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The conjugate gradient (CG) method has played a special role in solving large-scale nonlinear optimization problems due to
the simplicity of their very low memory requirements. In this paper, we propose a new conjugacy condition which is similar to
Dai-Liao (2001). Based on this condition, the related nonlinear conjugate gradient method is given. With some mild conditions,
the givenmethod is globally convergent under the strongWolfe-Powell line search for general functions.Thenumerical experiments
show that the proposed method is very robust and efficient.

1. Introduction

The conjugate gradient (CG)method has played a special role
in solving large-scale nonlinear optimization problems due to
the simplicity of their iterations and their very low memory
requirements. In fact, the CGmethod is not among the fastest
ormost robust optimizationmethods for nonlinear problems
available today, but it remains very popular for engineers
and mathematicians who are interested in solving large-scale
problems.The conjugate gradientmethod is designed to solve
the following unconstrained optimization problem:

min {𝑓 (𝑥) | 𝑥 ∈ 𝑅𝑛} , (1)

where𝑓(𝑥) : 𝑅𝑛 → 𝑅 is a smooth, nonlinear function whose
gradient will be denoted by 𝑔(𝑥). The iterative formula of the
conjugate gradient method is given by

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝑠
𝑘
, 𝑠

𝑘
= 𝛼
𝑘
𝑑
𝑘
, (2)

where 𝛼
𝑘
is a step-length which is computed by carrying out

a line search, and 𝑑
𝑘
is the search direction defined by

𝑑
𝑘
= {

−𝑔
𝑘

if 𝑘 = 1

−𝑔
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1

if 𝑘 ≥ 2,
(3)

where 𝛽
𝑘
is a scalar and 𝑔

𝑘
denotes the gradient ∇𝑓(𝑥

𝑘
). The

different conjugate gradient methods correspond to different
computing ways of 𝛽

𝑘
. If 𝑓 is a strictly convex quadratic

function, namely,

𝑓 (𝑥) =
1

2
𝑥𝑇𝐻𝑥 + 𝑏𝑇𝑥, (4)

where 𝐻 is a positive definite matrix, and if 𝛼
𝑘
is the exact

one-dimensional minimizer along the direction 𝑑
𝑘
, then the

method with (2) and (3) is called linear conjugate gradient
method. Otherwise, it is called nonlinear conjugate gradient
method. The most important feature of linear conjugate
gradient method is that the search directions satisfy the
following conjugacy condition:

𝑑𝑇
𝑖
𝐻𝑑
𝑗
= 0, 𝑖 ̸= 𝑗. (5)

For nonlinear conjugate gradient methods, (5) does not hold,
since the Hessian ∇2𝑓(𝑥) changes at different iterations.
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Somewell-known formulae for𝛽
𝑘
are the Fletcher-Reeves

(FR), Polak-Ribière (PR), Hestense-Stiefel (HS), and Dai-
Yuan (DY), which are given, respectively, by

𝛽FR
𝑘

=
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
;

𝛽PR
𝑘

=
𝑔𝑇
𝑘
(𝑔
𝑘
− 𝑔
𝑘−1

)
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩
2

;

𝛽HS
𝑘

=
𝑔𝑇
𝑘
(𝑔
𝑘
− 𝑔
𝑘−1

)

(𝑔
𝑘
− 𝑔
𝑘−1

)
𝑇

𝑑
𝑘−1

;

𝛽DY
𝑘

=
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

(𝑔
𝑘
− 𝑔
𝑘−1

)
𝑇

𝑑
𝑘−1

,

(6)

where ‖ ‖ denotes the Euclidean norm. Their corresponding
conjugate methods are abbreviated as FR, PR, HS, and DY
methods. In the past two decades, the convergence properties
of these methods have been intensively studied by many
researchers (e.g., [1–9]). Although all these methods are
equivalent in the linear case, namely, when 𝑓 is a strictly
convex quadratic function and 𝛼

𝑘
are determined by exact

line search, their behaviors for general objective functions
may be far different.

For general functions, Zoutendijk [10] proved the global
convergence of FR method with exact line search. (Here and
throughout this paper, for global convergence, we mean that
the sequence generated by the corresponding methods will
either terminate after finite steps or contain a subsequence
such that it converges to a stationary point of the objective
function from a given initial point.) Although one would
be satisfied with its global convergence properties, the FR
method performs much worse than the PR and HS methods
in real computations. Powell [11] analyzed a major numerical
drawback of the FR method; namely, if a small step is
generated away from the solution point, the subsequent steps
may be also very short. On the other hand, in practical
computation, the HS method resembles the PR method, and
both methods are generally believed to be the most efficient
conjugate gradient methods since these two methods essen-
tially perform a restart if a bad direction occurs. However,
Powell [12] constructed a counterexample and showed that
the PR and HS methods without restarts can cycle infinitely
without approaching the solution.This example suggests that
these twomethods have a drawback that they are not globally
convergent for general functions.Therefore, over the past few
years, much effort has been put to find out new formulae
for conjugate methods such that they are not only globally
convergent for general functions but also have robust and
efficient numerical performance.

