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While support vector regression is widely used as both a function approximating tool and a residual generator for nonlinear system
fault isolation, a drawback for this method is the freedom in selecting model parameters. Moreover, for samples with discordant
distributing complexities, the selection of reasonable parameters is even impossible. To alleviate this problem we introduce the
method of flexible support vector regression (F-SVR), which is especially suited for modelling complicated sample distributions,
as it is free from parameters selection. Reasonable parameters for F-SVR are automatically generated given a sample distribution.
Lastly, we apply this method in the analysis of the fault isolation of high frequency power supplies, where satisfactory results have
been obtained.

1. Introduction

With the increasing use of complex systems, there has
been great interest in the development of techniques to
fault isolations. Generally, the major approaches for fault
isolation can be divided into two categories, namely, model-
based and data-driven techniques. The fundamental aspect
of a model-based fault isolation is a process model that
runs parallel to the process [1]. With traditional methods
like observers, approximating the function between state
vectors and input/output vectors is successful due to precise
mathematical modelling by the use of filters. While these
methods have successfully modelled linear systems, when
applied to nonlinear systems like chemical processing, precise
devices, and aerodynamic systems, they often fail to construct
a sufficient model because their mechanism models are hard
to be formed. Model-based approaches have advantages in
terms of on-board implementation considerations, but their
reliability may decrease as the nonlinear system complexities
increase [2].

Therefore, data-driven techniques have been introduced
to more accurately construct process models as these

methods are free from the requirement to analytically derive
equations for a given system, shown in Figure 1. One feasible
method is to use the artificial neural network (ANN). ANN
utilizes experience risk minimization (ERM) principle to
construct the process model, where the target function is
numerically approximated by minimizing residuals between
function estimates and outputs of the process data. Appli-
cations of ANN-based fault isolation have been widely
addressed in the literature. For example, SadoughVanini et al.
[2] used the dynamic neural networks to isolate the fault of
a dual spool gas turbine engine. Filippetti et al. [3] applied
fuzzy-NN to the fault isolation of induction motor drives.
However, the learning ability of ANN is dependent on the
number of training samples. It requires massive samples to
ensure the modelling performance. But in most practical
applications, not many of fault samples can be acquired.

More recently, the principle of structure risk minimiza-
tion [4] has been introduced in fault isolation through the
utilization of support vector regression (SVR) [5, 6] as it can
provide more accurate results than using neural networks
in condition of smaller training samples. It was constructed
on the basis of statistics learning theory that provides
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the theoretical proofs of learning from finite samples. Much
has been addressed in the literature where SVR shows
superiorities to ANN in process modeling [7].

However, the performance of SVR-based modelling is
greatly affected by its parameters. Although SVR has been
well studied and many remarkable achievements have been
obtained, the theoretical estimation of regression parameter
remains unsolved in the last decade. There is no general
consensus on the selection of proper parameters, but only
some practical recommendations on this issue. This greatly
increases the difficulty for common operators to master the
SVR-based approach. Moreover, in some complicated cases,
there are even no reasonable parameter settings that could
be found. A rigorous selection of regression parameters
can lead to the overlearning of training samples, while
slack selections can lead to underlearning. There exist no
parameters that yield good trade-off between overlearning
and underlearning.

In this paper we introduce a flexible SVR (F-SVR)
approach [8] to more accurately implement models that
construct different residual generators for fault isolation. By
automatically dividing training samples into several regions,
this method is not only free from parameter selection, but
also able to learn well and to generalize well for complicated
cases.

2. Problem Statement

Support vector regression (SVR) is a process modeling tool
that approximates the function between inputs and outputs:

𝑦 = 𝑓 (𝑥) = 𝑤𝑥 + 𝑏. (1)

Here 𝑥 and 𝑦 represent the input and output vectors,
respectively, 𝑓 is the modeled function,𝑤 is its weight vector,
and 𝑏 is the bias decided by the vector 𝑤.

