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Crude oil price becomesmore volatile and sensitive to increasingly diversified influencing factors with higher level of deregulations
worldwide. Current methodologies are being challenged as they have been constrained by traditional approaches assuming
homogeneous time horizons and investment strategies. Approximations they provided over the long term time horizon no longer
satisfy the accuracy requirement at shorter term andmoremicrolevels.This paper proposes a novel crude oil price forecastingmodel
based on the wavelet denoising ARMA models ensemble by least square support vector regression with the reduced forecasting
matrix dimensions by independent component analysis. The proposed methodology combines the multi resolution analysis and
nonlinear ensemble framework. The wavelet denoising based algorithm is introduced to separate and extract the underlying data
components with distinct features, corresponding to investors with different investment scales, which are modeled with time series
models of different specifications and parameters.Then least square support vector regression is introduced to nonlinearly ensemble
results based on different wavelet families to further reduce the estimation biases and improve the forecasting generalizability.
Empirical studies show the significant performance improvement when the proposed model is tested against the bench-mark
models.

1. Introduction

Given its role as one of the most important industry inputs,
the accurate and reliable forecasting of the crude oil price
movement has profound impacts throughout the national
economy. The forecasting of crude oil price has developed
through different stages, including structural approach, time
data series approach, artificial intelligence (AI) approach,
and other recent developments. Earlier attempts were mainly
linear, parametric, structural, and economic theory based.
They have been effective in the understanding and forecasting
of the crude oil price movement over the medium to long
term time horizon with acceptable approximation accuracy
and computational efficiency, where the aggregated price
behavior is comparably stable and stationary. These include
models in the much simplified macroeconomic equilibrium

framework to analyze the economic relationships among
participants in the crude oil markets and derive analytic
equations to model them. Typical models include the supply
and demand equilibrium model and more recently the
cointegration model, and so forth. For example, Chevillon
and Rifflart [1] use cointegration OPEC related relationships
in the market and develop a forecasting equation based on
it [1]. Ye et al. [2] incorporate further the cumulative excess
production capacity as the ratcher variable into forecasting
models and show that it results in improved performance [2].

Time series models became popular in recent years.
It uses historical information to characterize and forecast
movement of the series itself. RW and autoregressive mov-
ing average (ARMA) models are two representative time
series models [3]. Till now RW and ARMA still serve as
important benchmark in crude oil price forecasting because
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there is no conclusive evidence that any econometric models
consistently beat these two benchmark models [4]. For
example, Alquist and Kilian [4] find RW model to be by far
the best models available [4]. Meanwhile, another trend is
the emergence of AI approach such as the artificial neural
network (ANN) and support vector regression (SVR). For
example, Yu et al. [5] find that ANN outperforms ARMA
model but has room for further improvement using ensemble
algorithms. Azadeh et al. [6] propose a flexible oil price
forecasting algorithm based on ANN and fuzzy regression
(FR), incorporating the economic indicators during the
forecasting process.They have achieved improved forecasting
performance [6].

Some recent development includes the wavelet analysis
and ensemble algorithm.Wavelet analysis possesses the capa-
bility to project data into time-scale domain and conducts
multiscale analysis [7]. In crude oil forecasting literature,
only limited efforts can be observed. Mostly these attempts
use wavelet analysis to preprocess data before time series
techniques and machine learning techniques are used to
analyze the data and make forecasts. Yousefi et al. [8] use
wavelet analysis to decompose crude oil price and extend
them directly to make forecasts [8]. Meanwhile, ensemble
algorithm represents another interesting development. It
attempts to incorporate partial information set captured by
individual forecasters to produce more accurate forecasts
[9]. Traditionally linear based ensemble approaches have
achieved only moderate level of accuracy, while the recently
emerging nonlinear ensemble approaches based on intel-
ligence techniques such as neural network have achieved
much improved performance. For example, Xiong et al. [10]
propose a revised hybrid model built upon empirical mode
decomposition (EMD) based on the feed-forward neural
network (FNN)modeling framework incorporating the slope
basedmethod (SBM) and have achieved improved prediction
performance with accredited computational load [10]. He
et al. [11] propose a wavelet decomposed ensemble model
to improve the forecasting accuracy of crude oil price with
deeper understanding of the market microstructure [11].