Recently, using a new conjugacy condition, Dai and Liao
[13] proposed two new methods. Interestingly, one of their
methods is not only globally convergent for general functions
but also performs better than HS and PR methods. In this
paper, similar to Dai and Liao’s approach, we propose a new
conjugacy condition. Based on the proposed condition, a new
formula for computing 𝛽

𝑘
is given. And then, we analyze

the convergence properties for the given method and also
carry the numerical experiment which shows that the given
method is robust and efficient.

The remainder of this paper is organized as follows.
In Section 2, after a short description of Dai and Liao’s
conjugacy condition and related methods, the motivations
of this paper are represented. According to the motivations,
we propose a new conjugacy condition and related method
at the end of Section 2. In Section 3, convergence analysis
for the given method is presented. In the last Section we
perform the numerical experiments by testing a set of large-
scale problems and do some numerical comparisons with
some existing methods.

2. Motivations, New Conjugacy Condition,
and Related Method

2.1. Dai-Liao’s Methods. It is well-known that the linear
conjugate gradient methods generate a sequence of search
directions 𝑑

𝑘
such that conjugacy condition (5) holds. Denote

𝑦
𝑘−1

to be the gradient change, which means that

𝑦
𝑘−1

= 𝑔
𝑘
− 𝑔
𝑘−1

. (7)

For a general nonlinear function 𝑓, we know by the mean
value theorem that there exists some 𝑡 ∈ (0, 1) such that

𝑦𝑇
𝑘−1

𝑑
𝑘
= 𝛼
𝑘−1

𝑑𝑇
𝑘
∇2𝑓 (𝑥

𝑘−1
+ 𝑡𝛼
𝑘−1

𝑑
𝑘−1

) 𝑑
𝑘−1

. (8)

Therefore, it is reasonable to replace (5) with the following
conjugacy condition:

𝑦𝑇
𝑘−1

𝑑
𝑘
= 0. (9)

Recently, extension of (9) has been studied by Dai and
Liao in [13]. Their approach is based on the quasi-Newton
techniques. Recall that, in the quasi-Newton method, an
approximation matrix 𝐻

𝑘−1
of the Hessian ∇2𝑓(𝑥

𝑘−1
) is

updated such that the new matrix 𝐻
𝑘
satisfies the following

quasi-Newton equation:

𝐻
𝑘
𝑠
𝑘−1

= 𝑦
𝑘−1

. (10)

The search direction𝑑
𝑘
in quasi-Newtonmethod is calculated

by

𝑑
𝑘
= −𝐻−1
𝑘
𝑔
𝑘
. (11)

Combining these two equations, we obtain

𝑑𝑇
𝑘
𝑦
𝑘−1

= 𝑑𝑇
𝑘
(𝐻
𝑘
𝑠
𝑘−1

) = −𝑔𝑇
𝑘
𝑠
𝑘−1

. (12)

The above relation implies that (9) holds if the line search
is exact since in this case 𝑔𝑇

𝑘
𝑑
𝑘−1

= 0. However, practical
numerical algorithms normally adopt inexact line searches
instead of exact line search. For this reason, it seems more
reasonable to replace conjugacy condition (9) with the con-
dition

𝑑𝑇
𝑘
𝑦
𝑘−1

= −𝑡𝑔𝑇
𝑘
𝑠
𝑘−1

𝑡 ≥ 0, (13)

where 𝑡 ≥ 0 is a scalar.
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To ensure that the search direction 𝑑
𝑘
satisfies conjugacy

condition (13), one only needs to multiply (3) with 𝑦
𝑘−1

and
use (13), yielding

𝛽DL1
𝑘

=
𝑔𝑇
𝑘
(𝑦
𝑘−1

− 𝑡𝑠
𝑘−1

)

𝑑𝑇
𝑘−1

𝑦
𝑘−1

. (14)

It is obvious that

𝛽DL1
𝑘

= 𝛽HS
𝑘

− 𝑡
𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

. (15)

For simplicity, we call the method with (2), (3), and (14) as
DL1 method. Dai and Liao also proved that the conjugate
gradient method with DL1 is globally convergent for uni-
formly convex functions. For general functions, Powell [12]
constructed an example showing that the PR method may
cycle without approaching any solution point if the step-
length 𝛼

𝑘
is chosen to be the first local minimizer along 𝑑

𝑘
.

