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Based on the health monitoring system installed on the main span of Sutong Cable-Stayed Bridge, GPS displacement and
wind field are real-time monitored and analyzed. According to analytical results, apparent nonlinear correlation with certain
discreteness exists between lateral static girder displacement and lateral static wind velocity; thus time series of lateral static
girder displacement are decomposed into nonlinear correlation term and discreteness term, nonlinear correlation term of which
is mathematically modeled by third-order Fourier series with intervention of lateral static wind velocity and discreteness term of
which ismathematicallymodeled by the combinedmodels of ARMA(7, 4) and EGARCH(2, 1). Additionally, stable power spectrum
density exists in time series of lateral dynamic girder displacement, which can be well described by the fourth-order Gaussian
series; thus time series of lateral dynamic girder displacement are mathematically modeled by harmonic superposition function.
By comparison and verification between simulative and monitoring lateral girder displacements from September 1 to September 3,
the presented mathematical models are effective to simulate time series of lateral girder displacement from main girder of Sutong
Cable-Stayed Bridge.

1. Introduction

Nowadays, long span cable-stayed and suspension bridge
structures are commonly constructed at home and abroad.
On account of their flexible structural characteristics, dis-
placement response from main girder of long-span bridge
structure swings obviously impacted by strong aerostatic and
fluctuating wind actions. According to aerostatic response
analysis on Sutong Cable-Stayed Bridge by Xu et al., the
lateral displacement response frommain girder can approach
1.2m under strong wind velocity 40m/s with attack angle 0∘
[1]; and research results from buffeting response analysis on
Golden Gate Bridge by Vincent showed that extreme buffet-
ing amplitude frommain girder can reach 1.7m under strong
wind velocity 31m/s [2]. Such large amplitude can definitely
threaten comfort and safety of the whole bridge structure. For
example, severe wind vibration from main girder of Tacoma

Suspension Bridge in Washington state eventually brought
about collapse of the whole bridge structure under wind
velocity 19m/s [3]. Therefore, it is of great significance to
research displacement response impacted bywind loads from
main girder of long span bridge structures, and especially the
lateral displacement response, as one fairly important part for
main girder, should be specifically valued.

Theoretical exploration, numerical simulation, and wind
tunnel tests for lateral displacement response have been
carried out to some extent. Cheng andXiao improved the cal-
culationmethod for aerostatic stability and further concluded
that instable lateral displacement was 4.24m under critical
static wind [4]; Long et al. analyzed lateral displacement
response from Sidu Suspension Bridge through ANSYS finite
element simulation and concluded that maximum lateral
displacement at middle span was 32.26 cm, which is close
to 1/1000 length of main span [5]; Yu et al. researched

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 723152, 16 pages
http://dx.doi.org/10.1155/2014/723152



2 Mathematical Problems in Engineering

2088
100 100 1001003001088

3D ultrasonic anemometer

GPS monitoring station 
300

Figure 1: Longitudinal layout of monitoring equipment on the Sutong Bridge (unit: m).
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Figure 2: Transverse layout of monitoring equipment on the flat steel box girder (unit: mm). (1)GPSMS: GPSmonitoring station; (2) 3DUA:
3D ultrasonic anemometer.

lateral displacement response from Xihoumen Suspension
Bridge through wind tunnel tests and concluded that lateral
displacement at horizontal angle 10∘ was larger than that of
other angles [6].

However, for mechanism complexity of lateral dis-
placement response impacted by aerostatic and fluctuating
wind actions, traditional methods of theoretical deduction,
numerical simulation, and wind tunnel tests are difficult to
accurately reflect the actual lateral displacement response
of bridge structure, on account of uncertain boundary
condition, imprecise assignment of initial parameters, and
inappropriate ignorance of subordinate factors. In recent
years, with development of structural healthmonitoring tech-
nology, it is feasible to installmonitoring sensors on long span
bridge structures, monitoring data of which can authentically
reflect bridge structural behaviors under actual environment
and load actions. Although wind field of long span bridge
structures has been widely monitored in recent years [7–9],
lateral displacement response is rarely monitored and
researched; thus real correlation regularity between lateral
displacement response and wind action is still covered. Addi-
tionally, lateral displacement response under actual operation
environment is also affected by other random factors, which
have never been taken into account by researchers before.
Therefore, lateral displacement response from main girder is
necessarily researched upon monitoring data to reveal real
structural behavior of long span bridges.