This paper explores the potential of multiscale signal
processing techniques, more specifically the denoising tech-
nique, in forecasting price movement in crude oil markets.
The main research problem addressed is the empirical evi-
dence ofmultiscale heterogeneous data characteristics distin-
guishable by sizes and the incorporation of this stylized fact in
the construction of forecasting algorithm. More specifically,
the wavelet denoising algorithms based on diverse wavelet
families are used to construct the forecastingmatrixes, whose
members are individual forecasts based on different time
series specifications capturing different data features.Wavelet
denoising algorithm could serve as the potential source
separation tool to analyze its underlying structure. Exper-
iment results confirmed that the model specification and
parameters vary with different choices of parameters for the
wavelet denoising algorithm. The forecasting accuracy also
improves when noises are filtered out during the modeling
process.

The key findings and contributions of this paper are
threefold.Theoretically this paper proposes the HMH theory

to model the crude oil market and provides a more general
framework that reveals the hidden data components based
on wavelet analysis with different parameters and analyze
them incorporating their heterogeneous specifications and
parameters. Technically HMH has received less attention in
extant literature, due to lack of methodology to test and
model it.Wavelet denoising technique has been introduced as
an important paradigm shift that could provide the empirical
evidence for HMH and help gain further insights. Compared
to other blind signal decomposition approaches such as
morphological component analysis (MCA) and empirical
model decomposition (EMD) methods. The wavelet analysis
uses the theoretically well-defined wavelets to capture the
matching distinguished data patterns. Results are more stable
and offer better interpretations. Practically work in this paper
distinguishes from the existing literature by introducing the
nonlinear ensemble algorithm to reduce instability and biases
introduced by different wavelet families. The performance of
wavelet based algorithms is sensitive to the parameters set, as
revealed in empirical research. This is a less addressed issue
in the literature and could cast doubts on results obtained
in the empirical research literature. The nonlinear ensemble
algorithm could serve as a promising alternative to reduce
instability and biases introduced by different wavelet families.
This has significant practical implication that the proposed
algorithm adapts better to the practical data and achieves
better stability in the estimates.

The rest of the paper is organized as follows. In Section 2,
we briefly review the relevant literature of researches on
wavelet denoising algorithm as well as ICA-LSSVR based
nonlinear ensemble methodology. In Section 3, we propose
the integrated methodology WDN-ICA-LSSVR. Major find-
ings and performance evaluations results of empirical studies
conducted are reported in Section 4. Section 5 summarizes
and concludes.

2. Relevant Theories

2.1.Wavelet Denoising Algorithm. Denoising algorithms have
been one of the most important research topics in the engi-
neering field, although they have not receivedmuch attention
in the field of economics and finance. The critical issue in
the denoising algorithm research is to set the right boundary
and remove the noises while preserving major data features.
There are many approaches developed in the literature.These
include moving average filter, exponential smoothing filter,
linear Fourier smoothing, simple nonlinear noise reduction
and nonlinear wavelet shrinkage, and so forth [12]. During
the denoising process, some data features are changed to a
varied degree depending on the filters used. For example,
simple methods including moving average filter and expo-
nential smoothing filter are known to modify the statistical
property of data significantly [13]. There are also some other
nonlinear denoising techniques with mixed results in the
literature. Yahya Bey [14] and Bey [15] propose bothmodified
and constant frequency extent denoising algorithms and they
have shown superior performance compared to the wavelet
denoisingmethod in the empirical studies [14, 15]. Verma and
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Ganguli [13] propose the nonlinear rational filterwithmedian
preprocessor to improve the noise reduction ratio in gas
turbin healthmonitoring applications [13].Wavelet shrinkage
could provide more optimized and localized noise reduction
processes. Boto-Giralda et al. [16] use the stationary wavelet
based denoising methods to improve the performance of
traffic volume predictionmodels in intelligent transportation
system [16]. Gao et al. [17] propose adaptive denoising
algorithms and contend it to be superior to wavelet based
approaches when applied to analysis of electroencephalo-
gram (EEG) signals contaminated with noises [17]. Kwon
et al. [18] point out the problems with existing denoising
techniques as assuming homogeneous error structure and
they propose wavelet denoising method incorporating a
variance change point detection thresholding method to
deal with it in protein mass spectroscopy applications [18].
Lotric and Dobnikar [19] and Lotrič [20] integrate the neural
network with the wavelet denoising method to optimize
the denoising parameters dynamically and found the per-
formance improvement in prediction accuracy [19, 20]. It is
interesting to see that wavelet based denoising methods have
become the predominant approaches.