Since the DL1method reduces to the PR method in the case
that 𝑔𝑇

𝑘
𝑑
𝑘−1

= 0 holds, this implies that the method with (14)
need not converge for general functions. To get the global
convergence, Dai and Liao made a restriction on 𝛽DL1

𝑘
as

follows

𝛽
𝑘
= max {𝛽PR

𝑘
, 0} . (16)

Dai and Liao replaced (14) by

𝛽DL
𝑘

= max{
𝑔𝑇
𝑘
𝑦
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

, 0} − 𝑡
𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

= max {𝛽HS
𝑘
, 0} − 𝑡

𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

.

(17)

We also call the method with (2), (3), and (17) as DL
method; Dai and Liao show that DL method is globally
convergent for general functions under sufficient descent
condition (31) and some suitable conditions. Besides, some
numerical experiments in [13] indicate the efficiency of this
method.

Similar to Dai and Liao’s approach, Li et al. [14] proposed
another conjugate condition and related conjugate gradient
methods. And they also proved that the proposed methods
are globally convergent under some assumptions.

Recently, based on a modified secant condition given by
Zhang et al. [15], Yabe and Takano [16] derive an update
parameter 𝛽YT

𝑘
and show that the YT+ scheme is globally

convergent under some conditions:

𝛽YT
𝑘

=
𝑔𝑇
𝑘+1

(𝑧
𝑘
− 𝑡𝑠
𝑘
)

𝑑𝑇
𝑘
𝑧
𝑘

, (18)

where

𝑧
𝑘
= 𝑦
𝑘
+ (

𝜌𝜃
𝑘

𝑠𝑇
𝑘
𝑢
𝑘

)𝑢
𝑘
,

𝜃
𝑘
= 6 (𝑓

𝑘
− 𝑓
𝑘+1

) + 3(𝑔
𝑘
+ 𝑔
𝑘+1

)
𝑇

𝑠
𝑘
,

(19)

𝜌 ≥ 0 is a constant

𝛽YT+
𝑘

= max{
𝑔𝑇
𝑘+1

𝑧
𝑘

𝑑𝑇
𝑘
𝑧
𝑘

, 0} − 𝑡
𝑔𝑇
𝑘+1

𝑠
𝑘

𝑑𝑇
𝑘
𝑧
𝑘

. (20)

2.2. Motivations. From the above discussions, Dai and Liao’s
approach is effective; the main reason is that the search
directions 𝑑

𝑘
generated by DL1 method or DL method not

only contain the gradient information but also contain some
Hessian ∇2𝑓(𝑥) information. From (15) and (17), 𝛽DL1

𝑘
and

𝛽DL
𝑘

are formed by two parts; the first part is 𝛽HS
𝑘

and the
second part is −𝑡(𝑔𝑇

𝑘
𝑠
𝑘−1

/𝑑𝑇
𝑘−1

𝑦
𝑘−1

). So we also consider DL1
and DL methods as the modified forms of the H𝑆 method
by adding some information of Hessian ∇2𝑓(𝑥) which is
contained in the second part.

From the structure of (17), we know that the
parameter 𝛽DL

𝑘
may be negative since the second part

−𝑡(𝑔𝑇
𝑘
𝑠
𝑘−1

/𝑑𝑇
𝑘−1

𝑦
𝑘−1

) may be less than zero. In conjugate
gradient methods, if the 𝛽

𝑘
< 0 and |𝛽

𝑘
| is large, then the

generated directions 𝑑
𝑘
and 𝑑

𝑘−1
may tend to be opposite.

This type of methods is susceptible to jamming.
On the other hand, in conjugate gradient methods, the

following strong Wolfe-Powell line search is often used to
determine the step size 𝛼

𝑘
:

𝑓 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) − 𝑓 (𝑥

𝑘
) ≤ 𝛿𝛼

𝑘
𝑔𝑇
𝑘
𝑑
𝑘
, (21)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑔(𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
𝑇

𝑑
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜎

󵄨󵄨󵄨󵄨󵄨𝑔
𝑇

𝑘
𝑑
𝑘

󵄨󵄨󵄨󵄨󵄨 , (22)

where 0 < 𝛿 < 𝜎 < 1; a typical choice of 𝜎 is 𝜎 = 0.1.
From the structure of (17), we know that 𝛽DL

𝑘
depends on

the directional derivative 𝑔𝑇
𝑘
𝑑
𝑘−1

which is determined by the
line search. For PRP+ algorithmwith the strongWolfe-Powell
line search, in order to make sufficient descent condition
(31) hold, people often used Lemarechal [17], Fletcher [18],
or Moré and Thuente’s [19] strategy to make the directional
derivative |𝑔𝑇

𝑘
𝑑
𝑘−1

| sufficiently small. Under this strategy, the
second part of 𝛽DL

𝑘
will tend to vanish. This means that the

DL method is much line-search-dependent.
The above discussions motivate us to propose a modi-

fied conjugacy condition and the related conjugate gradient
method, which should possess the following properties

(1) Nonnegative property 𝛽
𝑘
≥ 0.