The SVR-based modelling can be viewed as a process of
finding the optimal weight vector𝑤

0
with a proper parameter

vector 𝛼
0
for a given data set {(𝑥

1
, 𝑦
1
), . . . , (𝑥

𝑛
, 𝑦
𝑛
)}:

(𝛼
0
, 𝑤
0
) = arg min:

𝛼,𝑤

𝑅
𝑆𝑅𝑀

(𝛼, 𝑤)

= arg min:
𝛼,𝑤

Residual + 𝜙 (𝑤)

= arg min:
𝛼,𝑤

∫

𝑇𝑘

𝑇𝑜

𝐿 (𝑦, 𝑓 (𝑥, 𝛼, 𝑤)) 𝑝 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

(2)

where 𝐿(𝑦
𝑖
, 𝑓(𝑥
𝑖
, 𝑤, 𝛼)) = 𝐶

𝑖
⋅ |𝑦
𝑖
− (∑
𝑙

𝑖=1
𝛽
𝑖
𝐾(𝑥, 𝑥

𝑖
) + 𝑏)|

𝜀
is

the loss function, 𝑝(𝑥, 𝑦) is the unknown joint distribution of
𝑥 and 𝑦, 𝐶

𝑖
is the regularized parameter, 𝜀 is the insensitive

parameter,𝐾(⋅) is the kernel function, 𝜙(𝑤) denotes the gen-
eralization ability for the regression, and 𝛼 = {𝐶, 𝜀, 𝐾(⋅)}. The
optimal weight vector 𝑤

0
could be obtained by Lagrangian

approaches. Thus the core problem for the SVR modeling is
the selection of parameters.

The framework for SVR-based fault isolation is shown
in Figure 2. Different operating models are constructed by
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Figure 2: Scheme of SVR-based fault isolation.

SVRswith given parameters.The residuals between estimated
outputs and real outputs are generated for fault isolation.

However, the selection of SVR parameters is not easy.
With the fixed regression parameter 𝛼, the drawback of SVR
is the hardness of the trade-off between overlearning and
underlearning.Moreover, in some complicated cases, even no
reasonable parameters could be found. As shown in Figure 2,
due to the different complexities of sample distributions,
the requirements of parameters are discordant. If a rigorous
parameter 𝛼

1
is selected, the regression is overlearning in

region A. In contrast, if a slack parameter 𝛼
2
is selected,

the regression fails to learn in region B (underlearning).
No parameter that can adequately fit all of the cases exists.
Consequently, we advocate using the F-SVR approach in
order to overcome this drawback [8], as the regression
parameter is automatically generated and is variable instead
of fixed (Figure 3).
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3. Fault Isolation Using Flexible Support
Vector Regression (F-SVR)

3.1. The Principle of Flexible Support Vector Regression. We
proposed a parameter-free algorithm for process model-
ing, namely, flexible support vector regression. The F-SVR
attempts to divide the training samples into 𝑘 regions accord-
ing to the distribution complexity, and for the 𝑖th region,
parameter 𝛼

𝑖
is generated. By minimization (3), the function

between 𝑥 and 𝑦 is approximated:

𝑅 (𝑤, 𝛼) = ∬
𝑇1
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(3)

With given parameters, (3) can be minimized by solving
a 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔 (QP) problem. Supposing the
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Taking the partial derivative for (5), we get

𝜕𝐿

𝜕𝑤
= 𝑤 +

𝑙

∑

𝑖=1

𝛼
𝑖
𝑥
𝑖
−

𝑙

∑

𝑖=1

𝛼
∗

𝑖
𝑥
𝑖
= 0,

𝜕𝐿

𝜕𝑏
=

𝑙

∑

𝑖=1

(𝛼
𝑖
− 𝛼
∗

𝑖
) = 0,

𝜕𝐿

𝜕𝜉
𝑖

=
{

{

{

𝐶
1
− 𝛼
𝑖
− 𝛾
𝑖
, 1 ≤ 𝑖 ≤ 𝑞

= 0,

2𝐶
2
𝜉
𝑖
− 𝛼
𝑖
− 𝛾
𝑖
, 𝑞 < 𝑖 ≤ 𝑙

𝜕𝐿

𝜕𝜉∗
𝑖

=
{

{

{

𝐶
1
− 𝛼
∗

𝑖
− 𝛾
∗

𝑖
, 1 ≤ 𝑖 ≤ 𝑞

= 0.

