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In 1947, von Neumann and Morgenstern introduced the well-known expected utility and the related axiomatic system (see von
Neumann and Morgenstern (1953)). It is widely used in economics, for example, financial economics. But the well-known Allais
paradox (see Allais (1979)) shows that the linear expected utility has some limitations sometimes. Because of this, Peng proposed
a concept of nonlinear expected utility (see Peng (2005)). In this paper we propose a concept of stochastic dominance under the
nonlinear expected utilities. We give sufficient conditions on which a random choice 𝑋 stochastically dominates a random choice
𝑌 under the nonlinear expected utilities. We also provide sufficient conditions on which a random choice 𝑋 strictly stochastically
dominates a random choice 𝑌 under the sublinear expected utilities.

1. Introduction

In [1], von Neumann and Morgenstern introduced the well-
known expected utility and the related axiomatic system.
It is widely used in economics, for example, financial eco-
nomics. They exhibited four relatively modest axioms of
“rationality” such that any agent satisfying the axioms has a
utility function. They claimed that 𝑈(⋅) can be characterized
by 𝑈(𝑋) = 𝐸[𝑢(𝑋)]. That is to say they proved that
an agent is (VNM-) rational if and only if there exists
a real-valued function 𝑢(⋅) defined on possible outcomes
such that every preference of the agent is characterized by
maximizing the expected value of 𝑢(⋅), which can then be
defined as the agent’s VNM-utility. Here 𝑢(⋅) : 𝑅 →

𝑅 is a continuous and strictly increasing function, and
𝐸[⋅] is the linear expectation in some probability space
(Ω,F,P).

However, some real world utilities cannot be represented
by this expected utility. A famous counterexample is the well-
known Allais paradox (see [2]). Allais paradox shows that
linear expected utility has some limitations sometimes.

In [3], Peng developed nonlinear expectation and sub-
linear expectation theory. G-expectation is a kind of special

sublinear expectation. More details can be found in [4–7]. In
[8–11], G-expectation is used in financial economics.

In [12], Peng developed a nonlinear type of von Neu-
mann-Morgenstern representation theorem to utilities. He
proved that there exists a nonlinear expected utility𝑈(⋅), such
that an agent Â prefers a random choice 𝑋 than 𝑌 which is
formulated by 𝑈(𝑋) > 𝑈(𝑌).

But nonlinear expected utility can only describe an agent’s
preference; how to describe a group of agents’ preference? In
this paper we consider the question raised upward; to this end
we define a corresponding concept of stochastic dominance
under the nonlinear expected utilities.

The rest of this paper is organized as follows. In Section 2,
we give some basic notions and results of nonlinear expecta-
tions and nonlinear expected utilities. In Section 3, we give
the main results and the proofs.

2. Nonlinear Expectations and Nonlinear
Expected Utilities

In this section we shall give some results of nonlinear
expectations and nonlinear expected utilities.
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2.1. Nonlinear Expectations. We present some preliminaries
in the theory of nonlinear expectations and sublinear expec-
tations.The following definitions and properties can be found
in [3].

Let Ω be a given set and let H be a linear space of real
valued functions defined on Ω satisfying the following: if
𝑋
𝑖
∈ H, 𝑖 = 1, 2, . . . , 𝑛, then 𝜑(𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
) ∈ H, for all

𝜑 ∈ C
𝑙,lip(𝑅), whereC

𝑙,lip(𝑅) is the space of all real continuous
functions defined on 𝑅 such that

𝜑 (x) − 𝜑 (y) ≤ C (1 + x𝑘 + y𝑘) x − y ,

∀x, y ∈ 𝑅, 𝑘 depends on 𝜑.

(1)

Definition 1. E : H → 𝑅 is said to be a nonlinear expectation
defined onH if it satisfies the following.

(i)Monotonicity:

E (𝑋) ≥ E (𝑌) , if 𝑋 ≥ 𝑌. (2)

(ii) Constant Preserving:

E (𝑐) = 𝑐, for 𝑐 ∈ 𝑅. (3)

A nonlinear expectation is called sublinear expectation if
it also satisfies the following.

(iii) Subadditivity: for each𝑋,𝑌 ∈ H,

E (𝑋 + 𝑌) ≤ E (𝑋) + E (𝑌) . (4)

(iv) Positive homogeneity:

E (𝜆𝑋) = 𝜆E (𝑋) , for 𝜆 ≥ 0. (5)

The triple (Ω,H,E) is called nonlinear expectation space
and sublinear expectation space correspondingly.

