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Wireless sensor networks, in combination with image sensors, open up a grand sensing application field. It is a challenging problem
to recover a high resolution (HR) image from its low resolution (LR) counterpart, especially for low-cost resource-constrained
image sensors with limited resolution. Sparse representation-based techniques have been developed recently and increasingly to
solve this ill-posed inverse problem. Most of these solutions are based on an external dictionary learned from huge image gallery,
consequently needing tremendous iteration and long time to match. In this paper, we explore the self-similarity inside the image
itself, and propose a new combined self-similarity superresolution (SR) solution, with low computation cost and high recover
performance. In the self-similarity image super resolution model (SSIR), a small size sparse dictionary is learned from the image
itself by the methods such as KSVD. The most similar patch is searched and specially combined during the sparse regulation
iteration. Detailed information, such as edge sharpness, is preserved more faithfully and clearly. Experiment results confirm the
effectiveness and efficiency of this double self-learning method in the image super resolution.

1. Introduction

Wireless sensor networks, in combination with image sen-
sors, open up a grand sensing application field. Visual
information provided by image sensor is the most intuitive
information perceived by human, especially for recogni-
tion, monitoring, and surveillance. Low-cost and resource-
constrained image sensors with limited resolution are mainly
employed [1–3]. Recovery from low resolution to high res-
olution is the pressing need for image sensor node. Image
super resolution (SR) receives more and more interests
recently, which has lots of applications in image sensor,
digital cameras, mobile phone, image enhancement, high
definition TV [4–6], and so forth. It aims to reconstruct a
high-resolution (HR) image from the low-resolution (LR)
one based on reasonable assumptions or prior knowledge.
From the view of the target HR image, the LR image can be
generated after downsampling and some blurring operator.

Hence, the SR work has always been formulated as an inverse
problem:

𝑌 = Φ𝐻𝑋 +𝑁, (1)

where 𝑋 is the HR image to be recovered, 𝑌 is the known
LR image,Φ is the downsampling operator,𝐻 is the blurring
operator that minimizes the high frequency aliasing effect,
and𝑁 is the noise. Traditionally, the downsampling operator
Φ and blurring operator 𝐻 are conducted at the same time.
Hence, we can use the following formulation (2) instead of
(1):

𝑌 = H𝑋 +𝑁, (2)

where H = Φ𝐻 is the generalized blurring and downsam-
pling operator. However, the detailed information, especially
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the high frequency part, is lost after these two operations.
Hence, image super resolution has become a highly under-
determined reconstruction problem.

The classical SR solutions are interpolation-based meth-
ods, including bilinear, bicubic, spline interpolation and
some other improved versions [7, 8]. These methods tend to
generate overly smooth HR images with ringing and jaggy
effects. Their visual clarity is very limited. Edge preserving
and directional interpolators have been proposed to improve
the reconstruction image’s visual clarity [9–11]. However, the
blurring and noises are still obstacles to overcome.

Sparse representation-based SR methods are becoming
more popular recently since the issue of sparse representation
is consistent with (2). Sparse representation provides a dif-
ferent perspective in solving the underdetermined problems
[12–15]. This powerful and promising tool has proven to
be effective for a wide range of problems, such as sub-
Nyquist sensing of signals and coding, image denoising, and
deblurring [16–23]. Several sparse representation based SR
algorithms have been proposedwith superior results reported
[12, 22, 24, 25]. Most of them need training dictionaries based
on a large scale external image gallery, which have limited
matching degree to the target image and time consuming.
Another issue is that the external dictionary depends on
the blurring modal with less generality. Self-learning SR
algorithms, lately emerged, show that the internal statistics in
the image itself often have stronger prediction power than the
external statistics and can give more powerful image-specific
priors [26, 27].

In this paper, we explore the self-similarity inside the
image and propose a new combined self-similarity super
resolution (SR) solution, which successfully restores themiss-
ing detailed image information. In this self-similarity image
super resolutionmodel (SSIR), the patches from the LR image
are downsampled firstly to form smaller LR patches (SLR).
Small-sized sparse dictionary is learned from the image itself
by methods such as KSVD.Then, a most similar patch for the
unrecovered LR patch is searched and combined, during the
sparse iteration, to preserve the faithful detailed information.
Experiment results confirm the effectiveness and efficiency of
the double self-similarity learningmethod in the image super
resolution.