The unique feature of wavelet analysis is its localization
over both time and scale during the analysis. This is in
contrast to the traditional spectrumanalysis tool that signifies
the patterns at different frequencies at the cost of ignoring
details at time scales. This capability stems from the wavelets
functions used, which have high energy concentration in
a short interval of time, which is in direct contrast to the
globally time invariant sinusoid functions used in more
traditional spectrum analysis tools such as Fourier analysis
[21]. The forward and inverse operation of wavelet analysis
form the multiresolution analysis, which provides unique
perspectives into the data structure. As financial data usually
exhibit nonstationary time varying characteristics, wavelet
analysis is appealing when it comes to financial data analysis.
Wavelets are continuous functions in 𝐿

2
(R) that have vanish-

ing moments and fluctuating characteristics within a certain
time period [22]. Wavelets are characterized by their various
features including vanishing moments, compact support,
regularity, symmetry, and time frequency windows [22]. The
typical wavelets used include Haar, Daubechies, Coiflets,
discrete Meyers, and Biorthogonal and reverse Biorthogonal
[22]. Interested readers are referred to Percival and Walden
[22] for more details.

Utilizing the wavelets and their appealing time scale
localization characteristics, the original data are projected
into the multiscale domain using wavelet transform as in the
following:
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where 𝜓((𝑡 − 𝑢)/𝑠) refers to the wavelet families translated by
location parameter 𝑢, which corresponds to time scale local-
ization, and dilated by scale parameter 𝑠, which corresponds
to the frequency scale localization.

The wavelet transform can be reversed to perfectly recon-
struct the original data by inverse wavelet synthesis as in the
following:
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The wavelet denoising technique utilizes the wavelet
transform and synthesis during the data denoising process.
It firstly projects the original data series into different
scales using wavelet transform.Thusmultiresolution analysis
(MRA) can be defined as analyzing the time and frequency
characteristics of the data, both denoised and noise part, with
finer details revealing patterns at more microscales. Then
the separation between denoised and noise data components
is achieved by applying the threshold chosen specifically at
different scales to either suppress or shrink the wavelet coef-
ficients. The processed wavelet coefficients are reconstructed
into the unified data series using wavelet synthesis.

Threshold selection rules and shrinkage algorithms are
critical to effective extraction of features during the denoising
process. Typical threshold selection strategies include univer-
sal, minimaxi, and Steins’ unbiased risk estimate threshold.
The shrinkage strategies include the hard and soft shrinkage
algorithm [23]. The differences among different threshold
selection rules lie in the trade-off set between smoothness and
accuracy to obtain denoised data. For example, the maximal
level of reduction of noises is achieved with universal thresh-
old selection rule at the cost of lower goodness-of-fit and risk
of potential disruption of valuable information in the original
data. The minimaxi threshold selection rule, on the other
hand, attempts to achieve the best fit approximation to the
original data by minimizing the function fitness criteria such
as mean squared error (MSE), at the cost of lower function
smoothness. The shrinkage strategies include the hard and
soft shrinkage algorithms, both widely used in mainstream
literature over the years [23, 24]. The hard shrinkage rule
is the high pass filter which suppresses coefficients in the
wavelet transform below the chosen threshold values and
leaves the remaining coefficients intact. The soft shrinkage
rules suppress coefficients in the wavelet transform below the
set threshold value and subtract the threshold value from the
remaining wavelet coefficients

2.2. Nonlinear Ensemble Algorithm. Since the seminal work
by Bates and Granger [9], empirical researches have shown
that the ensemble algorithm can improve the generalizability
of the model by incorporating the partial information set
[9]. Given the forecasting set pair (𝑥

𝑖
, 𝑓
𝑖
(𝑥)) (𝑖 = 1, 2, . . . , 𝑛),

where 𝑥
𝑖
is the input and 𝑓

𝑖
(𝑥) is the output, the goal of the

ensemblemodel as in (3) is to find the hidden pattern that has
the minimal generalization error and generalizes well out-of-
sample:
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where 𝑓(𝑥) is the ensemble forecasts and equal the combi-
nation of individual forecasts 𝑓
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the expected ensemble forecasts. The performance improve-
ment from ensemble forecasts is determined by two factors:
the forecasting accuracy of individual models and the level
of independence of individual models. The greater the level
of independence and heterogeneity of individual models, the
smaller the level of correlations among individual forecasters,
and thus the higher the level of generalizability of models
estimated. These two issues are taken into consideration
during the modeling process in this paper. On one hand,
the forecasting accuracy issue is addressed by multiscale
denoising based time seriesmethodology. On the other hand,
independent component analysis has been proposed in this
paper to reduce the dimensionality of forecasting matrix and
improve the independence of ensemble members. Tradition-
ally principal components analysis (PCA) has been proposed
to achieve the uncorrelated ensemble members. But they are
independent only in the Gaussian framework. For example,
forecasts can have zero covariance and yet be interdependent
at higher moments. In the meantime, ensemble members
transformed using ICA are statistically independent, that
is, not just zero covariance, but independence at higher
moments. ICA, also known as blind source separation (BSS),
attempts to find the optimal linear projection of the original
data to reduce the problem dimensionality and noise level. It
recovers latent variables from the originalmixed data without
prior information except the statistical properties, as in the
following:

𝑥
𝑇

𝑡
= 𝐴𝑠
𝑇

𝑡
, (4)

where 𝑥 is the [𝑚 × 𝑡] observation matrix, 𝑠 is the [𝑛 × 𝑡]

mutually independent sourcematrix, and𝐴 is the realmixing
coefficients 𝑎

𝑖,𝑗
(𝑖 = 1, . . . , 𝑚; 𝑗 = 1, . . . , 𝑛).

ICA attempts to estimate𝐴, whose inverse𝑊 recovers the
original source 𝑠 from observations 𝑥 as 𝑠 = 𝐴

−1
𝑥 = 𝑊𝑥.

Among different approaches developed over the years,
FastICA based on the fixed point algorithm is the most
widely used and computationally efficient one [25]. Inde-
pendent components can be estimated either in parallel or
one after another following the Gram-Schmidt orthogonal
procedure. During the optimization process, higher order
statistics rather than the second moment are utilized as
further guidance on the degree of statistical independence of
components calculated.

Least square support vector regression (LSSVR) is the
emerging nonlinear ensemble algorithm. Compared to tra-
ditional neural network based approach, its solution is more
stable and global optimum. It adopts the structural risk
minimization principle during the data training and learning
process and models it as a convex optimization problem to
balance between the fitting accuracy andmodel generalizabil-
ity. Thus it would alleviate the overfitting and local minima
issue with the traditional supervised learning algorithm such
as neural network models, which are based on the empirical
riskminimization principle. Interested readers are referred to
[26] for details.

The basic notion of LSSVR is as follows. Firstly using ker-
nel functions that satisfy the Mercer condition, the nonlinear
data are mapped into higher dimensions using kernel tricks

and a typical regression problem is formulated accordingly as
in the following:

𝑦 = 𝑓 (𝑥) = sign [𝜔
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where 𝜙(𝑥) is the mapping function that maps the variable 𝑥
in the nonlinear input space into the variables in the linear
feature space. 𝜔 and 𝑏 are coefficients.

A slack variable 𝑒
𝑖
is introduced to model the estimation

error, thus the LSSVR is formulated as in the following:
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𝑙 and 𝜆 is the penalty para-
meters. It serves to control for two objectives, that is, themin-
imization of estimation error and the function smoothness,
during the optimization process.

The Lagrangian function for the dual problem is formu-
lated as in the following:
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where 𝑎 = (𝑎
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2
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𝑙
) is the Lagrange multipliers. Opti-

mality is achieved with solving the linear system obtained by
differentiating 𝐿 in (7) with the variable 𝜔, 𝑏, 𝜀, 𝛼, as in the
following:
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(8)

LSSVR, as the extension and improvement of SVR with
more efficiency in the large scale problem, has shown perfor-
mance improvement similar to the SVR algorithm in many
time series forecasting problems. In crude oil market, Bao
et al. [27] have proposed a hybrid model combining wavelet
analysis and LSSVR in a two-stage process and have demon-
strated its superior performance in medium to long term
empirical studies [27]. However, there have been few attempts
for LSSVR application in the short term crude oil forecasting
literature. Despite the positive results accumulated recently
in the literature, both LSSVR and SVR suffer issues similar
to the neural network model. For example, it is often difficult
to provide economic justification for results obtained due to
the black box nature of its training process. Its performance
is sensitive to the parameters, which are often arbitrarily
chosen.
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3. A Novel WDN-ICA-LSSVR Algorithm

Recent progress in the mixture modelling literature pro-
vides further evidence of heterogeneous data components
of different distributions and specifications in the financial
markets. For example, work by Thavaneswaran et al. [28]
points out that mixture distributions are better in capturing
the heteroscedasticity in the financial data. They then derive
the Markov models under mixture distribution [28]. Shah-
baba [29] points out that ignoring the latent data structure
and mixture distributions would lead to wrong inference
and they propose the mixture models to effectively capture
the underlying DGP [29]. Empirical researches show that
the crude oil market has heterogeneous market structure
with underlying components corresponding to both normal
market conditions and transient events.