Definition 2. Let E
1
and E

2
be two nonlinear expectations

defined on (Ω,H); E
1
is said to be dominated by E

2
if

E
1 (𝑋) − E

1 (𝑌) ≤ E
2 (𝑋 − 𝑌) , for 𝑋,𝑌 ∈ H. (6)

Remark 3. From (iii), a sublinear expectation is dominated
by itself. In many situations, (iii) is also called the property
of self-domination. It is easy to conclude that in a sublinear
expectation space (Ω,H,E), −E(−𝑋) ≤ E(𝑋), for 𝑋 ∈ H. If
−E(−𝑋) = E(𝑋), we say𝑋 has no mean uncertainty.

Theorem 4 (Represent theorem). Let E be a functional
defined on a linear space H satisfying subadditivity and
positive homogeneity. Then there exists a family of linear
functionals defined onH such that

E (𝑋) = sup
P∈P

EP (𝑋) , for 𝑋 ∈ H (7)

and, for each 𝑋 ∈ H, there exists P
𝑋

∈ P such that E(𝑋) =

EP𝑋
(𝑋).

Furthermore, if E is a sublinear expectation, then the
corresponding EP𝑋

is a linear expectation.

According to the represent theorem, if E is a sublinear
expectation, we have

E (𝑋) = sup
P∈P

EP (𝑋) , for 𝑋 ∈ H. (8)

Suppose (Ω,F) is a measurable space, for such P, we can
define an upper probability

V (𝐴) = sup
P∈P

P (𝐴) , 𝐴 ∈ F (9)

and a lower probability

V (𝐴) = inf
P∈P

P (𝐴) , 𝐴 ∈ F. (10)

Obviously V and V are conjugated to each other; that is,

V (𝐴) + V (𝐴𝑐) = 1, (11)

where 𝐴
𝑐 is the complementary set of 𝐴.

Definition 5. A set 𝐴 is polar if V(𝐴) = 0. A property holds
quasisurely (𝑞.𝑠). if it holds outside a polar set.

Definition 6. Let𝑋 be a given randomvariable on a nonlinear
expectation space (Ω,H,E). One defines a functional on
C
𝑙,lip(𝑅) by

F
𝑋
[𝜑] := E [𝜑 (𝑋)] : 𝜑 ∈ C

𝑙,lip (𝑅) → 𝑅. (12)

F
𝑋
is called the distribution of𝑋 under E.

Definition 7. Let 𝑋
1
and 𝑋

2
be two random variables

defined on nonlinear expectation spaces (Ω
1
,H
1
,E
1
) and

(Ω
2
,H
2
,E
2
), respectively. They are called identically dis-

tributed, denoted by 𝑋
1

𝑑

= 𝑋
2
, if

E
1
[𝜑 (𝑋

1
)] = E

2
[𝜑 (𝑋

2
)] , for 𝜑 ∈ C

𝑙,lip (𝑅) . (13)

It is clear that 𝑋
1

𝑑

= 𝑋
2
if and only if their distributions

coincide. One says that the distribution of𝑋
1
is stronger than

that of𝑋
2
if

E
1
[𝜑 (𝑋

1
)] ≥ E

2
[𝜑 (𝑋

2
)] , for each 𝜑 ∈ C

𝑙,lip (𝑅) . (14)

2.2. Nonlinear Expected Utilities. The following definitions
and properties can be found in [12]. LetE be a self-dominated
nonlinear expectation defined on H. Define a quasinorm
‖𝑋‖
∗∞

:= inf
𝜔∈Ω

{𝑐 ∈ 𝑅; 𝑐 ≥ |𝑋| inH}. A utility functional
of an agent Â is a real functional𝑈 : H → 𝑅.This functional
satisfies the following obvious axioms:

(u1) monotonicity: if𝑋 ≥ 𝑌 inH, thenU(𝑋) ≥ U(𝑌), and
if𝑋 ≥ 𝑌 and ‖𝑋 − 𝑌‖

∗
> 0, then U(𝑋) > U(𝑌);

(u2) continuity: if ‖𝑋
𝑖
− 𝑋‖
∗∞

→ 0, then U(𝑋
𝑖
) →

U(𝑋).

Then we have the following nonlinear expected utility
theorem which generalized the well-known von Neuman-
Morgenstern’s axiom on expected utility.
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Proposition 8. Let E[⋅] be a strictly monotonic expectation
satisfying (i) and (ii) in Definition 1. One assumes that E[⋅]
is continuous in H and let 𝑢(⋅) be a continuous and strictly
increasing function 𝑢(⋅) : 𝑅 → 𝑅. Then the functional 𝑈(⋅)

defined by

𝑈 (𝑋) := E [𝑢 (𝑋)] (15)

is a utility functional satisfying (u1) and (u2).