The rest of this paper is organized as follows. Section 2
describes our approach of SSIR framework with self-learning
dictionary. In Section 3, experiments are taken to compare
the proposed method with other ones. The conclusions are
finally given in Section 4.

2. The Proposed Self-Similarity-Based Image
Super Resolution Approach

2.1. Sparse Representation of Image Super Resolution. For
sparse representation-based SR methods, high resolution
image 𝑋 can be represented by sparse coefficients 𝛼 under
dictionary𝐷 as follows:

𝑋 = 𝐷𝛼. (3)

Hence, the HR image recovering procedure can be seen
as the minimization of the 𝑙

1
-norm problem:

𝛼̂ = arg min ‖𝛼‖1 s.t. 𝑌 = H𝑋 = H𝐷𝛼, (4)

where 𝑌 is the LR image and H is the generalized blur-
ring and downsampling degradation matrix. The quality of
recover HR image is always determined by the details, such
as edges and contrast. However, such details are lost when
the HR image is downsampled. Hence, small patch based
recovery is more popular than the whole image based ones to
prevent large scale details losing. We follow the patch based
learning strategy in our approach. For𝑁×𝑁 sized LR image,
the atoms in𝐷 are learned by patches sized by 𝑛 × 𝑛, where 𝑛
can be 8, 10, and so forth. Then the sparse representation (4)
can be rewritten as

𝛼̂
𝑘
= arg min 󵄩󵄩󵄩󵄩𝛼𝑘

󵄩󵄩󵄩󵄩1 s.t. 𝑦
𝑘
= H𝑥

𝑘
= H𝐷𝛼

𝑘
, (5)

where 𝑦 is the LR patch with size of (1/scale) × 𝑛 × 𝑛, 𝑥
𝑘
is

the HR patch, 𝛼
𝑘
is the coefficient of the patch, and H and

𝐷 are corresponding patch with the size of 𝑛 × 𝑛. The image
reconstruction scheme based on self-learning dictionary can
be presented more intuitively by

𝛼̂ = argmin 󵄩󵄩󵄩󵄩𝑦 −H𝐷𝛼
󵄩󵄩󵄩󵄩
2

𝐹
+ 𝜆‖𝛼‖1. (6)

2.2. Internal Dictionary Learning. Most of the sparse rep-
resentation SR methods are based on dictionary learning
from the external image library [12, 22, 25]. The number
of the atoms in dictionary 𝐷 should be huge enough to
confirm the sparsity of 𝛼 and avoid image hallucination and
blurring [16]. Normally, the dimension of external dictionary
should be above thousand and the recovery time is huge.
For various natural images, especially the high-gradient
ones, high recover performance could not be easily and fast
reached if the dictionary is learned from the outside image
gallery. External dictionary approaches are not suitable for
the resource-constrained image sensor node. A different idea
is that we should make full use of the information inside of
the image itself as shown in [26, 27]. The feature of the same
structure textures or patterns can bemore easily foundwithin
the image. For the destination image, the dictionary does not
need to be tremendous to mate different kinds of natural
images. Inspired by [26, 27], the dictionary𝐷 is learned firstly
fromLR image in our approach to classify the local structures.

The internal training patches are extracted from LR
image and then used to generate an overcomplete dictionary
𝐷 ∈ 𝑅

𝑛×𝑛×𝐾 which contains 𝐾 atoms. It is assumed that a
training patch 𝑦TS can be represented as 𝑦TS = 𝐷𝛽, which
satisfies ‖𝑦TS −𝐷𝛽‖ < 𝜀. Hence, the training dictionary is the
solution of

[𝐷, 𝛽] = arg min 󵄩󵄩󵄩󵄩𝑦TS − 𝐷𝛽
󵄩󵄩󵄩󵄩 s.t.󵄩󵄩󵄩󵄩𝛽

󵄩󵄩󵄩󵄩 0 < 𝐾. (7)

Iterative optimization is used to solve this dictionary
training problem. The iteration consists of two basic steps:
(1) sparse coding: fix the dictionary 𝐷 and search for the
sparse representation of 𝛽 and (2) dictionary update: update
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Table 1: HR patch, corresponding LR patch, and reconstruction patch under KSVD dictionary.