(2) The new formula contains not only the gradient
information but also some Hessian information.

(3) The formula should be less line-search-dependent.

2.3. The Modified Conjugacy Condition and Related Method.
From the above discussion, it seems reasonable to replace
conjugacy condition (13) with the following modified conju-
gacy condition:

𝑑𝑇
𝑘
𝑦
𝑘−1

= −𝑡𝑔𝑇
𝑘−1

𝑠
𝑘−1

, 𝑡 > 0. (23)
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To ensure that the search direction 𝑑
𝑘
satisfies condition

(23), one only needs to multiply (3) with 𝑦
𝑘−1

and use (23),
yielding

𝛽MDL
𝑘

=
𝑔𝑇
𝑘
𝑦
𝑘−1

− 𝑡𝑔𝑇
𝑘−1

𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

. (24)

It is obvious that

𝛽MDL
𝑘

= 𝛽HS
𝑘

− 𝑡
𝑔𝑇
𝑘−1

𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

. (25)

For simplicity, we call the method with (2), (3), and (25) as
MDLmethod. Similar to Gilbert and Nocedal’s [4] approach,
we propose the following restricted parameter 𝛽MDL+

𝑘
:

𝛽MDL+
𝑘

= max {𝛽HS
𝑘
, 0} − 𝑡

𝑔𝑇
𝑘−1

𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

. (26)

And we call the method with (2), (3), and (26) as MDL+
method and give the nonlinear conjugate gradient algorithm
as below.

Algorithm 1 (MDL+). Step 1. Given 𝑥
1
∈ 𝑅𝑛, 𝜀 ≥ 0, set 𝑑

1
=

−𝑔
1
, 𝑘 = 1 if ‖𝑔

1
‖ ≤ 𝜀, then stop.

Step 2. Compute 𝛼
𝑘
by the strong Wolfe-Powell line search.

Step 3. Let 𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, 𝑔
𝑘+1

= 𝑔(𝑥
𝑘+1

); if ‖𝑔
𝑘+1

‖ ≤ 𝜀,
then stop.

Step 4. Compute 𝛽
𝑘
by (26) and generate 𝑑

𝑘+1
by (3).

Step 5. Set 𝑘 := 𝑘 + 1 and go to Step 2.

3. Convergence Analysis

In the convergence analysis of conjugate gradient methods,
we often make the following basic assumptions on the
objective functions.

Assumption A. (i) The level set Γ = {𝑥 ∈ 𝑅𝑛 : 𝑓(𝑥) ≤ 𝑓(𝑥
1
)}

is bounded; namely, there exists a constant 𝐵 > 0 such that

‖𝑥‖ ≤ 𝐵, ∀𝑥 ∈ Γ. (27)

(ii) In some neighborhood𝑁 of Γ, 𝑓 is continuously dif-
ferentiable, and its gradient is Lipschitz continuous; namely,
there exists a constant 𝐿 > 0 such that

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)󵄩󵄩󵄩󵄩 ≤ 𝐿 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝑁. (28)

Under the above assumptions of𝑓, there exists a constant 𝛾 ≥
0 such that

󵄩󵄩󵄩󵄩∇𝑓 (𝑥)󵄩󵄩󵄩󵄩 ≤ 𝛾, ∀𝑥 ∈ Γ. (29)

We say the descent condition holds if for each search
direction 𝑑

𝑘
,

𝑔𝑇
𝑘
𝑑
𝑘
< 0 ∀𝑘 ≥ 1. (30)

In addition, we say the sufficient descent condition holds
if there exists a constant 𝑐 > 0 such that, for each search
direction 𝑑

𝑘
, we have

𝑔𝑇
𝑘
𝑑
𝑘
≤ −𝑐󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

∀ 𝑘 ≥ 1. (31)

Under Assumption A, based on the Zoutendijk condition
in [10], for any conjugate gradient method with the strong
Wolfe-Powell line search, Dai et al. in [20] proved the
following general result.

Lemma 2. Suppose that Assumption A holds. Consider any
conjugate gradient method in the form (2)-(3), where 𝑑

𝑘
is a

descent direction and 𝛼
𝑘
is obtained by the strongWolfe-Powell

line search. If

∑
𝑘≥1

1
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2
= ∞, (32)

we have that
lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (33)

If the objective functions are uniformly convex, we can prove
that the norm of 𝑑

𝑘
generated by Algorithm 1 (MDL+) is

bounded above. Thus by Lemma 2 we immediately have the
following result.