Thus this paper proposes theHMH theory as the theoreti-
cal basis formodeling the crude oilmarket. InHMH, themar-
ket is assumed to consist of heterogeneous agents with het-
erogeneous investment strategies and investment time hori-
zons [30]. Compared to the homogeneous reaction to news
shocks assumed in efficient market hypothesis (EMH), HMH
assumes that agents or investors adopt diversely different
investment strategies based on their defining characteristics.
Thus their investment time horizon and dealing frequency
are intrinsically different; some tend to have lower dealing
frequency focusing on long time horizon, while others tend
to have high dealing frequency with short time horizon
[31]. Although theoretically sound, in practice only limited
studies have been conducted to explore the methodology to
systematically model the heterogeneous market structure in
HMH. When investigating the crude oil markets, there are
mainly two major issues addressed in this paper.

Firstly to recognize the heterogeneous market structure,
theoretically major influencing factor or criteria need to
be chosen to disentangle the hidden market structure. As
empirical studies suggest, the microstructure of the crude oil
market is very complex, consisting of investors with different
investment strategies targeting at different investment time
horizons [32]. The market prices reflect the combined influ-
ences from the existing traders with different time horizons.
This may include fundamentalist trader with long term
strategies, short term trader aiming mainly at limited time
horizon (e.g., daily), and intraday traders dealing with high
frequency shocks throughout the day.The statistical property
of the market process is dynamic and constantly changing
due to its heterogeneity nature.Therefore, the high frequency
shock could only influence part of but not all traders in the
market, while the low frequency shock has far deeper impact
on the whole market and market makers. The line between
the short lived nature of high frequency shock and long term
nature of low frequency shock is crucial in the sense that
all investors and managers are essentially utility maximizer
and should only be concerned with decisions and associated
consequences within their own target investment horizon.
Among different features that can be used to distinguish the
market structure, this paper proposes the investment scales
to disentangle the hidden market structure. Thus based on
different investment scales, we assume that participants in

the crude oil market can be categorized uniquely based on
different investment scales into the fundamental investors
(FI) and the noise traders (NT) as in the following:

𝑟 = 𝑟FI + 𝑟NT. (9)

Implications from this assumption are that trading activi-
ties of these two types of traders characterized by their invest-
ment scales would exhibit distinctively different characteris-
tics. The behavior of noise traders restricted by smaller band
of frequency is closely related to temporal, stochastic, and
nonlinear patterns in nature, usually resulting from highly
speculative behavioral patterns and easily arising operational
as well as transaction recording errors. The behavior of
fundamental investors restricted by larger band of frequency
are closely related to more stable, consistent, and long term
patterns, which have been the subject for the extensive studies
over years. They commonly exhibit characteristics such as
autocorrelation, heteroscedasticity, mean reverting, and long
memory, described by the mainstream econometric models.

Secondly techniques that can effectively and efficiently
model the heterogeneous market structure need to be iden-
tified and incorporated to model accurately different mar-
ket price movements characterized by different investment
scales. In this paper, we introduce the wavelet denoising
algorithms since they provide rough approximation to the
crude oil market characterized by two major forces of
influences. The main difficulty to separate data from noises
with higher level of accuracy as the separation accuracy
affects critically the generalizability of the models fitted.
Proper removal of noises could result in more well behaved
data. The inappropriate separation twists the original data
features. Traditional data denoising techniques include spec-
trum analysis methods such as simple averages, Kalman
filtering, and Fourier transforms. However, thesemethods do
not receive significant attention in the mainstream empirical
researches in the literature. Firstly, with the currently preva-
lent imperfect extraction technique in the literature, the data
may be distorted during the denoising process with different
assumptions imposed and different parameters used, which
reduce forecasting accuracy. Secondly, they are mostly based
on spectrum and frequency scale domain while ignoring
the multiscale heterogeneous structure in the data and their
underlying components, corresponding to different individ-
ual investment strategies and time horizon. The wavelet
based denoising algorithm serves as the alternative modeling
tool to extract data features of different characteristics,
which is a more refined methodology. Meanwhile, as the
true underlying DGP is unknown, each individual wavelet
denoising model attempts to extract restricted information
from the data with its unique assumptions or perspectives.
These interpretations of data only offer partial insights and
are never complete unless unified. Since there is no consensus
as to the suitability of parameters to use during the wavelet
based denoising processwith particular data set, to reduce the
biases introduced and further stabilize the estimation results,
this paper proposes the LSSVR based nonlinear ensemble
algorithm to ensemble partial information set captured by
models with different parameters to produce more stabilized



6 Mathematical Problems in Engineering

and accurate results. Besides, ICA is also used during the
ensemble process to reduce the noises and reduce the com-
putational complexity with the high dimension of forecast
matrix consisting of forecasts based on different parameters.

Numerical procedure of the WDN-ICA-LSSVR algo-
rithm involves the following key steps.