2𝐶
2
𝜉
∗

𝑖
− 𝛼
∗

𝑖
− 𝛾
∗

𝑖
, 𝑞 < 𝑖 ≤ 𝑙

(6)

Make the dual problem for (4):

max: − 𝜀

𝑙

∑

𝑖=1

(𝛼
∗

𝑖
+ 𝛼
𝑖
) +

𝑙

∑

𝑖=1

𝑦
𝑖
(𝛼
∗

𝑖
− 𝛼
𝑖
)

−
1

2

𝑙

∑

𝑖,𝑗=1

(𝛼
∗

𝑖
− 𝛼
𝑖
) (𝛼
∗

𝑗
− 𝛼
𝑗
) (𝑥
𝑖
⋅ 𝑥
𝑗
)

−

𝑙

∑

𝑖=𝑞+1

1

4𝐶
2

(𝛼
2

𝑖
+ 𝛼
∗2

𝑖
)

S.t.
𝑙

∑

𝑖=1

(𝛼
∗

𝑖
− 𝛼
𝑖
) = 0; 0 ≤ 𝛼

∗

𝑖
≤ 𝐶
𝑖
; 0 ≤ 𝛼

𝑖
≤ 𝐶
𝑖
,

(7)

where

𝐶
𝑖
= {

𝐶
1
, 1 ≤ 𝑖 ≤ 𝑞

𝐶
2
, 𝑞 + 1 ≤ 𝑖 ≤ 𝑙.

(8)



4 Mathematical Problems in Engineering

Training samples

Random dividing

Approximation

Generating variable parametersMaking sample divisions

Output

SVR  with  selected SVs

SVR for each area with 𝛼i

SjCPji

SVs

𝛼i CPj i
j = arg min

j
Sj

Repeat m = k ∗ n/10 times

i = 1, 2, . . . , k
j = 1, 2, . . . , m

Figure 4: The flowchart for F-SVR modeling.

Slack parameters

Rigorous parameters

Slack parameters

𝛼2

𝛼1
𝛼3

y

x

Figure 5: Setting different parameters for different regions.

As 𝛼 ⋅ 𝛼∗ ≡ 0, (7) could be written with the following form:

min: 1
2
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∗
)
𝑇
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∗
)

+ 𝜀𝑒
𝑇
(𝛼 + 𝛼

∗
) − (𝛼 − 𝛼

∗
)
𝑇V (𝛼 − 𝛼∗) ,

(9)
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𝑖
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𝑗
), V = [0, . . . , (1/4)𝐶
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𝑙
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and 𝑒 is the unit vector. Further, the regression could be
written as the QP problem

min: 1
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∗
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𝑖
; 0 ≤ 𝛼

∗

𝑖
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,

(10)

where𝐷 = 𝑄 − V, 𝑐 = [𝜀𝑒 + 𝑦, 𝜀𝑒 − 𝑦], and

𝑧
𝑖
= {

1, 𝑖 = 1, 2 . . . 𝑞

−1, 𝑖 = 𝑞 + 1, . . . , 𝑙.
(11)

This form of QP problem can be solved by an active set
method [9]. The feasibility for complicated cases that more
regions are divided can similarly be proved.

3.2. Detailed Process of F-SVR Modeling. F-SVR modeling
contains three major steps, shown in Figure 4.

Step 1 (sample divisions). This section shows how 𝑇
𝑖
in (3) is

determined. Given training samples (𝑥
𝑖
, 𝑦
𝑖
)
𝑛

𝑖=1
, formula (12) is

utilized to estimate the distribution complexity

𝐶𝑃 =
∑
𝑛−1

𝑖=1

𝐴 𝑖
 / (𝑛 − 1)

∑
𝑛−2

𝑖=1
cos 𝜃
𝑖
/ (𝑛 − 2)