Theorem 3. Suppose that Assumption A holds. Consider
MDL+ method, where 𝑑

𝑘
is a descent direction and 𝛼

𝑘
is

obtained by the strong Wolfe-Powell line search. If the objective
functions are uniformly convex, namely, there exists a constant
𝜇 > 0 such that

(∇𝑓 (𝑥) − ∇𝑓 (𝑦))
𝑇

(𝑥 − 𝑦) ≥ 𝜇󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩
2

,

∀𝑥, 𝑦 ∈ Γ,
(34)

we have that
lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (35)

Proof. It follows from (34) that

𝑑𝑇
𝑘−1

𝑦
𝑘−1

≥ 𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

. (36)

By (3), (24), (28), (29), and (36), we have that
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨󵄨𝛽

MDL
𝑘

󵄨󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔𝑇
𝑘
𝑦
𝑘−1

− 𝑡𝑔𝑇
𝑘−1

𝑠
𝑘−1

𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑔𝑘 − 𝑔

𝑘−1

󵄩󵄩󵄩󵄩 + 𝑡
󵄨󵄨󵄨󵄨󵄨𝑔
𝑇

𝑘−1
𝑠
𝑘−1

󵄨󵄨󵄨󵄨󵄨
𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 𝐿

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩 + 𝑡 󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩
𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

≤ 𝛾 +
𝛾𝐿 󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩 + 𝑡𝛾 󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

= 𝛾𝜇−1 (𝜇 + 𝐿 + 𝑡) ,

(37)
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which implies the truth of (32). Therefore, by Lemma 2, we
have (33), which is equivalent to (35) for uniformly convex
functions. The proof is completed.

For the method with 𝛽MDL+
𝑘

, if descent condition (30)
holds and 𝛼

𝑘
satisfies Wolfe-Powell condition (22), then the

parameter 𝛽MDL+
𝑘

is nonnegative.

Lemma 4. In any conjugate gradient method, if the parameter
𝛽
𝑘
is computed by (26) and 𝑑

𝑘
is a descent direction, when 𝛼

𝑘
is

determined by strong Wolfe-Powell line search conditions (21)
and (22), then

𝛽MDL+
𝑘

≥ 0. (38)

Proof. By SWP condition (22), we have 𝑑𝑇
𝑘−1

𝑦
𝑘−1

≥ 𝜎𝑔𝑇
𝑘−1

𝑑
𝑘−1

− 𝑔𝑇
𝑘−1

𝑑
𝑘−1

≥ 0 and 𝑔𝑇
𝑘−1

𝑠
𝑘−1

< 0. So we have

𝛽MDL+
𝑘

= max {𝛽HS
𝑘
, 0} − 𝑡

𝑔𝑇
𝑘−1

𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

,

≥ 0

(39)

The proof is completed.

Theorem 5. Suppose that Assumption A holds. Consider
MDL+ method, where 𝑑

𝑘
is a sufficient descent direction and

𝛼
𝑘
is obtained by strongWolfe-Powell line search. If there exists

a constant 𝛾 > 0 such that
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 ≥ 𝛾, ∀𝑘 ≥ 1, (40)

then 𝑑
𝑘

̸= 0 and

∑
𝑘≥2

󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩
2

< ∞, (41)

where 𝑢
𝑘
= 𝑑
𝑘
/‖𝑑
𝑘
‖.

Proof. First, note that 𝑑
𝑘

̸= 0; otherwise (31) is false.Therefore
𝑢
𝑘
is well defined. In addition, by relation (40) and Lemma 2,

we have that

∑
𝑘≥1

1
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2
< ∞. (42)

Now, we divide formula 𝛽MDL+
𝑘

into two parts as follows:

𝛽1
𝑘
= max {𝛽HS

𝑘
, 0} , 𝛽2

𝑘
= −𝑡

𝑔𝑇
𝑘−1

𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

, (43)

and define

𝑟
𝑘
:=

𝜗
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
, 𝛿

𝑘
:= 𝛽1
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
, (44)

where 𝜗
𝑘
= −𝑔
𝑘
+ 𝛽2
𝑘
𝑑
𝑘−1

.
Then by (3) we have, for all 𝑘 ≥ 2,

𝑢
𝑘
= 𝑟
𝑘
+ 𝛿
𝑘
𝑢
𝑘−1

. (45)

Using the identity ‖𝑢
𝑘
‖ = ‖𝑢

𝑘−1
‖ = 1 and (45), we can obtain

󵄩󵄩󵄩󵄩𝑢𝑘 − 𝛿
𝑘
𝑢
𝑘−1

󵄩󵄩󵄩󵄩
2

= 1 + 𝛿2
𝑘
− 2𝛿
𝑘
𝑢𝑇
𝑘
𝑢
𝑘−1

, (46)

󵄩󵄩󵄩󵄩𝛿𝑘𝑢𝑘 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩
2

= 1 + 𝛿2
𝑘
− 2𝛿
𝑘
𝑢𝑇
𝑘
𝑢
𝑘−1

, (47)
󵄩󵄩󵄩󵄩𝑟𝑘

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑢𝑘 − 𝛿

𝑘
𝑢
𝑘−1

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝛿𝑘𝑢𝑘 − 𝑢

𝑘−1

󵄩󵄩󵄩󵄩 . (48)