(1) Firstly, the wavelet based denoising algorithm is used
to separate data from noises using particular wavelet
families 𝑤, as in the following:

𝑟
𝑡
= 𝑟denoised,𝑡,𝑤 + 𝑟noises,𝑡,𝑤. (10)

By decomposing data into the multiscale domain,
data and noises are separated based on their different
characteristics across scales with noises smaller in
scales. Thus more subtle distinctions between data
and noises can be set.

(2) The conditional mean for the denoised data is mod-
eled by ARMA processes as in the following:

𝑟
𝑡
= 𝛿
𝑡
+

𝑚

∑
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𝜃
𝑗
𝜀
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+ 𝜀
𝑡
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where 𝑟
𝑡
is the conditional mean at time 𝑡, 𝑟

𝑡−𝑖
is the

lag 𝑚 returns with parameter 𝜙
𝑖
, and 𝜀

𝑡−𝑗
is the lag 𝑛

residuals in the previous period with parameter 𝜃
𝑗
.

(3) The optimal specification for the ARMA model (i.e.,
model orders) is determined following AIC and BIC
minimization principal as in the following:

Min{AIC (𝑙) =
−2

𝑇
ln (𝑙) +

2𝑙

𝑇
,

BIC (𝑙) =
−2

𝑇
ln (𝑙) +

𝑙

𝑇
ln𝑇} .

(12)

(4) With high dimensional forecasts matrix consisting
of forecasts based on different wavelet families, the
ICA is used to remove noises and reduce dimensions.
The original forecast matrix is transformed as in the
following:

𝜇
𝑆

𝑡
= 𝐴
−1
𝜇
𝐺

𝑡
, (13)

where 𝑆 refers to the projected principal components
using ICA. 𝐺 refers to the set of forecasts based on
different wavelet parameters. 𝐴 is the real mixing
coefficients.

(5) The nonlinear ensemble algorithm is used to aggre-
gate individual conditional mean forecasts in the ICA
transformed forecast matrix as in the following:

𝜇
WDN-ICA-LSSVR
𝑡

= 𝜙
𝑖∈𝑆

(𝜇
𝑖

𝑡
) . (14)

The LSSVR algorithm is used during the nonlinear
ensemble process to calculate the optimal weights with
improved robustness and generalizability for the model.

Table 1: Descriptive statistics and statistical tests for WTI market.

Data 𝑟 𝑟denoisedData, Coiflet(5) 𝑟noises, Coiflet(5)

Mean 0.0011 0.0011 0
SD 0.0231 0.0129 0.0192
Skewness −0.4219 −1.2468 0.0153
Kurtosis 4.7676 16.9730 2.9808
JB test 0 0 0.5000
BDS test 0.0029 0 0.4178

4. Empirical Studies

We conducted the empirical studies using daily observations
in the West Taxes Intermediate (WTI) crude oil market.
The data source is the Energy Information Administration,
Department of Energy, US. The data range covers the time
period January 2, 2002, to March 20, 2009. This includes
1814 daily observations. The data set is divided into three
subdata sets, that is, the training set for wavelet denoising
ARMA model (60%), the training set for ICA-LSSVR based
nonlinear ensemble model (24%), and the test set for the
out-of-sample test to evaluate the performance of different
models (16%). Since there is no consensus on the econometric
criteria for sample segmentation, the separation ratios are
determined following convention in the machine learning
literature, where at least 60% of the dataset is usually reserved
as the training set so that the size of the remaining data set for
the out-of-sample test is sufficiently large set and the results
are statistically valid [33, 34].

The one day ahead forecast is performed using rolling-
window method. Since Autocorrelation Function (AF) and
Partial autocorrelation function (PAF) analyses indicate that
the original data include trend factors, it is log differenced
at the first order as 𝑟

𝑡
= ln(𝑃

𝑡
/𝑃
𝑡
1

) when the data set
is constructed. The returns are transformed to be scale
free, which correspond to percentage changes in financial
positions and have more attractive statistical properties such
as stationarity, and so forth.The holding period is assumed to
be 1 day. For each experiment, a portfolio of one asset position
worth 1 USD is assumed.

The generalizability of different models in out-of-sample
forecast tests is evaluated using the forecasting errormeasure-
ments and statistical tests. This includes mean square error
(MSE), Pesaran-Timmerman directional test (PT), and Clark
West test of equal predictive accuracy [35, 36].