=
𝑛 − 2

𝑛 − 1
⋅
∑
𝑛−1

𝑖=1

𝐴 𝑖


∑
𝑛−2

𝑖=1
cos 𝜃
𝑖

, (12)

where𝐴
𝑖
= (𝑥
𝑖+1
, 𝑦
𝑖+1
)−(𝑥
𝑖
, 𝑦
𝑖
) and cos 𝜃

𝑖
= |𝐴
𝑖
⋅𝐴
𝑖+1
|/(|𝐴
𝑖
| ⋅

|𝐴
𝑖+1
|). Supposing the training samples have been divided

into 𝑘 areas, formula (13) is implemented to evaluate the
performance of division

𝑆 =

𝑘

∑

𝑖=1

−𝐶
𝑖

∑
𝑘

𝑗=1
𝐶
𝑗

log
𝐶
𝑖

∑
𝑘

𝑗=1
𝐶
𝑗

. (13)

The samples are divided randomly for several times, and
the division with the smallest 𝑆 value is treated as the best
division:

𝑗
∗
= arg min

𝑗

𝑆
𝑗
, 𝑗 = 1, 2, . . . 𝑚, (14)

where𝑚 is number of times that randomdivision ismade and
𝑛 is the number of training samples. And in this paper, we set
𝑚 = (𝑘 ∗ 𝑛)/10. The 𝑖th region denotes 𝑥 ∈ 𝑇

𝑖
.

Step 2 (setting parameters for each region). Once the best
division 𝑗

∗ is obtained, the 𝐶𝑃 values for all areas 𝐶𝑃
𝑗
∗ =

{𝐶𝑃
𝑗
∗
1
, 𝐶𝑃
𝑗
∗
2
, . . . , 𝐶𝑃

𝑗
∗
𝑘
} can also be obtained. In flexible
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support vector regression approach, the following empirical
formulas are given to set the hyperparameter 𝛼

𝑖
= {𝜀
𝑖
, 𝐶
𝑖
, 𝜎
𝑖
}:

𝛼
𝑖
:

{{{{{{{{{

{{{{{{{{{

{

𝜀
𝑖
=
0.5 ∗ std2 (𝑋

𝑖
)

𝐶𝑃
𝑗
∗
𝑖

𝐶
𝑖
=
1000𝐶𝑃

𝑗
∗
𝑖

∑
𝑘

𝑖=1
𝐶𝑃
𝑗
∗
𝑖

𝜎
𝑖
=

5

𝐶𝑃
𝑗
∗
𝑖

,

(15)

where𝑋
𝑖
= {𝑥 \ 𝑥 ∈ the ith region}.

Remark 1. Theempirical setting of parameters for each region
is referred to in Cherkassky’s work [10] in 2004.

Step 3 (function approximation using selected support vec-
tors). We use the conventional SVR with parameters 𝛼

𝑖
to

extract informative samples for the 𝑖th region. As shown in
Figure 6(a), the red samples are selected as support vectors
(SVs). If 𝑚 samples are selected as SVs for the training set
(𝑥
𝑖
, 𝑦
𝑖
)
𝑛

𝑖=1
, the regression problem 𝑓(𝑥) = ∑

𝑛

𝑖=1
𝛽
𝑖
𝐾(𝑥, 𝑥

𝑖
) + 𝑏
0

can be approximated by the regression problem of the SVs
[8]:

𝑓 (𝑥) =

𝑚

∑

𝑖=1

𝛾
𝑖
𝐾(𝑥, SV

𝑖
) + 𝑏


0
. (16)

Thus, the minimization of (3) can be simplified as

𝑤
∗
= arg min:

𝑤

∫

𝑇𝑘

𝑇𝑜

𝐿 (𝑦, 𝑓 (𝑆𝑉, 𝛼, 𝑤)) 𝑝 (𝑆𝑉, 𝑦) 𝑑
𝑆𝑉
⋅ 𝑑𝑦.

(17)

In (17), rigorous parameters 𝛼 = {0, 1000, 0.01} are set to
ensure the learning ability of regression.This problem can be
solved by using the Lagrangian method in the same way that
is used in conventional SVR (Figure 5).