Using the condition 𝛿
𝑘
= max{𝛽HS

𝑘
, 0}(‖𝑑

𝑘−1
‖/‖𝑑
𝑘
‖) ≥ 0, the

triangle inequality, and (48), we obtain

󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩(1 + 𝛿

𝑘
) 𝑢
𝑘
− (1 + 𝛿

𝑘
) 𝑢
𝑘−1

󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝑢𝑘 − 𝛿
𝑘
𝑢
𝑘−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝛿𝑘𝑢𝑘 − 𝑢

𝑘−1

󵄩󵄩󵄩󵄩

= 2 󵄩󵄩󵄩󵄩𝑟𝑘
󵄩󵄩󵄩󵄩 .

(49)

On the other hand, line search condition (22) gives

𝑦𝑇
𝑘−1

𝑑
𝑘−1

≥ (𝜎 − 1) 𝑔𝑇
𝑘−1

𝑑
𝑘−1

> 0. (50)

Equations (22), (31), and (50) imply that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔𝑇
𝑘−1

𝑑
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

1

1 − 𝜎
. (51)

It follows from the definition of 𝜗
𝑘
, (27), (29), and (51) that

󵄩󵄩󵄩󵄩𝜗𝑘
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 + 𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔𝑇
𝑘−1

𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

= 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 + 𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔𝑇
𝑘−1

𝑑
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

≤ 𝛾 + 𝑡
1

1 − 𝜎
2𝐵.

(52)

So we have

∑󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩
2

≤ 4∑󵄩󵄩󵄩󵄩𝑟𝑘
󵄩󵄩󵄩󵄩
2

≤ 4∑
𝜗2
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

≤ 4(𝛾 + 𝑡
1

1 − 𝜎
2𝐵)
2

∑
1

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

< ∞

(53)

and the proof is completed.

Gilbert and Nocedal [4] introduced property (∗) which is
very important for the convergence analysis of the conjugate
gradientmethods. In fact, with AssumptionA, (40), and (50),
if (31) holds with some constant 𝑐 > 0, the method with
𝛽MDL+
𝑘

possesses such property (∗).

Property 1 (∗). Consider a method of forms (2) and (3).
Suppose that

0 < 𝛾 ≤ 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 ≤ 𝛾 ∀𝑘 ≥ 1. (54)
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We say that the method has property (∗), if, for all 𝑘, there
exist constants 𝑏 > 1, 𝜆 > 0 such that |𝛽

𝑘
| ≤ 𝑏, and if ‖𝑠

𝑘−1
‖ ≤

𝜆, we have |𝛽
𝑘
| ≤ 1/2𝑏.

In fact, by (31), (40), and (50), we have

𝑑𝑇
𝑘−1

𝑦
𝑘−1

≥ (𝜎 − 1) 𝑔𝑇
𝑘−1

𝑑
𝑘−1

≥ 𝑐 (1 − 𝜎) 󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2

≥ (1 − 𝜎) 𝑐𝛾2.
(55)

Combining (55) with (27) and (28) and (29), we obtain

󵄨󵄨󵄨󵄨󵄨𝛽
MDL+
𝑘

󵄨󵄨󵄨󵄨󵄨 ≤
𝛾𝐿 󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩 + 𝑡𝛾 󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

(1 − 𝜎) 𝑐𝛾2
≤
2𝐵 (𝐿 + 𝑡) 𝛾

(1 − 𝜎) 𝑐𝛾2
=: 𝑏. (56)

Note that 𝑏 can be defined such that 𝑏 > 1. Therefore we can
say that 𝑏 > 1. As a result, we define

𝜆 :=
(1 − 𝜎) 𝑐𝛾2

2𝑏 (𝐿 + 𝑡) 𝛾
, (57)

and we get from the first inequality in (56) that if ‖𝑠
𝑘−1

‖ ≤ 𝜆,
then

󵄨󵄨󵄨󵄨󵄨𝛽
MDL+
𝑘

󵄨󵄨󵄨󵄨󵄨 ≤
𝛾 (𝐿 + 𝑡) 𝜆

(1 − 𝜎) 𝑐𝛾2

=
𝛾 (𝐿 + 𝑡)

(1 − 𝜎) 𝑐𝛾2
(1 − 𝜎) 𝑐𝛾2

2𝑏 (𝐿 + 𝑡) 𝛾
=

1

2𝑏
.

(58)

Let𝑁∗ denote the set of positive integers. For 𝜆 > 0 and
a positive integer Δ, denote

𝐾𝜆
𝑘,Δ

:= {𝑖 ∈ 𝑁∗ : 𝑘 ≤ 𝑖 ≤ 𝑘 + Δ − 1, 󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩 > 𝜆} . (59)

Let |𝐾𝜆
𝑘,Δ

| denote the number of elements in 𝐾𝜆
𝑘,Δ

. From the
above property (∗), we can prove the following theorem.