HR patch LR patch Reconstruction patch under KSVD dictionary
100 99 96 91 90 88 85 83 99 95 89 84 100 99 96 94 91 88 84 84
98 100 98 93 90 87 84 83 98 93 88 85 101 99 96 92 90 86 83 84
99 99 96 92 89 86 85 84 99 94 90 84 100 98 95 92 88 85 84 85
100 96 93 91 89 87 85 85 99 94 87 85 99 97 94 92 90 87 84 85
99 97 95 95 91 88 85 83 100 97 94 93 92 88 85 85
101 99 95 91 91 89 86 84 101 99 96 93 91 88 85 84
101 99 95 91 89 88 86 85 100 99 96 92 89 87 85 84
98 97 96 93 88 85 84 84 99 98 96 92 88 86 86 85

the dictionary atoms {𝑑
𝑗
}
𝐾

𝑗=1
and their corresponding coeffi-

cients 𝛽 one by one. Inspired by [28, 29], we use orthogonal
matching pursuit (OMP) algorithm in the sparse coding
step and K-singular value decomposition (K − SVD) based
iterative optimization in dictionary update step, respectively.
These two steps run iteratively until the maximum iteration
or the convergence is reached.

Typically, the self-leaning dictionary size 𝐾 is set below
256 in our approach, and we get similar recovery perfor-
mance with the external dictionary. Detailed comparison is
illustrated in Section 3.

2.3. Self-Similarity Regulation Scheme. Local image struc-
tures in LR image can be classified by the patch dictionary
learned from itself. However, detailed information, such as
sharp edges and corners, could not be clustered perfectly
by limit atoms and may be lost for some extent after
downsampled from the HR patch. The following Table 1
demonstrates a real HR patch in Lena, its corresponding
LR patch, and reconstruction patch by self-learning KSVD
dictionary with 256 atoms. From Table 1, the rich variation
between the HR pixels is omitted in LR patch and smoothed
in the reconstruction patch. The reason of smooth effect
under KSVD dictionary is mainly that the dictionary atoms
are trained not only for the special patch, but also for all the
patches in the image.

Hence, accurate reconstruction for each patch is tough
even under the sparse self-learning dictionary. More prior
information should be incorporated into the recover proce-
dure to improve the HR image quality. Several additional
parameters have been studied such as frequency, histogram,
low-pass, nonlocal means constraints [22, 25]. Unlike these
statistic constraints, we consider true information inside of
the image as the regulation index.

As aforementioned, distinct edges and corners become
blur after downsample operation. The information loss phe-
nomenon appears when the HR image is downsampled
to LR image. Similar information loss phenomenon also
appears when the LR image is down-sampled to an even
lower resolution image. The lost information during the
latter procedure can be recovered from the image before
down-sample. It provides a learning way to recover more
realistic HR patches. A new self-similarity regulation scheme
is proposed based on finding image patch similar to the
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Figure 1: Self-similarity regulation step.

destination HR patch.The new sparse regulation scheme can
be formulated as

𝛼̂ = arg min 󵄩󵄩󵄩󵄩𝑦 −H𝐷𝛼
󵄩󵄩󵄩󵄩
2

𝐹
+ 𝜆‖𝛼‖1 + 𝛾similar‖𝐽 (𝛼)‖1, (8)

where 𝛾similar is the regulation threshold and 𝐽(𝛼) is the
similarity prior. We divide the whole sparse regulation into
two steps: self-similarity regulation and sparse dictionary
regulation. The self-similarity regulation step can be seen as
an internal regulation step to compensate the sharpness of
the edges. The sparse dictionary regulation step provides the
basic framework to enlarge the LR image.

The detailed self-similarity regulation step is described in
Figure 1. Firstly, the input unrecovered LR patch, named as
𝑦LR, is upscaled by bicubic operator.Then, a similar HR patch
of the same up-scaled size, named as 𝑆HR, is searched around
the LR patch 𝑦LR inside of LR image 𝑌. If a similar HR patch
𝑆HR is found, we can get its corresponding down-sampled
LR patch 𝑆LR. The true HR patch 𝑥HR is approximated
by the similar HR patch 𝑆HR. This recovered HR patch
𝑥HR coming from real pixels can be closer to the ground
truth 𝑥HR than that recovered by statistic constraints studied
previously.During approximation, the similar down-sampled
LR patch 𝑆LR is firstly subtracted from the unrecovered LR
patch 𝑦LR. Then, the above difference is estimated from the
residual 𝑅𝑆LR by the self-learning sparse dictionary, which
is named as 𝑅𝑆HR. At last, the recovered HR patch 𝑥HR is
computed by adding the similar patch 𝑆HR and the difference
estimation 𝑅𝑆HR.Thewell-known sparse regulationmethods,
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Input: LR image 𝑌, LR image patches’ size𝑚 and HR image patches’ size 𝑛, the degradation matrixH.
Output: HR image𝑋
Step 1. Extract patches 𝑦LR ∈ 𝑅𝑚 from LR image 𝑌, follow the raster-scan order, and start from the upper-left corner