As is shown in Figure 6(b), F-SVR (unlike conventional
SVR) successfully approximates the distribution function
without overlearning or underlearning. As we mentioned
earlier, F-SVR is free from the issues that can arise in the
manual selection of parameters as all of the parameters are
generated automatically.
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3.3. The Basic Scheme of F-SVR-Based Fault Isolation. Fault
isolation algorithms attempt to reveal which fault is occurring
in the operating system. In our method, we determine which
model of the system is most likely to be accurate by initially
constructing the modes for all faulty statuses and then
calculating the deviations between the real outputs and all
of the model outputs. As is shown in Figure 7, once the best
model has been located, the fault type can then be isolated.

Compared with conventional SVR-based fault isolation,
the most significant contribution of our work is that we have
alleviated the problem of parameter setting. What is required
for F-SVR-based fault isolation are only process samples for
different operating cases.

The detailed process of F-SVR-based fault isolation is as
follows. Given (𝑥

𝑖
, 𝑦
𝑖
)
𝑘

𝑖=1
, 𝑥
𝑖
, 𝑦
𝑖
∈ 𝑅
𝑛 as the training samples

from 𝑘 different operating statuses concluding the normal

status and all faulty statuses, where (𝑥
𝑖
, 𝑦
𝑖
) represents the

training samples for the 𝑖th status, the function𝐺
𝑖
(⋅) between

input vector 𝑥
𝑖
and output vector 𝑦

𝑖
is initially approximated

by the F-SVR method. After the training samples (𝑥, 𝑦)

construct the input/output models for all of the statuses, they
are sent to these models to generate the residuals between
the real outputs and the model outputs, thereby forming the
residual vector:

Residual
𝑖
= 𝑦 − 𝐺

𝑖
(𝑥) , 𝑖 = 1, . . . , 𝑘,

𝑟 =
[
[

[

Residual 1
...

Residual 𝑘

]
]

]𝑘×𝑛

.

(18)

We define a function 𝑅(𝑖) to measure the deviation
between the real output and themodel output of the 𝑖th status

𝑅 (𝑖) = ∑
𝑦 − 𝐺𝑖 (𝑥)

 . (19)

Faults can be isolated by analysis of the residual vector. In
this paper, we simply regard the testing samples belonging to
the 𝑖∗th status:

𝑖
∗
= arg min

𝑖

𝑅 (𝑖) , 𝑖 = 1, . . . , 𝑘. (20)

4. Experiments and Real Applications

4.1. Numerical Experiments. In our first attempt to validate
our method by a numerical experiment, we used a data set
with complicated distributions. White noise (SNR = 30 db)
is added to the analytical equation shown in (21), where
the training set consists of 600 samples extracted from 𝑥 ∈

(−1, 1]. In order to approximate the distribution, both F-SVR
and least-square SVR (LS-SVR) [11] are implemented:

𝑦1 = (𝑥 − 0.5)
2
+ 4 sin (3𝑥2) + 𝑥,

𝑦2 = 4𝑥 (1 − 𝑥) (2 sin (30𝑥 + 24) + 3) ,

𝑡 =
(1 − 𝑥)

2
,

𝑦 = 𝑦1 (1 − 𝑡) + 𝑦2 ∗ 𝑡; 𝑥 ∈ (−1, 1] .

(21)

To provide a fair comparison, the parameters for LS-
SVR were optimized first using a grid search strategy. The
evaluating index for LS-SVR is

𝐹 =
𝑑

𝑁
⋅ √

∑
𝑁

𝑖=1
(𝑦
𝑖
− 𝑦
𝑖
)
2

𝑁 − 1
,

(22)

where 𝑑 is the number of SVs and 𝑦 is the function output of
LS-SVR. A small 𝐹 value implies that the regression produces
generalization and accurate learning. As is shown in Figure 8,
the best parameter set for LS-SVR is {𝛾 = 10, 𝜎2 = 0.2}.

