized by
Figures 5(a), 5(b), and 5(c), respectively. The operator 𝑑𝑞/𝑑𝑡𝑞
is realized by Figure 3.
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Figure 2: The circuit diagram designed to realize the fractional-order controlled system (8) for 𝑞 = 0.9.
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R33
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Figure 3: Circuit diagram for box 𝐹.

According to the circuit design methods, the resistors in
Figure 5 are chosen as 𝑅8 = 100 kΩ, and 𝑅9 = 3.33 kΩ,
respectively. The resistors 𝑅𝑖 (𝑖 = 1, 2, . . . , 7) are the same as
in Figure 2.

Similarly, by choosing the circuit output 𝑥1 in Figure 5(a)
as the vertical axis input, Figure 6(a) shows the circuit exper-
iment displayed on the oscilloscope. Similarly, Figure 6(b)
shows the circuit experiment displayed on the oscilloscope
with the circuit outputs 𝑥2 in Figure 5(b) and Figure 6(c)
shows the circuit experiment displayed on the oscilloscope
with the circuit outputs 𝑥3 in Figure 5(c).

According to Figure 6, the circuit results agree with the
theoretical results mentioned inTheorem 2.

4.3. Case 3: Realize Physically the Controlled Fractional-Order
Chen Chaotic System (18). Now, let 𝑙5 = −1 in the con-
trolled system (18). According to Theorem 3, the controlled
system (18) will be asymptotically converged to the unstable
equilibrium point 𝑆+ = (√63,√63, 21). Similarly, the circuit

diagram designed to realize the controlled system (18) is
displayed as shown in Figure 7.

Similarly, the first equation, the second equation, and
the third equation in controlled system (18) are realized by
Figures 7(a), 7(b), and 7(c), respectively. The operator 𝑑𝑞/𝑑𝑡𝑞
is realized by Figure 3.The resistors and capacitors in Figure 7
are chosen as Case 1 and Case 2.

By choosing the circuit output 𝑥1 in Figure 7(a) as the
vertical axis input, Figure 8(a) shows the circuit experiment
displayed on the oscilloscope. Similarly, Figure 8(b) shows
the circuit experiment displayed on the oscilloscope with
the circuit outputs 𝑥2 in Figure 7(b) and Figure 8(c) shows
the circuit experiment displayed on the oscilloscope with the
circuit outputs 𝑥3 in Figure 7(c).

According to Figure 8, the circuit results agree with the
theoretical results mentioned inTheorem 3.

5. Conclusions
In order to control of the unstable equilibrium points for
the fractional-order Chen chaotic system, some fractional-
order scalar controllers are proposed, and only one state
variable is used in the fractional-order scalar controller. The
control scheme is theoretically rigorous. Moreover, three
fractional-order chaotic circuits are designed to realize the
control strategy, and the circuit experiments are obtained.
The experiment results agree with the theoretical results.
Furthermore, some results [30–33] on the effect of noises
or disturbances in control or synchronization problems of
chaotic systems have been proposed. The anticontrol or
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Figure 4: The circuit experiment displayed on the oscilloscope.
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Figure 5: The circuit diagram designed to realize the fractional-order controlled system (13) for 𝑞 = 0.9.
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Figure 6: The circuit experiment displayed on the oscilloscope.
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Figure 7: The circuit diagram designed to realize the fractional-order controlled system (18) for 𝑞 = 0.9.
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Figure 8: The circuit experiment displayed on the oscilloscope.

antisynchronization problems for fractional chaotic systems
with disturbances or noises have been also discussed in [34].
So, the effect of noises or disturbances for our control scheme
is our further work.
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