Theorem 6. Suppose that Assumption A holds. Consider
MDL+ method, where 𝑑

𝑘
satisfies condition (31) with 𝑐 > 0,

and 𝛼
𝑘
is obtained by the strongWolfe-Powell line search.Then

if (40) holds, there exists 𝜆 > 0 such that, for any Δ ∈ 𝑁∗ and
any index 𝑘

0
, there is an index 𝑘 ≥ 𝑘

0
such that

󵄨󵄨󵄨󵄨󵄨𝐾
𝜆

𝑘,Δ

󵄨󵄨󵄨󵄨󵄨 >
Δ

2
. (60)

The proof of this theorem is similar to the proof of Lemma
3.5 in [13]. So, we omit the proof.

According to the above lemmas and theorems, we
can prove the following convergence result for the MDL+
method.

Theorem 7. Suppose that Assumption A holds. Consider
MDL+ method, where 𝑑

𝑘
satisfies condition (31) with 𝑐 > 0,

and 𝛼
𝑘
is obtained by the strongWolfe-Powell line search.Then

we have lim inf
𝑘→∞

‖𝑔
𝑘
‖ = 0.

Proof. We proceed by contradiction. If lim inf
𝑘→∞

‖𝑔
𝑘
‖ > 0,

then (40) must hold.Then the conditions ofTheorem 6 hold.
Defining 𝑢

𝑖
= 𝑑
𝑖
/‖𝑑
𝑖
‖, we have, for any indices 𝑙, 𝑘, with 𝑙 ≥ 𝑘,

𝑥
𝑙
− 𝑥
𝑘−1

=
𝑙

∑
𝑖=𝑘

𝑥
𝑖
− 𝑥
𝑖−1

=
𝑙

∑
𝑖=𝑘

𝛼
𝑖−1

𝑑
𝑖−1

=
𝑙

∑
𝑖=𝑘

𝑢
𝑖−1

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩

=
𝑙

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 𝑢𝑘−1 +

𝑙

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 (𝑢𝑖−1 − 𝑢

𝑘−1
) .

(61)

Consider ‖𝑢
𝑖
‖ = 1; (27) and (61) give that

𝑙

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑙 − 𝑥
𝑘−1

󵄩󵄩󵄩󵄩 +
𝑙

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑖−1 − 𝑢

𝑘−1

󵄩󵄩󵄩󵄩

≤ 2𝐵 +
𝑙

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑖−1 − 𝑢

𝑘−1

󵄩󵄩󵄩󵄩 .

(62)

Let 𝜆 > 0 be given by Theorem 6 and define Δ := ⌈8𝐵/𝜆⌉
to be the smallest integer not less than 8𝐵/𝜆. By Theorem 6,
we can find an index 𝑘

0
≥ 1 such that

∑
𝑖≥𝑘0

󵄩󵄩󵄩󵄩𝑢𝑖−1 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩
2

≤
1

4Δ
. (63)

With this Δ and 𝑘
0
, Theorem 6 gives an index 𝑘 ≥ 𝑘

0
such

that

󵄨󵄨󵄨󵄨󵄨𝐾
𝜆

𝑘,Δ

󵄨󵄨󵄨󵄨󵄨 >
Δ

2
. (64)

For any index 𝑖 ∈ [𝑘, 𝑘 + Δ − 1], by Cauchy-Schwarz, the
geometric inequalities, and (63),

󵄩󵄩󵄩󵄩𝑢𝑖 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩 ≤
𝑖

∑
𝑗=𝑘

󵄩󵄩󵄩󵄩󵄩𝑢𝑗 − 𝑢
𝑗−1

󵄩󵄩󵄩󵄩󵄩

≤ (𝑖 − 𝑘 + 1)1/2(
𝑖

∑
𝑗=𝑘

󵄩󵄩󵄩󵄩󵄩𝑢𝑗 − 𝑢
𝑗−1

󵄩󵄩󵄩󵄩󵄩
2

)

1/2

≤ Δ1/2(
1

4Δ
)
1/2

=
1

2
.

(65)

From relations (64) and (65), by taking 𝑙 = 𝑘 + Δ − 1 in (62),
we get

2𝐵 ≥
1

2

𝑘+Δ−1

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 >

𝜆

2

󵄨󵄨󵄨󵄨󵄨𝐾
𝜆

𝑘,Δ

󵄨󵄨󵄨󵄨󵄨 >
𝜆Δ

4
. (66)

Thus Δ < 8𝐵/𝜆, which contradicts the definition of Δ. The
proof is completed.
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4. Numerical Results

In this section, we report the performance of Algorithm 1
(MDL+) on a set of test problems. The codes were written in
Fortran 77 and in double precision arithmetic. All the tests
were performed on the same PC (Intel Core i3 CPU M370
@ 2.4GH, 2GB RAM). The experiments were performed
on a set of 73 nonlinear unconstrained problems collected
by Neculai Andrei. Some of the problems are from CUTE
[21] library. For each test problem, we have performed 10
numerical experiments with a number of variables 𝑛 = 1000,
2000,. . ., 10000.