In this paper, based on the health monitoring system
installed on the main span of Sutong Cable-Stayed Bridge,
GPS displacement and wind field are real-time monitored
and analyzed. According to analytical results, apparent non-
linear correlation with certain discreteness exists between

lateral static girder displacement and lateral static wind
velocity; thus time series of lateral static girder displace-
ment are decomposed into nonlinear correlation term and
discreteness term, nonlinear correlation term of which is
mathematically modeled by 𝑛th-order Fourier series with
intervention of lateral static wind velocity and discreteness
term of which is mathematically modeled by the combined
models of ARMA(𝑝, 𝑞) and EGARCH(𝑚, 𝑛). Additionally,
stable power spectrum density exists in time series of lateral
dynamic girder displacement; thus time series of lateral
dynamic girder displacement are mathematically modeled
by harmonic superposition function. By comparison and
verification between simulative and monitoring lateral dis-
placements from September 1 to September 3, mathematical
models are feasible and effective to simulate time series of
lateral girder displacement frommain girder of SutongCable-
Stayed Bridge.

2. Bridge Monitoring and Sample Analysis

The bridge monitoring object for this research is the
worldwide famous Sutong Cable-Stayed Bridge (in Jiangsu
Province, China). Its whole structure form is single-spanned
and double-hinged with the main span reaching 1088m as
shown in Figure 1, and the main girder employs flat steel
box type with 36.3m wide and 4.0m high as shown in
Figure 2. 3D ultrasonic anemometers and GPS monitoring
station are installed on two flanks of midspan cross-section
from main girder (resp., shown in Figures 1 and 2) to
continuously acquire wind data and displacement data with
sample frequency of 1Hz.
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Figure 3: Description of the defined local andWGS-84 coordinate system. Notes: (1) local coordinate system: 𝑥-𝑦-𝑧; (2)WGS-84 coordinate
system:𝑋-𝑌-𝑍; (3) 90∘ of wind horizontal angle denotes the axis angle from 𝑥 to 𝑦 (within range of [0∘ 360∘]); (4) 90∘ of wind vertical angle
denotes axis angle from 𝑦 to 𝑧 (within range of [−90∘ 90∘]); (5) 10.6∘ axis angle exists between axes 𝑌 and 𝑦 of across the bridge.
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(a) Time series of original wind velocity

0 5 10 15 20 25 30

0

10

20

30

Time (day)

St
at

ic
 w

in
d 

ve
lo

ci
ty

 (m
/s

)

−10

−20

(b) Time series of static wind velocity

0 5 10 15 20 25 30

0

5

10

15

Time (day)

D
yn

am
ic

 w
in

d 
ve

lo
ci

ty
 (m

/s
)

−10

−10

−15

(c) Time series of dynamic wind velocity

Figure 4: Time series of wind velocity along 𝑦-axis in the whole August.
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(a) Time series of girder displacement
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(b) Time series of static girder displacement
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(c) Time series of dynamic girder displacement

Figure 5: Time series of girder displacements along 𝑦-axis in the whole August.
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Figure 6: Correlation scatter plots between static wind velocity and static girder displacement.
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Figure 7: Power spectrum densities of dynamic girder displacement in different periods.
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(a) The fitting Fourier series of nonlinear correlation term
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(b) Time series of fitting static displacement

Figure 8: The fitting Fourier series and time series of fitting static displacement.

Specifically, the wind data from 3D ultrasonic anemome-
ters embrace such three types as wind velocity, horizontal
angle, and vertical angle in local coordinate system (Figure 3),
and the girder displacement data from GPS monitoring
station contains absolute locations in WGS-84 coordinate
system (Figure 3), which are supposed to deduct reference
locations for analysis. Until now, the storage amount ofmoni-
toring data has increased to 93 million for each measurement
point. Such considerable monitoring data cannot be totally
applied to actual analysis; thus the monitoring data from
upstream flank in the year 2012 are specially chosen.

Taking the monitoring data in the whole August, for
example, considering that lateral displacement effect of main
girder is primarily reflected by wind load across the Sutong
Bridge, hence time series of wind velocity and girder dis-
placement are decomposed into the𝑦-axis in local coordinate

system as shown in Figures 4(a) and 5(a), respectively, which
can be obviously observed that either of two time series
contain static variant trend in whole and dynamic stochastic
fluctuation in part. Such two kinds of variation characteristics
can be furthermore separated by 10-minute average process as
shown in Figures 4(b), 4(c), 5(b), and 5(c), respectively.