(some pixel overlap in each direction is allowed).
Step 2. Recover HR image patches 𝑥HR iteratively by Steps 2.1 and 2.2, until the maximum iteration times

or convergence is reached.
Step 2.1 Self-similarity regulation step:

Step 2.1.1. Use bicubic method to up scale the unrecovered LR patch 𝑦LR to the same size 𝑛 as HR patch, defined as 𝑦HR.
Step 2.1.2. Searching for a similar 𝑛 sized patch in 𝑦LR’s neighbor:

Step 2.1.2.1. Compute each searching patch’s SSE as the self-similarity prior 𝐽(𝛼),
𝐽 (𝛼) = SSE = ∑

𝑙

∑
𝑘

(𝐵
𝑙𝑘
− 𝐵
𝑙𝑘
)
2

Step 2.1.2.2. Find the least SSE patch, and compare its SSE with the adaptive threshold
𝛼Var+𝛽. If SSE < 𝛼Var+𝛽, define this least SSE patch as the similar patch 𝑆HR.

Step 2.1.3. Use degradation matrixH to down sample similar patch 𝑆HR, define as 𝑆LR.
Step 2.1.4. Subtract 𝑆LR from LR patch 𝑦LR, and get the residual 𝑅𝑆LR = 𝑦LR − 𝑆LR.
Step 2.1.5. Recover the residual 𝑅𝑆LR to 𝑅𝑆HR using IRLS algorithm according (9).
Step 2.1.6. Add the 𝑅𝑆HR to 𝑆HR, according to (10).

Step 2.2 Sparse dictionary regulation step: update 𝑥𝑙+1HR according to (11).
Step 3. Ensemble all 𝑥HR to recover HR image𝑋 (if there is pixel overlap, the weighted average method is needed).

Algorithm 1: Self-similarity regulation scheme.

like IRLS and OMP, can be used in the recovery procedure
[27–30].

The above self-similarity regulation step can be repre-
sented as

𝑅𝑆
𝑙

HR = 𝐷𝐻 ∗ IRLS (𝑦LR −H𝑆
𝑙

HR, 𝐷𝐿) ,

𝑥
𝑙+1/2

HR = 𝑆
𝑙

HR + 𝑅𝑆
𝑙

HR,

(9)

where 𝑙 is the current iteration index, 𝑆𝑙HR is the most similar
patch found in 𝑙th iteration, 𝑅𝑆𝑙HR is the recovered difference
between 𝑆𝑙HR and 𝑥HR, 𝑥

𝑙+1/2

HR represents updated 𝑥HR, and𝐷𝐿
and 𝐷

𝐻
are dictionary trained for low-resolution patch and

high-resolution patch, respectively.
We introduced sum square error (SSE) as the self-

similarity prior 𝐽(𝛼) and use it to decide which patch is the
most matching one. The definition of the SSE is given by

𝐽 (𝛼) = SSE = ∑
𝑙

∑
𝑘

(𝐵
𝑙𝑘
− 𝐵
𝑙𝑘
)
2

, (10)

where 𝐵
𝑙𝑘
is the pixels taken from 𝑦LR neighbor patch in the

searching zone and 𝐵
𝑙𝑘
is the pixels taken from the bicubic

up-scaled patch 𝑦HR. Both have the same size as the output
HR patch 𝑥HR. The patches we searched for come from the
LR image, so the fidelity can be guaranteed.