Conversely, for each given utility 𝑈(⋅) satisfying (u1) and
(u2), there exist a strictmonotonic nonlinear expectationE[⋅]
and a continuous and strictly increasing function 𝑢(⋅) : 𝑅 →

𝑅 such that (15) holds.

3. Stochastic Dominance under the Nonlinear
Expected Utilities

Using nonlinear expected utility to determine the advantages
between two random choices is only for a single economic
actor. Here comes a problem: can we raise the same question
to a group of economic actors? If we still discuss it by
using nonlinear expected utility, this means asking the same
question to a class of expected utility functions.

In mathematics, it can form such a problem: suppose H
is a collection of random variables. U is a class of strictly
increasing and continuously differentiable functions, which
represents the collection of all the utility functions of an
investor group. Define a partial ordering ⪰ in H: for any
𝑋,𝑌 ∈ H,

𝑋 ⪰ 𝑌 ⇐⇒ ∀𝑢 ∈ U, E [𝑢 (𝑋)] ≥ E [𝑢 (𝑌)] . (16)

Here E[⋅] is nonlinear expectation, 𝑋,𝑌 can be regarded
as two risky securities, and 𝑢 ∈ U can be an investor’s
expected utility function. Thus, this definition of the partial
ordering means that all members of the investor group think
the former is better than the latter. Here it is important to
note that, in general, this is a partially ordering rather than
a complete ordering. That is to say, for some pairs of risky
securities, neither one stochastically dominates the other, and
yet they cannot be said to be equal. At the same time, it is just
investor group’s preferences characterized by the expected
utilities functions theory.

Definition 9. The above-mentioned partial ordering is called
stochastic dominance under the nonlinear expected utility.

Remark 10. Stochastic dominance is a form of stochastic
ordering. The term is used in decision theory and decision
analysis to refer to situations where one random choice can
be ranked as superior to another. It is based on preferences
regarding outcomes. In linear expected utility, there are
first-order stochastic dominance and second-order stochastic
dominance and so on. For more results, see [13–16].

Definition 11. In Definition 9, if for any𝑋,𝑌 ∈ H,

𝑋 ≻ 𝑌 ⇐⇒ ∀𝑢 ∈ U, E [𝑢 (𝑋)] > E [𝑢 (𝑌)] , (17)

then the partial ordering is called strictly stochastic domi-
nance under the nonlinear expected utility.

Next, we give the main results of this paper.

Theorem 12. Let (Ω,H,E) be a nonlinear expectation space,
𝑋,𝑌 ∈ H, andU a class of strictly increasing and continuously
differentiable functions. If any of the following conditions is
satisfied:

(1)𝑋 ≥ 𝑌,
(2) the distribution of𝑋 is stronger than 𝑌, namely,

E [𝜑 (𝑋)] ≥ E [𝜑 (𝑌)] , for each 𝜑 ∈ C
𝑙,lip (𝑅) , (18)

then𝑋 stochastically dominates 𝑌, that is,

E [𝑢 (𝑋)] ≥ E [𝑢 (𝑌)] , ∀𝑢 ∈ U. (19)

Proof. (1) If𝑋 ≥ 𝑌, then

∀𝑢 ∈ U, E [𝑢 (𝑋)] ≥ E [𝑢 (𝑌)] (20)

is easily concluded by the fact that 𝑢 ∈ U is strictly increasing
and the monotonicity of E[⋅].

(2) First, notice that an everywhere differentiable func-
tion𝑔(⋅)which is a lipschitz continuouswith 𝑘 = sup |𝑔


(𝑥)| is

equivalent to the fact that 𝑔(⋅) has bounded first derivative. In
particular, any continuously differentiable function is locally
lipschitz, as continuous functions are locally bounded so its
gradient is locally bounded as well. It means that for all 𝑢 ∈

U, 𝑢 ∈ C
𝑙,lip(𝑅). So if the distribution of 𝑋 is stronger than

that of 𝑌, we have

E [𝜑 (𝑋)] ≥ E [𝜑 (𝑌)] , for each 𝜑 ∈ C
𝑙,lip (𝑅) . (21)

Because for all 𝑢 ∈ U, 𝑢 ∈ C
𝑙,lip(𝑅); then we can have

∀𝑢 ∈ U, E [𝑢 (𝑋)] ≥ E [𝑢 (𝑌)] . (22)

So the result holds by Definition 9.