By comparison between Figures 4(b) and 5(b), similar
variation characteristics exist between static wind veloc-
ity and static girder displacement, which can be visu-
ally described by correlation scatter plots as shown in
Figure 6, indicating apparent nonlinear correlation similar to
quadratic parabolic curve. Therefore, static girder displace-
ment can bemathematically expressed by static wind velocity,
with consideration of definite discreteness affected by other
random factors. Moreover, time series of dynamic girder
displacement depict obvious steady stochastic fluctuation,
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(a) Time series of original discreteness
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(c) The partial correlation function 𝛽(𝑠)

Figure 9: Time series of original discreteness with its 𝜌(𝑠), 𝛽(𝑠).

as well as no variation of its power spectrum densities by
time shown in Figure 7; thus dynamic girder displacement
can be mathematically simulated by harmonic superposition
method.

3. Modeling Theory and Procedure

3.1. Modeling for Static Girder Displacement

3.1.1. Modeling Theory and Method. Correlation scatter plots
in Figure 6 can be acquired by combination of nonlinear cor-
relation term and discreteness term. Furthermore, nonlinear

correlation term can be mathematically modeled by the 𝑛-
order Fourier series; that is,

𝑢
1
(𝑡) = 𝑎

0
+

𝑛

∑
𝑘=1

(𝑎
𝑘
cos (𝑘𝜔V (𝑡)) + 𝑏

𝑘
sin (𝑘𝜔V (𝑡))) , (1)

where 𝑢
1
(𝑡) denotes time series of fitting static displacement

for nonlinear correlation term, V(𝑡) denotes time series of
static wind velocity (Figure 4(b)), and 𝑎

𝑘
, 𝑏
𝑘
(𝑘 = 0, 1, . . . , 𝑛),

and 𝜔 are fitting parameters of 𝑛th-order Fourier series.
With denotation of original static girder displacement as

𝑢(𝑡) (Figure 5(b)), 𝑢(𝑡) minus 𝑢
1
(𝑡) acquires time series of

discreteness 𝑢
2
(𝑡), which contains three types of stochastic
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(b) The autocorrelation function 𝜌(𝑠)
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Figure 10: Time series of processed discreteness with its 𝜌(𝑠), 𝛽(𝑠).

characteristics (autoregression, moving average, and het-
eroscedasticity) and can be mathematically described by the
combined models of ARMA(𝑝, 𝑞) and EGARCH(𝑚, 𝑛). In
detail, the ARMA(𝑝, 𝑞) model defines the stochastic charac-
teristics of autoregression and moving average as follows:

𝑢
2
(𝑡) = 𝑐 +

𝑝

∑
𝑗=1

𝑏
𝑗
𝑢
2
(𝑡 − 𝑗) +

𝑞

∑
𝑗=0

𝑐
𝑗
𝜀
𝑡−𝑗
, (2)

where 𝑐 is the constant term, 𝑝 and 𝑞, respectively, denote
the orders of autoregression or moving average of 𝑢

2
(𝑡), 𝑏
𝑗

and 𝑐
𝑗
, respectively, denote the coefficients of autoregression

or moving average of 𝑢
2
(𝑡) with 𝑐

0
= 1, and 𝜀

𝑡−𝑗
denotes

the innovations process with time delay of 𝑗. Meanwhile, the
other EGARCH(𝑚, 𝑛)model defines the stochastic character-
istic of heteroscedasticity as follows [9, 10]:

log𝜎2
𝑡

= 𝜅 +

𝑚

∑
𝑘=1

𝑔
𝑘
log𝜎2
𝑡−𝑘

+

𝑛

∑
𝑘=1

V
𝑘
[

󵄨󵄨󵄨󵄨𝜀𝑡−𝑘
󵄨󵄨󵄨󵄨

𝜎
𝑡−𝑘

− 𝐸 {
󵄨󵄨󵄨󵄨𝑧𝑡−𝑘

󵄨󵄨󵄨󵄨}]