Sparse threshold 𝛾similar is used to decide whether a patch
is similar to destination HR patch. 𝛾similar is adaptive to 𝑦LR,
instead of being a fixed value.The adaptive threshold 𝛾similar is
defined as 𝛼Var+𝛽, where Var is variance of the processing
patch𝑦LR and 𝛼, 𝛽 are associated parameters. If theminimum
𝐽(𝛼) within the searching zone is smaller than 𝛾similar, its
corresponding patch is named as the most similar patch 𝑆HR.

The sparse dictionary regulation step is then performed
under self-learned dictionary, which can be represented by

𝑥
𝑙+1

HR = 𝑥
𝑙+1/2

HR + 𝜆𝐷
𝐻
∗ IRLS (𝑦LR −H𝑥

𝑙+1/2

HR , 𝐷
𝐿
) . (11)

The above two regulation steps are performed until the
maximum iteration times or the convergence is reached.

The procedure of self-similarity regulation scheme is
described in detail by Algorithm 1.

2.4. Overall Diagram of Self-Similarity Based Image Super
Resolution Approach. After all the analyses above, the over-
all diagram of self-similarity based image super resolution
approach is shown in Figure 2. Firstly, the input LR image
𝑌, regarded as a down-sampled version from corresponding
HR image 𝑋, is segmented into patches 𝑦LR. Then the sparse
representation dictionaries 𝐷

𝐿
and 𝐷

𝐻
are trained by these

internal patches. Next, the self-similarity regulation scheme
is applied to find a matching patch 𝑆HR. Afterwards, HR
patch 𝑥HR is recovered by sparse regulation based on the self-
learning dictionary. At last, we ensemble all these recovered
HR patches 𝑥HR to get a high-quality HR image𝑋.

3. Experimental Results

3.1. Experimental Background. In this section, several exper-
imental results for the proposed method are given. All the
simulations are conducted in MATLAB 7.5 on PC with
Intel Core2/1.6GHz/1 GB.The test LR images include several
typical 256 × 256 natural images. We aim to recover their
512 × 512HR images. The input LR images with different
degradation matrix H (direct downsampling degradation
matrix H

𝑑
and blur down-sampling degradation matrix

H
𝑏
) are tested. Every experiment is evaluated from the

luminance peak signal-to-noise ratio (Y PSNR) and SSIM
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Figure 2: The overall diagram of the self-similarity-based image super resolution.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Experiment results on image Lena, from left to right: (a) original 512×512 HR image, (b)H
𝑏
sampled Bicubic (PSNR = 34.87 dB),

and (c) H
𝑏
sampled Yang et al.’s [24] (PSNR = 35.75 dB), (d) H

𝑏
sampled Proposed method (PSNR = 35.80 dB), (e) Dong et al.’s [25]

NCSR (PSNR = 35.45 dB), (f) H
𝑑
sampled Bicubic (PSNR = 30.96 dB), (g) H

𝑑
sampled Yang et al’s. [24] (PSNR = 29.09 dB), and (h) H

𝑑

sampled proposed method (PSNR = 33.82 dB).

and is compared with the state of the art methods such as
Yang et al.’s [12, 22], Dong et al.’s [25]. We thank the above
authors to provide their program codes.

3.2. Experiments on Different Downsampled Image. In this
test, our method is tested on several 512 × 512 common
experimental natural images such as Lena, Plane, and Pepper.
The input 256×256 LR image is down-sampled from the orig-
inal 512 × 512 HR image. We use both direct downsampling
degradation matrixH

𝑑
and blur downsampling degradation

matrixH
𝑏
to test the algorithm’s adaptability. At first, a sparse

dictionary is trained by the 8×8 patches taken from input LR
image. The dictionary has 128 atoms. Hence, the dictionary
is a 64 × 128 matrix. Then, the 8 × 8 HR image patches are
recovered by 4×4 LR image patches under our self-similarity
based SR approach. We set 3 pixels overlap in LR patches by
default. The neighbor searching zone is set to 10 × 10.

Figure 3 shows the experiment on the image Lena under
different downsampling matrix. Figure 3(a) plots the original

Lena image. Figures 3(b)–3(d) plot the HR Lena images
recovered from H

𝑏
down-sampled LR image, respectively,

by Bicubic, Yang et al.’s [24], and our proposed methods.
Recovered image by Dong et al.’s [25] NCSR method is also
illustrated in Figure 3(e), which uses the elaborate Gaussian
low-pass filter. Figures 3(e)–3(g) show the recoveredHRLena
images from H

𝑑
down-sampled LR image, respectively, by

Bicubic, Yang et al.’s [24] method, and the proposed method.
Dong et al.’s [25] NCSR method cannot get acceptable
performance without Gaussian low-pass filter, which is not
illustrated in Figure 3. These experimental results show that
our method has better performance than the state of the art
methods [12, 24, 25] in both cases.The Bicubic method could
not recover the high frequency details in both cases. Although
Yang et al.’s [24] method can recover the blur downsampled-
LR image very well but produce too much artifact and fake
high frequency details in the direct downsampling case.