Remark 13. (𝛼)The above conclusion (2) gives sufficient con-
dition on which a random choice𝑋 stochastically dominates
a random choice 𝑌 under the nonlinear expected utilities. It
is a general extension of the first-order stochastic dominance
under the linear expectation utility.

(𝛽) The above conclusion (1) is very intuitive. Next, we
give an example which is not intuitive.

Example 14. Suppose

Ω = {𝜔
1
, 𝜔
2
} , (23)

and we have two probabilities {2/3, 1/3} and {2/5, 3/5}

denoted by P andQ, respectively, where

P ({𝜔
1
}) =

2

3
,

P ({𝜔
2
}) =

1

3
,

Q ({𝜔
1
}) =

2

5
,

Q ({𝜔
2
}) =

3

5
.

(24)
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We assume H is a collection of random variables, and U is
a class of strictly increasing and continuously differentiable
functions. Take the nonlinear expectation utility like the
following:

E [𝑢 (𝜉)] =
3

4
max {𝐸P [𝑢 (𝜉)] , 𝐸Q [𝑢 (𝜉)]}

+
1

4
min {𝐸P [𝑢 (𝜉)] , 𝐸Q [𝑢 (𝜉)]} ,

𝑢 ∈ U, 𝜉 ∈ H.

(25)

We set

𝑋(𝜔
1
) = 1,

𝑋 (𝜔
2
) = 0,

𝑌 (𝜔
1
) = 0,

𝑌 (𝜔
2
) = 1.

(26)

For all 𝑢 ∈ U, we can calculate the following results:

𝐸P [𝑢 (𝑋)] =
2

3
𝑢 (1) +

1

3
𝑢 (0) ,

𝐸Q [𝑢 (𝑋)] =
2

5
𝑢 (1) +

3

5
𝑢 (0) ,

E [𝑢 (𝑋)] =
6

15
𝑢 (0) +

9

15
𝑢 (1) ,

𝐸P [𝑢 (𝑌)] =
2

3
𝑢 (0) +

1

3
𝑢 (1) ,

𝐸Q [𝑢 (𝑋)] =
2

5
𝑢 (0) +

3

5
𝑢 (1) ,

E [𝑢 (𝑌)] =
7

15
𝑢 (0) +

8

15
𝑢 (1) .

(27)

Since 𝑢 ∈ U is strictly increasing, then 𝑢(1) > 𝑢(0); so

E [𝑢 (𝑋)] − E [𝑢 (𝑌)] =
1

15
𝑢 (1) −

1

15
𝑢 (0) > 0,

𝑢 ∈ U.

E [𝑢 (𝑋)] > E [𝑢 (𝑌)] , 𝑢 ∈ U.

(28)

Hence we can say that𝑋 strictly stochastic dominates 𝑌.
It is easy to see that neither 𝑋 ≥ 𝑌 nor 𝑌 ≥ 𝑋 in a whole.

We can check that 𝑋 strictly stochastic dominates 𝑌. This is
not the intuitive way; this implies that stochastic dominance
by the nonlinear expected utilities is meaningful.

When E[⋅] is a sublinear expectation, Theorem 12 is still
valid. Furthermore, we can also have the following theorem.

Theorem 15. Let (Ω,H,E) be a sublinear expectation space,
𝑋,𝑌 ∈ H, andU a class of strictly increasing and continuously
differentiable functions. If 𝑋 ≥ 𝑌 𝑞.𝑠., then 𝑋 stochastically
dominates 𝑌, that is,

E [𝑢 (𝑋)] ≥ E [𝑢 (𝑌)] , ∀𝑢 ∈ U. (29)

Proof. We claim that if𝑋 ≥ 𝑌 𝑞.𝑠., then E[𝑋] ≥ E[𝑌].
This is because we can get V(𝑋 < 𝑌) = 0 by 𝑋 ≥ 𝑌 𝑞.𝑠.,

which means V(𝑋 < 𝑌) = 0, V(𝑋 ≥ 𝑌) = 1; namely,

V (𝑋 ≥ 𝑌) = inf
P∈P

P (𝑋 ≥ 𝑌) = 1. (30)

Then we can get

∀P ∈ P, 𝐸P [𝑋] ≥ 𝐸P [𝑌] , (31)

so

sup
P∈P

EP (𝑋) ≥ sup
P∈P

EP (𝑌) . (32)

According to the represent theorem, we have E[𝑋] ≥ E[𝑌].
Since 𝑋 ≥ 𝑌 𝑞.𝑠. and 𝑢 ∈ U is strictly increasing, 𝑢(𝑋) ≥

𝑢(𝑌) 𝑞.𝑠. is available by the same procedure as above. So we
can obtain

E [𝑢 (𝑋)] ≥ E [𝑢 (𝑌)] , ∀𝑢 ∈ U (33)

by the above conclusion.