+

𝑛

∑
𝑘=1

𝑙
𝑘
(
𝜀
𝑡−𝑘

𝜎
𝑡−𝑘

) ,

(3)
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Figure 11: The statistical values of AIC and BIC

where 𝜎
𝑡
denotes the conditional variance of the innovations

process 𝜀
𝑡
, 𝜅 is the constant term,𝑚 and 𝑛, respectively, denote

the orders of the EGARCH(𝑚, 𝑛)model,𝑔
𝑘
, V
𝑘
, and 𝑙

𝑘
, respec-

tively, denote the coefficients of the EGARCH(𝑚, 𝑛) model,
𝑧
𝑡
is a standard, independent, and identically distributed

random draw from some specified probability distribution
such as Gaussian or Student’s 𝑡, and

𝐸 {
󵄨󵄨󵄨󵄨𝑧𝑡−𝑘

󵄨󵄨󵄨󵄨} = 𝐸(

󵄨󵄨󵄨󵄨𝜀𝑡−𝑘
󵄨󵄨󵄨󵄨

𝜎
𝑡−𝑘

)

=

{{{

{{{

{

√
2

𝜋
Gaussian

√
] − 2
𝜋

⋅
Γ ((] − 1) /2)
Γ (]/2)

Student’s 𝑡

(4)

with degrees of freedom V > 2. Considering that the
EGARCH(𝑚, 𝑛) model is treated as ARMA(𝑝, 𝑞) models for
log𝜎2
𝑡

, thus the stationarity constraint for the EGARCH(𝑚, 𝑛)
model is included by ensuring that the eigenvalues of the
characteristic polynomial,

𝜆
𝑚

− 𝐺
1
𝜆
𝑚−1

− 𝐺
2
𝜆
𝑚−2

− ⋅ ⋅ ⋅ − 𝐺
𝑚
, (5)

are inside the unit circle, where 𝜆 and 𝐺
𝑗
are the variable and

coefficients of the characteristic polynomial, respectively.
During modeling process for time series of discreteness

𝑢
2
(𝑡), the autocorrelation function 𝜌(𝑠) and partial corre-

lation function 𝛽(𝑠) with their lag phase 𝑠 are introduced

for stationary test of 𝑢
2
(𝑡). Specifically, the autocorrelation

function 𝜌(𝑠) can be calculated as follows [11]:

𝜌 (𝑠) =
(1/𝑁)∑

𝑁−𝑠

𝑡=1

(𝑢
2
(𝑡) − 𝑢

2
) (𝑢
2
(𝑡 + 𝑠) − 𝑢

2
)

𝜎2
𝜌

,

𝑠 = 0, 1, 2, . . . , 𝑁 − 1,

(6)

where

𝑢
2
=
1

𝑁

𝑁

∑
𝑡=1

𝑢
2
(𝑡) , 𝜎

2

𝜌

=
1

𝑁

𝑁

∑
𝑡=1

(𝑢
2
(𝑡) − 𝑢

2
)
2 (7)

with 𝑁 denoting the amount of 𝑢
2
(𝑡). And the other partial

correlation function 𝛽(𝑠) can be calculated through fitting
successive autoregressive models of orders by ordinary least
squares, retaining the last coefficient of each regression [12].
Besides, the AIC and BIC delimitation criteria are applied to
determine model orders, with their statistical values aic and
bic being, respectively, calculated as follows [13, 14]:

𝑎𝑖𝑐 = −2 ln (𝐿) + 2𝐾
1
,

bic = −2 ln (𝐿) + 𝐾
1
⋅ ln (𝐾

2
) ,

(8)

where 𝐿 denotes the optimized log-likelihood objective
function (LLF) values associated with parameter estimates of
the combined models, 𝐾

1
denotes the number of estimated

parameters associated with each value in LLF, and𝐾
2
denotes

the sample size of the observed 𝑢
2
(𝑡) associatedwith each LLF

value.

3.1.2. Detailed Procedure. Based on the theory and method
above, the detailed procedure for mathematically modeling
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Figure 12: The correlation functions 𝜌(𝑠) and 𝛽(𝑠) of residuals.
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Figure 13: The standard errors between processed discreteness and its models with lower orders.

time series of static girder displacement is illustrated, taking
the correlation scatter plots in the whole August in Figure 6,
for example, as follows.