Experiment result on image Pepper is shown in
Figure 4. Pepper has lots of edge, which is a preferable image
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Experiment results on image Pepper, from left to right: (a) original 512×512HR image, (b)H
𝑏
sampled Bicubic (PSNR = 33.08 dB),

(c) H
𝑏
sampled Yang et al.’s [24] (PSNR = 33.84 dB), (d) H

𝑏
sampled proposed method (PSNR = 35.68 dB), (e) Dong et al.’s [25]

NCSR (PSNR = 34.92 dB) (f), H
𝑑
sampled bicubic (PSNR = 29.78 dB), (g) H

𝑑
sampled Yang et al.’s [24] (PSNR = 28.3943 dB), and (h)

H
𝑑
sampled proposed method (PSNR = 33.25 dB).

Table 2: Comparison results of different SR methods.

Image Downsampling matrix Measures Methods
Bicubic Yang et al. [24] Dong et al. [25] Proposed

Lena
Blur PSNR (dB) 34.8671 35.7477 35.46 35.8

SSIM 0.8538 0.8586 0.9067 0.9237

Direct PSNR (dB) 30.964 29.0875 33.8206
SSIM 0.7873 0.7322 0.8098

Plane
Blur PSNR (dB) 32.6525 33.5788 34.05 34.9828

SSIM 0.9341 0.9369 0.9487 0.9629

Direct PSNR (dB) 28.8573 27.5349 31.5616
SSIM 0.8985 0.8525 0.9141

Pepper
Blur PSNR (dB) 33.0847 33.8412 34.92 35.6808

SSIM 0.8382 0.8474 0.9028 0.9173

Direct PSNR (dB) 29.7824 28.3943 33.2525
SSIM 0.7712 0.7229 0.7754

Sailboat
Blur PSNR (dB) 31.065 31.6411 32.05 32.1125

SSIM 0.8143 0.8294 0.8826 0.8979

Direct PSNR (dB) 27.7443 26.0675 30.0478
SSIM 0.7537 0.6893 0.756

Baboon
Blur PSNR (dB) 25.0694 25.0966 25.13 25.4071

SSIM 0.7068 0.7388 0.7375 0.7479

Direct PSNR (dB) 22.661 20.5052 23.6535
SSIM 0.611 0.5595 0.6217

to test the recover effect about edge. Similar result is derived.
The edge recovered by Yang et al.’s [24] method is not clear
when LR image is down-sampled byH

𝑑
. This failure may be

caused by the inconsistency between Yang et al.’s [24] pair
of HR and LR dictionaries. In comparison, our proposed

method can preserve the edge’s sharpness well. Besides
the edge’s sharpness, recovered information by self-learning
is more faithful to the true HR details.

More bench-mark comparisons are illustrated in Table 2.
Our proposed method shows high recovery performance
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Table 3: Recovery PSNR of three sparse based SR methods with different dictionary sizes.

Image Bicubic (dB) Yang et al. [24] (dB)
1024 atoms

Yang et al. [22] (dB)
500 atoms

Proposed (dB)
128 atoms

Lena 29.8545 33.4116 33.4302 33.6360
Pepper 28.8546 31.4435 31.5071 31.9216
Boat 26.7158 30.4966 30.5984 30.8878

Table 4: Recovery effects of different size searching zones on image Tank.

Searching zone 8 × 8 10 × 10 12 × 12 14 × 14

PSNR (dB) 34.4982 34.6764 34.8211 34.8985
SSIM 0.9057 0.9085 0.9106 0.9114

under both kinds of downsampling degradation matrix. The
comparison shows that self-similarity is a powerful image-
specific prior for sparse representation SR method.

Images produced by industrial environment sensors are
tested too, as shown below in Figures 5 and 6. Recovered high
resolution images in Figure 6 show the effectiveness of our
approach.