In order to assess the reliability of the MDL+ algorithm,
we also tested this method against the DL method and
HS method using the same problems. All these algorithms
terminate when ‖𝑔

𝑘
‖ ≤ 10−5. We also force the routines to

stop if the iterations exceed 1000 or the number of function
evaluations reaches 2000. The parameters 󳵻 and 𝜎 in Wolfe-
Powell line search conditions (21) and (22) are set to be 10−4
and 10−1 respectively. For DL method, 𝑡 = 0.1, which is the
same with [13]. We also test MDL+ algorithm with different
parameters 𝑡 to see that 𝑡 = 0.05 is the best choice.

The comparing data contain the iterations, function,
and gradient evaluations and CPU time. To approximatively
assess the performance of MDL+, HS, and DL methods, we
use the profile of Dolan and Moré [22] as an evaluated tool.

Dolan and Moré [22] gave a new tool to analyze the
efficiency of algorithms. They introduced the notion of a
performance profile as a means to evaluate and compare the
performance of the set of solvers 𝑆 on a test set 𝑃. Assuming
that there exist 𝑛

𝑠
solvers and 𝑛

𝑝
problems, for each problem

𝑝 and solver 𝑠, they defined 𝑡
𝑝,𝑠

= computing cost (iterations
or function and gradient evaluations or CPU time) required
to solve problem 𝑝 by solver 𝑠.

Requiring a baseline for comparisons, they compared
the performance on problem 𝑝 by solver 𝑠 with the best
performance by any solver on this problem; that is, using the
performance ratio

𝑟
𝑝,𝑠

=
𝑡
𝑝,𝑠

min {𝑡
𝑝,𝑠

: 𝑠 ∈ 𝑆}
. (67)

Suppose that a parameter𝑀 ≥ 𝑟
𝑝,𝑠

for all𝑝, 𝑠. Set 𝑟
𝑝,𝑠

= 𝑀
if and only if solver 𝑠 does not solve problem 𝑝. Then they
defined

𝜌
𝑠
(𝜏) =

1

𝑛
𝑝

size {𝑝 ∈ 𝑃 : 𝑟
𝑝,𝑠

≤ 𝜏} . (68)

Thus 𝜌
𝑠
(𝜏) is the probability for solver 𝑠 that a performance

ratio 𝑟
𝑝,𝑠

is within factor 𝜏 ≥ 1 of the best possible ratio.
Then function 𝜌

𝑠
is the distribution function for the perfor-

mance ratio. The performance profile 𝜌
𝑠
is a nondecreasing,

piecewise constant function.That is, for subset of themethods
being analyzed, we plot the fraction 𝑃 of the problems for
which any given method is within a factor 𝜏 of the best.

For the testing problems, if all three methods can not
terminate successfully, then we got rid of it. In case one
method fails, but there is another method that terminates
successfully, then the performance ratio of the failed method

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

P

1 1.5 2 2.5 3 3.5 4

DL
MDL+
HS

𝜏

Figure 1: Iterations.
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Figure 2: Function and gradient evaluations.

is set to be 𝑀 (𝑀 is the maxima of the performance ratios).
The performance profiles based on iterations, function and
gradient evaluations, and CPU time of the three methods are
plotted in Figures 1, 2, and 3, respectively.

From Figure 1, which plots the performance profile based
on iterations, when 𝜏 = 1, the HS method performs better
thanMDL+ and DLmethods.With the increasing of 𝜏, when
𝜏 ≥ 1.3, the profile ofMDL+method outperformsHS andDL
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Figure 3: CPU time.

methods. This means that, from the iteration points of view,
for a subset of problems, HSmethod is better thanMDL+ and
DLmethods. But, for all the testing problems, DML+method
is much robuster than HS and DL methods.

From Figure 2, which plots the performance profile based
on function and gradient evaluations, it is easy to see that, for
all 𝜏 ≥ 1, MDL+ method performs much better than HS and
DL methods. It is an interesting phenomenon, since, when
𝜏 ≤ 1.3, the profiles of HS based on iterations outperform
DML+ method. This means that, during process of iteration,
the required function and gradient evaluations of MDL+
method are much less than HS and DL methods. Form this
point of view, the CPU time consumed by MDL+ method
should be much less than HS and DL methods, since the
CPU time is mainly dependent on function and gradient
evaluations. Figure 3 validates that the CPU time consumed
by MDL+ method is much less than HS and DL methods.
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