Step 1. Fitting Fourier series for nonlinear correlation term.
By means of the MATLAB fitting tools (utilizing the third-
order Fourier series (1) to fit the correlation scatter plots)
[10], the mathematical model of nonlinear correlation term
is straightforward and acquired as shown in Figure 8(a),
together with the estimated values of Fourier parameters
presented in Table 1. By substitution of estimated values
together with V(𝑡) into formula (1), time series of fitting static

displacement𝑢
1
(𝑡) in thewholeAugust are acquired as shown

in Figure 8(b).

Step 2. Stationary test for time series of discreteness. Time
series of discreteness 𝑢

2
(𝑡) can be acquired by 𝑢(𝑡) minus

𝑢
1
(𝑡) as shown in Figure 9(a). Autocorrelation function 𝜌(𝑠)

and partial correlation function 𝛽(𝑠) of 𝑢
2
(𝑡) are calcu-

lated with 50 lag phases shown in Figures 9(b) and 9(c),
respectively, presenting that 𝜌(𝑠) is slowly converging into
the 95% confidence intervals as the lag phase 𝑠 increases,
which indicates bad stationarity of 𝑢

2
(𝑡) for mathematical

modeling. Due to this, process of first-order difference for
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Figure 14: Simulation for time series of discreteness 𝑢
2

(𝑡) and static displacement 𝑢(𝑡).

Table 1: Estimated values of fitting parameters (−12 < V(𝑡) < 21).

Fitting parameters 𝑎
0

𝑎
1

𝑏
1

𝑎
2

𝑏
2

𝑎
3

𝑏
3

𝑤

Estimated values 0.1102 −0.1026 0.0218 0.01214 0.006845 −0.00618 −0.003763 0.1374

𝑢
2
(𝑡) is carried out as shown in Figure 10(a), with its 𝜌(𝑠) and

𝛽(𝑠) shown in Figures 10(b) and 10(c), both presenting rapid
convergence into the 95% confidence intervals and verifying
good stationarity for processed discreteness.

Step 3. Order determination of ARMA(𝑝, 𝑞) and
EGARCH(𝑚, 𝑛). The orders of 𝑝 and 𝑞 are relative to
the convergent forms of 𝜌(𝑠) and 𝛽(𝑠). That is, the 𝜌(𝑠)

and 𝛽(𝑠) clearly present the trailing property in Figures
10(b) and 10(c), with 4th and 7th of lag phase 𝑠 initially
converging into the 95% confidence intervals, inferring that
7 and 4 are appropriately assigned to the orders of 𝑝 and 𝑞,
respectively [11, 12]. Furthermore, the orders of 𝑚 and 𝑛 are
determined utilizing the AIC and BIC delimitation criterion.

In detail, the statistical values of AIC and BIC from time
series of processed discreteness (Figure 10(a)) are calculated,
respectively, under integer assignment of𝑚 and 𝑛 between 0
and 8 as shown in Figure 11, presenting that the most suitable
orders of 𝑚 and 𝑛 are 2 and 1, respectively, corresponding to
the minimum statistical values [13, 14].

Step 4. Parameter estimation and residual test of ordered
models. Based on the specified orders above, model param-
eters (𝑏

𝑗
, 𝑐
𝑗
, 𝑔
𝑘
, V
𝑘
, 𝑐, and 𝜅) are further estimated to fit

time series of processed discreteness, as shown in Tables
2 and 3, respectively. For testing the fitting effectiveness of
estimated parameters, residuals between processed discrete-
ness (Figure 10(a)) and its defined models with estimated
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Figure 15: Original and processed power spectrum densities.

Table 2: Estimating model parameters of the ARMA(7, 4) model.

The combined models The ARMA(7, 4) model
The fitting parameters 𝑐 𝑏

1

𝑏
2

𝑏
3

𝑏
4

𝑏
5

𝑏
6

𝑏
7

𝑐
1

𝑐
2

𝑐
3

𝑐
4

The values 0.00 −0.49 0.94 0.75 −0.32 −0.01 0.04 0.02 0.06 −1.26 −0.48 0.68

Table 3: Estimatingmodel parameters of the EGARCH(2, 1) model.