Experiment results in Table 1 show some stylized facts.
The market exhibits moderate level of fluctuations, as sug-
gested by the moderate level of volatility level. The distri-
bution of the market returns is fat-tail and leptokurtic, as
suggested by significant skewness and kurtosis levels.There is
also high level of market risk exposure due to extreme events
in the market, as reflected in the significant kurtosis level.
Themarket returns also deviate from the normal distribution
and exhibit nonlinear dynamics; this is further confirmed
by the rejection of both Jarque-Bera test of normality and
BDS test of independence at 95% confidence levels.Therefore,
both denoised data component and noises data are extracted
from the original data series for further analysis. From
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experiment results in Table 1, denoised data series exhibit
more leptokurtic and fat tailed behavior.The rejection of both
Jarque-Bera and BDS test suggests that the data series are
characterized by nonlinear dynamics. Thus it is categorized
as reflecting the underlying permanent factors. Meanwhile,
noises data series are more normally distributed than the
original data based on the descriptive statistics, although
the Jarque-Bera test of normality is rejected. The BDS test
is accepted at the moderate level of statistical significance.
Therefore, it is categorized as reflecting the transient factors.
However, the moderate significant level of BDS test statistics
also suggests that there may be some linear or nonlinear
data patterns involved. These analysis suggest that the model
specifications for both denoised and noises data are different
and the original data aremixture of different underlyingDGP.

The wavelet denoising ARMA model is applied to the
testing data to investigate the effects of different parameters
on themodel performance. Different combinations of param-
eters choices are pooled into the parameters pool, including
three threshold selection rules (i.e., Stein’s unbiased risk
estimate (SURE), MiniMaxi, and Universal), two shrinkage
rules (i.e., hard and soft shrinkage rules), 6 decomposition
levels up to scale 6, and 7 wavelet families, which includes
Haar, Daubechies, Coiflets, Symlets, discrete Meyers, and
Biorthogonal and reverse Biorthogonal.Themodel orders for
ARMA (𝑟,𝑚) processes are determined following informa-
tion criteria (IC) such as Akaike Information Criteria (AIC)
and Bayesian Information Criteria (BIC) minimization.
Decomposition level is chosen to be 5, the rolling window is
set to 512, the lag order is set to 2, the threshold selection rule
chosen is MiniMaxi, and the shrinkage algorithm chosen is
hard. Several parameters need to be determined for LSSVR
model.The kernel chosen is radial basis function (RBF). Grid
searchmethod is used to determine the penalizing parameter
𝜆 and parameter 𝜎 was chosen for RBF. 𝜆 is 0.0518 and 𝜎 is
2.8651.

Experiment results in Table 2 list predictive accuracy
measured by the MSE for the original data, denoised and the
noises data separately in the WTI markets.

Experiment results in Table 2 further confirm that the
forecasting accuracy of wavelet denoising ARMA model is
sensitive to the wavelet parameters used to denoise the orig-
inal data. Some of the wavelet parameters can improve the
forecasting performance to the level that beats the traditional
benchmark models significantly. In the meantime, the fore-
casting accuracy decreases as a result of improper denoising
model used. This result supports the proposed HMH in
this paper that the price movement in the markets is joint
influences from heterogeneous agent behaviors, including
their different beliefs, strategies, and risk appetites [37]. The
perception into the separation and modeling of the distinct
behaviors of different agents based on different wavelets may
be redundant.

Since there is a lack of consensus on the appropriate
selection of denoising algorithm and specifications, one
approach common in the literature is to follow the trial
and error method in the identification process, which is
arbitrary and computationally expensive. To tackle this issue,
this paper introduces the LSSVR based ensemble algorithm

Table 2: In-sample forecasting accuracy comparison of wavelet
models for WTI market.

Models MSE
×10−3 MSE

×10
−3
, data MSE

×10
−3
, noises

Haar 1.4273 1.4189 1.3880
Db(2) 1.3988 1.3890 1.3890
Db(3) 1.4094 1.4140 1.3791∗

Db(4) 1.4152 1.3886 1.4083
Db(5) 1.4141 1.3934 1.3987
Dmey 1.3954 1.4166 1.3573∗

Coiflet(1) 1.4263 1.4228 1.3844∗

Coiflet(2) 1.3907 1.3865 1.3849
Coiflet(3) 1.7108 1.4823 1.6104
Coiflet(4) 1.4031 1.3982 1.3863
Coiflet(5) 1.3570∗ 1.3677∗ 1.3688∗

Symlet(1) 1.4273 1.4189 1.3880
Symlet(2) 1.4318 1.4233 1.3884
Symlet(3) 1.4094 1.4140 1.3791∗