Next, we shall give a lemma first, then present a strictly
stochastic dominance result under sublinear expectations.

Lemma 16. Let (Ω,H,E) be a sublinear expectation space,
𝑌 ∈ H, and U a class of strictly increasing and continuously
differentiable functions. If 𝑢(𝑌) has no mean uncertainty, that
is,

E [𝑢 (𝑌)] = −E [−𝑢 (𝑌)] , (34)

then

E [𝑢 (𝑌)] = 𝐸P [𝑢 (𝑌)] , ∀P ∈ P. (35)

Proof. Since

E [𝑢 (𝑌)] = sup
P∈P

EP [𝑢 (𝑌)] ,

−E [−𝑢 (𝑌)] = −sup
P∈P

EP [−𝑢 (𝑌)] = −sup
P∈P

(−EP [𝑢 (𝑌)])

= − (− inf
P∈P

(EP [𝑢 (𝑌)])) = inf
P∈P

(EP [𝑢 (𝑌)]) ,

(36)

we can get

sup
P∈P

EP [𝑢 (𝑌)] = inf
P∈P

(EP [𝑢 (𝑌)]) . (37)

Then

E [𝑢 (𝑌)] = sup
P∈P

EP [𝑢 (𝑌)] = inf
P∈P

(EP [𝑢 (𝑌)])

= 𝐸P [𝑢 (𝑌)] , ∀P ∈ P.

(38)
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Theorem 17. Let (Ω,H,E) be a sublinear expectation space,
𝑋,𝑌 ∈ H, andU a class of strictly increasing and continuously
differentiable functions. If 𝑋 ≥ 𝑌 𝑞.𝑠., V(𝑋 > 𝑌) > 0, and
E[𝑢(𝑌)] = −E[−𝑢(𝑌)], for all 𝑢 ∈ U, that is, 𝑢(𝑌) has no
mean uncertainty, then 𝑋 strictly stochastically dominates 𝑌,
that is,

E [𝑢 (𝑋)] > E [𝑢 (𝑌)] , ∀𝑢 ∈ U. (39)

Proof. Since 𝑋 ≥ 𝑌 𝑞.𝑠. and V(𝑋 > 𝑌) > 0, there exists P ∈

P, such that

P (𝑋 ≥ 𝑌) = 1,

P (𝑋 > 𝑌) > 0.

(40)

Therefore

𝐸P [𝑋] > 𝐸P [𝑌] . (41)

Since

E [𝑢 (𝑌)] = −E [−𝑢 (𝑌)] , ∀𝑢 ∈ U, (42)

according to Lemma 16, we have

E [𝑢 (𝑋)] ≥ 𝐸P [𝑢 (𝑋)] > 𝐸P [𝑢 (𝑌)] = E [𝑢 (𝑌)] , ∀𝑢 ∈ U.

(43)

Corollary 18. Let (Ω,H,E) be a sublinear expectation space,
𝑋,𝑌 ∈ H, and 𝑋 ≥ 𝑌 𝑞.𝑠. Assume 𝑢(𝑥) = 𝑘𝑥, 𝑘 > 0. If
V(𝑋 > 𝑌) > 0 and 𝑌 has no mean uncertainty, that is, E[𝑌] =

−E[−𝑌], then

E [𝑢 (𝑋)] > E [𝑢 (𝑌)] . (44)

Proof. If 𝑢(𝑥) = 𝑘𝑥, 𝑘 > 0, and 𝑌 has mean certainty, it is
easy to verify that 𝑢(𝑌) has mean certainty; that is, E[𝑢(𝑌)] =

−E[−𝑢(𝑌)]. Then the consequence attains immediately by
Theorem 17.

Remark 19. This corollary gives sufficient condition for the
result that 𝑋 strictly stochastically dominates 𝑌 to the risk-
neutral group.