Furthermore, we do experiments on Forman video
sequence to test the stability of our algorithm. All the frames
are processed as an image. Figure 7 shows the PSNR compar-
ison between the proposed method and Bicubic method.The
proposed approach stably outperforms the Bicubic method.
From about the 210th frame, recovery performance decays
rapidly, since the followed frames are full of wild high
frequency details.

3.3. Influence of Different Parameters. To further observe dif-
ferent parameter’s impact, several comparison experiments
are conducted.

3.3.1. Influence of Dictionary Size. Another advantage of the
proposed approach is that the sparse dictionary only needs
a small amount of atoms. 128 atoms are enough to get a
favorable result for the proposedmethod.Meanwhile, Yang et
al.’smethod [12, 24] needs to train external dictionaries at least
512 atoms. In [22], Yang et al. propose a CS-based SRmethod,
which also needs to train a dictionary with 500 atoms by
external database. Comparison experiments are conducted
on gray 512×512 natural images, including Lena, Pepper, and
Boat. Table 3 shows the recovery PSNR of three sparse based
SR methods with different dictionary sizes. The proposed
method can recover favorable HR images by the smallest
dictionary. Test results show that the proposed self-similarity
learning method is more suitable for resource-constrained
image sensor node.

For external dictionary based SR method, the recovery
performance gets better as the dictionary size is growing
larger. Figure 8 shows another comparison on Lena between
Yang et al.’s method [24] and the proposed method. Yang et
al.’s method [24] is conducted by a series of dictionary sizes of

Figure 5: Low resolution test images from industrial environment
sensors.

256, 512, 1024, and 2048. The proposed method is conducted
by different dictionary sizes of 64, 128, 256, and 512. We use
the increment PSNR to Bicubic method as the comparison
index. As PSNR growth curve shown in Figure 8, we can see
that the recovery performance of Yang et al.’s method relies
much more on the dictionary size. Its dictionary size should
be three times larger than the dictionary size in the proposed
method. By contrast, our approach gives a stable performance
on different dictionary sizes.

3.3.2. Influence of Self-Similarity Searching Zone. Self-
similarity is introduced as the sparse regulation prior in
our approach. The above tests show its effectiveness and
stability in preserving the detailed information such as
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Figure 6: Recovered high resolution test images from industrial environment sensors scale factor = 2.
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Figure 7: Self-similarity based SR performance on Foreman video
sequence.

edge sharpness. The size of self-similarity searching zone
is tested here, using test image Tank from 8 × 8 to 14 × 14

neighborhood. Results are illustrated in Table 4 and
Figure 9. The similar patches found are shown in
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Figure 8: Recovery performance comparison over different dictio-
nary sizes.

Figure 10.The experiment tells us that more edge patches can
be found, and the recovery performance gets better, when
the searching zone size increases.

3.4. Limitation and Further Research Direction. Although we
have shown the outstanding performance of the proposed
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(a) (b) (c) (d)

Figure 9: Recovery effects of different sized searching zones on image Tank, from left to right: (a) 8 × 8, (b) 10 × 10, (c) 12 × 12, and (d)
14 × 14.

(a) (b) (c) (d)

Figure 10: Similar patches found by different sized searching zones, from left to right: (a) 8 × 8, (b) 10 × 10, (c) 12 × 12, and (d) 14 × 14.

self-similarity super resolution approach, there are still some
limitation that should be considered. The proposed method
assumes that the blur matrix is known as most SR methods.
Further research should consider how to estimate the optimal
blur kernel under the blind circumstance. Another point
is that the SSE self-similarity prior used in the proposed
algorithm is quite simple. We will use more delicate prior
such as Parzen window estimation [31], BM3D [32], and
so forth, to get a better match with the destination HR
patch.

4. Conclusion

This paper has presented a novel double self-similarity super
resolution approach for the resource-constrained image sen-
sor node in the wireless sensor networks. The proposed
method does not need external database and only uses the
LR image itself as the training sample for sparse repre-
sentation dictionary with a small number of atoms. Self-
similarity sparse prior is combined in the regulation iteration
to preserve the detailed information. Experiments are con-
ducted on bench-mark test images. The effects of different
parameters have been surveyed. Comparative tests show the
effectiveness and stability of the proposed method over the
state of the art sparse based SR methods.
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