Theperformance of the twomethods is shown in Figure 9.
It is clear in this case that F-SVR is a more accurate method
for modeling data compared to the well-known LS-SVR.
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Figure 10: Process data for different operating cases of HFPS.
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4.2. Fault Isolation for High Frequency Power Supply. The
high frequency power supply (HFPS) is a nonlinear device
that has been widely used in power plants for dedusting
purpose. As its structure is highly complicated, its precise
model is usually hard to be constructed using classical
analytical approaches [12–18]. Thus, data-driven approaches
are utilized for processmodeling and fault isolation.However,
when applied to different power plants, the HFPS yields
very different input/output functions due to the change of
its loads and working environments. This means that there
is no general process model for HFPS in all conditions.

For each HFPS that has been installed, a particular process
model should be constructed. Therefore, for conventional
SVR-based fault isolation, experienced operators are required
to select the modeling parameters at site.

In this section, F-SVR was applied in order to isolate the
fault of the high frequency power supply. Three operating
cases were investigated: normal status, overcurrent fault, and
learning excitation fault. Data for the 3 operating cases of
HFPS was prepared in Figure 10 and an overcurrent fault
sample was used as the input data for testing in Figure 11.

The basic scheme for HFPS fault isolation is designed
in Figure 12. Firstly, process data for each operating case is
acquired; then, F-SVR is implemented to approximate the
unknown function between input (time) and output (the first
primary current) for each operating case. As the models for
all operating cases have been established, the residual vectors
can be generated and then by finding the model with the
smallest residual the fault can be isolated.

In this experiment, F-SVR is implemented to approximate
the functions between the input and the output, namely,
𝐺
1
(𝑥),𝐺

2
(𝑥), and𝐺

3
(𝑥). As shown in Figure 13, the functions

we obtained using F-SVR accurately describe the relationship
between the input and the output of the unknown functions
for the different operating cases without setting parameters.

Since 𝐺
1
(𝑥), 𝐺

2
(𝑥), and 𝐺

3
(𝑥) were already obtained

by the F-SVR method, the residuals could be generated
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Figure 13: Function approximation using F-SVR and LS-SVR.

using (12). The corresponding residuals are recorded in
Table 1. According to Table 1, the testing sample belongs to the
overcurrent fault (𝐺

2
(𝑥) yields the smallest residual). Based

on prior knowledge of the testing sample, the diagnostic
result is consistent and shows the feasibility of our method.

The LS-SVR method [11, 19] is also implemented to give
a comparison. As is shown in Table 1, the LS-SVR method

also makes a correct diagnosis and it has a better ability to
generalize than our method (the number of SVs is smaller).
However, our method yields a smaller value of residuals.
This implies that our method produces a better modeling
accuracy. Most importantly, all parameters are required to be
selected manually in LS-SVR but are selected automatically
in F-SVR.
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Table 1: Diagnostic performance of F-SVR and LS-SVR.

Operating status Residuals (𝑅
𝑖
) Number of SVs (𝑑) Parameters setting

F-SVR LS-SVR F-SVR LS-SVR F-SVR LS-SVR
Normal (𝐺

1
) 15.912 16.231 26 23 Auto Manual

Overcurrent (𝐺
2
) 11.296 14.131 38 28 Auto Manual

Learning excitation (𝐺
3
) 17.104 17.932 23 20 Auto Manual

5. Conclusions

SVR is one of the most efficient tools for fault diagnosis
because it is able to accurately model a function between
the input and the output using process data. However, even
though the SVR approach has been utilized for over a decade,
there is still no consensus within the community on how
to adequately select regression parameters. Given that the
F-SVR method offers an automatic selection for regression
parameters, we chose it to implement the fault isolation for
nonlinear systems. We demonstrated on both a numerical
experiment and the fault isolation for HFPS that F-SVR is
especially suited for cases that yield complicated sample dis-
tributions. This is because this method generates reasonable
parameters for each region by dividing the training samples
into different regions according to the sample distribution
complexity. Based on this work, we hope that F-SVR will
become more widely recognized as a preferred fault isolation
for nonlinear systems.
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