Corollary 20. Let (Ω,H,E) be a sublinear expectation space,
𝑋,𝑌 ∈ H, andU a class of strictly increasing and continuously
differentiable functions. If 𝑋 ≥ 𝑌 𝑞.𝑠., V(𝑋 ≤ 𝑌) < 1, and
E[𝑢(𝑌)] = −E[−𝑢(𝑌)], for all 𝑢 ∈ U, that is, 𝑢(𝑌) has no
mean uncertainty, then 𝑋 strictly stochastically dominates 𝑌,
that is,

E [𝑢 (𝑋)] > E [𝑢 (𝑌)] , ∀𝑢 ∈ U. (45)

Proof. By using the relationship between V and V, the conse-
quence attains immediately byTheorem 17.

Next, we give an example to apply Theorem 17.

Example 21. Suppose there is an outcome Ω = [0, 1], which
indicates the market conditions. F is the 𝜎-algebra of Borel
sets onΩ and | ⋅ | is the Lebesgue measure on [0, 1].

We have two prior probabilities denoted by P and Q,
respectively, where

P (𝐴) =
1

2


𝐴 ∩ [0,

1

3
)


+


𝐴 ∩ [

1

3
,
2

3
)


+

3

2


𝐴 ∩ [

2

3
, 1]


,

𝐴 ∈ F,

Q (𝐴) =
1

4


𝐴 ∩ [0,

1

3
)


+

5

4


𝐴 ∩ [

1

3
,
2

3
)


+

3

2


𝐴 ∩ [

2

3
, 1]


,

𝐴 ∈ F.

(46)

We assumeH is a collection of random variables, which rep-
resents risky securities and U is a class of strictly increasing
and continuously differentiable functions, which represents
the collection of all the utility functions of an investor group.
Take the sublinear expectation utility as follows:

E [𝑢 (𝜉)] = max {𝐸P [𝑢 (𝜉)] , 𝐸Q [𝑢 (𝜉)]} ,

𝑢 ∈ U, 𝜉 ∈ H.

(47)

There are two risky securities

𝑋 (𝜔) =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

−10, 𝜔 = 0,

0, 𝜔 ∈ (0,
1

3
) ,

1, 𝜔 ∈ [
1

3
,
2

3
) ,

10, 𝜔 ∈ [
2

3
, 1] ,

𝑌 (𝜔) =

{{{

{{{

{

0, 𝜔 ∈ [0,
2

3
) ,

10, 𝜔 ∈ [
2

3
, 1] .

(48)

It is clear that above conditions guaranteeTheorem 17; there-
fore we have that 𝑋 strictly stochastically dominates 𝑌, that
is,

E [𝑢 (𝑋)] > E [𝑢 (𝑌)] , 𝑢 ∈ U. (49)

This means that all members of the investor group think the
former is better than the latter.

In fact, for all 𝑢 ∈ U, we can calculate the following
results:

𝐸P [𝑢 (𝑋)] =
1

6
𝑢 (0) +

1

3
𝑢 (1) +

1

2
𝑢 (10) ,

𝐸Q [𝑢 (𝑋)] =
1

12
𝑢 (0) +

5

12
𝑢 (1) +

1

2
𝑢 (10) ;

(50)
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then

E [𝑢 (𝑋)] =
1

12
𝑢 (0) +

5

12
𝑢 (1) +

1

2
𝑢 (10) ;

𝐸P [𝑢 (𝑌)] =
1

2
𝑢 (0) +

1

2
𝑢 (10) ,

𝐸Q [𝑢 (𝑌)] =
1

2
𝑢 (0) +

1

2
𝑢 (10) ;

(51)

then

E [𝑢 (𝑌)] =
1

2
𝑢 (0) +

1

2
𝑢 (10) . (52)

Since 𝑢 ∈ U is strictly increasing, then 𝑢(1) > 𝑢(0); so

E [𝑢 (𝑋)] − E [𝑢 (𝑌)] =
5

12
(𝑢 (1) − 𝑢 (0)) > 0,

𝑢 ∈ U.

(53)

Then

E [𝑢 (𝑋)] > E [𝑢 (𝑌)] , 𝑢 ∈ U; (54)

that is,𝑋 strictly stochastically dominates 𝑌.

4. Conclusion

In this paper, we study stochastic dominance under the non-
linear expected utilities. First we attain sufficient conditions
on which a random choice 𝑋 stochastically dominates a
random choice 𝑌 under the nonlinear expected utilities; then
we attain sufficient conditions on which strictly stochastic
dominance of a random choice 𝑋 over a random choice
𝑌 under the sublinear expected utilities; finally we give
sufficient condition for strictly stochastic dominance of 𝑋

over 𝑌 under the sublinear expected utilities to the risk-
neutral group.
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