Symlet(4) 1.4037 1.4106 1.3744∗

Symlet(5) 1.4510 1.4305 1.4053
Bior(1, 1) 1.4273 1.4189 1.3880
Bior(2, 2) 1.4130 1.4105 1.3863
Bior(3, 1) 1.7564 2.3318 1.8394
Bior(3, 9) 1.4373 1.4133 1.3982
Rbior(1, 1) 1.4273 1.4189 1.3880
Rbior(2, 2) 1.4647 1.4141 1.4294
Rbior(3, 1) 1.4359 1.4248 1.4521
Rbior(3, 9) 1.3790∗ 1.3816∗ 1.3789∗
∗The test case with superior performance than that of RandomWalk model.

to ensemble forecasts based on different wavelet parameters.
Based on the constructed individual forecast matrixes based
on different wavelet families, ICA is used to reduce thematrix
dimensions to produce the ensemble matrix and the LSSVR
is used to ensemble the individual matrix to produce the
optimal result.The dimensionality of the forecastingmatrices
for both denoised data and noises data is reduced to 1.
The nonlinearity function used is the cubic function. The
parameters for WDN-ICA-LSSVR algorithm are determined
using grid search algorithm: for WTI market, 𝜆 is 0.3353 and
𝜎 is 32.6345.

Experiment results in Table 4 show that the proposed
WDN-ICA-LSSVR outperforms the benchmark RW and
ARMA model, in terms of MSE and directional accuracy
measured by PT directional test statistics.

Experiment results in both Tables 3 and 4 show the
superior performance of the proposed multiple wavelet
denoising based ensemble against the traditional benchmark
RW andARMAmodels, at the statistical significant level.The
forecasting accuracy is higher in terms of lower MSE value,
while the directional forecasting accuracy is better in terms
of higher ratio with significant 𝑃 value at 95% confidence
value. Meanwhile, the ensemble forecasts estimated are more
stable than individual forecasts as the partial information
set from individual forecasters is integrated to produce the
optimal and stable forecasts with the proposed approach.
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Table 3: Out-of-sample forecasting accuracy comparison of differ-
ent models.

Models MSE
×10
−3 CWARMA

𝑃 value
CW RW
𝑃 value

ARMA 14.359 N/A 0.6197
RW 13.846 0.6197 N/A
LSSVR 13.960 0.0136 0.7648
WDN-ICA-LSSVR 13.765 0.0010 0.1417

Table 4: Out-of-sample directional predictive accuracy comparison
of different models.

Models Dstat% PT
ARMA 52.98 0.0896
LSSVR 52.52 0.0988
WDN-ICA-LSSVR 55.05 0.0095

The proposed algorithm helps produce optimal estimate by
combining the partial information set in the constructed
forecasting matrix.

Theoretically experiment results in this paper show that
the HMH represents important andmore realistic alternative
theories for the market data structure. Technically exper-
iment results confirm that HMH based modeling would
result in the improved forecasting performance when the
underlying data components are modeled with the noise
removed in the multiscale domain. This also implies that the
appropriate optimization of the weights assigned to different
forecasts based on different weights would combine the
partial information set they capture and lead to more stable
and improved forecasting results.

5. Conclusions

This paper proposes a novel wavelet denoising crude oil price
forecasting algorithm based on both wavelet based denois-
ing algorithm and ICA-LSSVR based nonlinear ensemble
framework. Work in this paper provides further evidence in
support of HMH against EMH and predictability of price
movement in the crude oil market. The market structure
is viewed and analyzed in the emerging HMH perspective,
relaxing the assumptions of traditional EMH. Under the
framework of HMH, this paper proposes that the under-
lying heterogeneous market structure can be distinguished
by different investment scales; that is, the crude oil price
behaviors are affected by noises and main trends, which have
different characteristics. Thus the separation of noises and
data need to be conducted in a multiscale manner to recover
the useful data for further modeling by ARMA model. The
more accurate separation of data from noises leads to better
behaved data and higher level of model generalizability.
This paper also argues that the performance of traditional
approaches could be further improved by the appropriate
removal of noises from data.

Meanwhile, this paper also finds that the behavior of
the denoised data is sensitive to the wavelet parameters

chosen and exhibits completely different behavior, which cor-
responds to different model specifications and performances.
Since there is no consensus on the criteria to choose the
appropriate parameters in the literature, to reduce the estima-
tion biases and improve the robustness, this paper introduces
the LSSVR based nonlinear ensemble algorithm and ICA into
themodeling process.The ICAeffectively reduces the forecast
matrix dimension and recovers important components that
contribute most of the data features. The LSSVR based
ensemble algorithm achieves higher forecasting accuracy and
robustness by achieving faster convergence speed to the
global optimal solution in the problemdomain.Theproposed
model shows competent performance and improved robust-
ness.
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