The combined models The EGARCH(2, 1) model
The fitting parameters 𝜅 𝑔

1

𝑔
2

V
1

𝑙
1

The values −0.76 0.27 0.65 0.28 0.06

parameters are analyzed using 𝜌(𝑠) and 𝛽(𝑠), as shown
in Figure 12, which presents that both 𝜌(𝑠) and 𝛽(𝑠) are
consistent in the 95% confidence intervals (except 𝑠 is 0)
and thus verifies good availability of estimated parameters
for ordered models. Moreover, the standard errors between
processed discreteness (Figure 10(a)) and its models with
lower orders are shown in Figure 13.

Step 5. Simulation for time series of discreteness 𝑢
2
(𝑡)

and static displacement 𝑢(𝑡). Based on the mathematical
models of ARMA(7, 4) and EGARCH(2, 1) with estimated
parameters, time series of simulative processed discreteness
are shown in Figure 14(a), and through inverse calculation
of first-order difference, time series of simulative original
discreteness 𝑢

2
(𝑡) are obtained as shown in Figure 14(b).

Together with time series of fitting static displacement 𝑢
1
(𝑡)

in Figure 8(b), time series of simulative static displacement
𝑢(𝑡) are ultimately shown in Figure 14(c), definitely similar to
time series of monitoring static displacement in Figure 5(b).

3.2. Modeling for Dynamic Girder Displacement

3.2.1. Modeling Theory and Method. Time series of dynamic
girder displacement show consistent power spectrum den-
sity (Figure 7), which can be mathematically simulated by
harmonic superposition method [15–17]. Primarily, function
expression of power spectrum density should be confirmed
to lay foundation for harmonic superposition. Considering
that straightforward function fitting will ignore local feather
of acute peak at 10−1Hz around of frequency, thus the power
spectrum density are decomposed into two parts: part one to
fit the whole trend with ignorance of acute peak; part two to
specifically fit the acute peak. Furthermore, each part can be
expressed by the 𝑛-order Gaussian series in logarithmic form;
that is,

lg𝑝
1
(𝑓) =

𝑛

∑
𝑘=1

𝑎
𝑘
𝑒
−((lg𝑓−𝑏𝑘)/𝑐𝑘)

2

,

lg𝑝
2
(𝑓) =

𝑛

∑
𝑘=1

𝑑
𝑘
𝑒
−((lg𝑓−𝑟𝑘)/ℎ𝑘)

2

,

(9)

where 𝑝
1
(𝑓) denotes function expression of part one, 𝑝

2
(𝑓)

denotes function expression of part two, and 𝑎
𝑘
, 𝑏
𝑘
, 𝑐
𝑘
, 𝑑
𝑘
, ℎ
𝑘
,

and 𝑟
𝑘

are fitting parameters of 𝑝
1
(𝑓) and 𝑝

2
(𝑓),
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Figure 16: Two parts of processed power spectrum densities and their fitting curves.

𝑘 = 0, 1, . . . , 𝑛. Accordingly, the function expression of
power spectrum density 𝑝(𝑓) can be formulized as follows:

𝑝 (𝑓) = 𝑝
1
(𝑓) + 𝑝

2
(𝑓) . (10)

Based on power spectrum density𝑝(𝑓) above, variance 𝜎2
within frequency band of [𝑓

1
𝑓
2
] can be calculated, utilizing

the expanding characteristics of average power spectrum for
stationary and stochastic process, as follows:

𝜎
2

= ∫
𝑓2

𝑓1

𝑝 (𝑓) 𝑑𝑓. (11)

Then the frequency band of [𝑓
1
𝑓
2
] is divided into 𝑛 subin-

tervals, and the whole values 𝑝(𝑓) in the 𝑖th subinterval
can be represented by the corresponding value 𝑝(𝑓mid,𝑖) at

the middle frequency 𝑓mid,𝑖; thus formula (11) is furthermore
discretized as follows:

𝜎
2

≈

𝑛

∑
𝑖=1

𝑝 (𝑓mid,𝑖) ⋅ Δ𝑓, (12)

where

Δ𝑓 =
𝑓
2
− 𝑓
1

𝑛
. (13)

As for the 𝑖th subinterval, its sinusoidal function 𝑤(𝑡, 𝑖)

containing middle frequency 𝑓mid,𝑖 and standard deviation
√𝑝(𝑓mid,𝑖) ⋅ Δ𝑓 can be expressed as follows:

𝑤 (𝑡, 𝑖) = √2𝑝 (𝑓mid,𝑖) ⋅ Δ𝑓 sin (2𝜋𝑓mid,𝑖𝑡 + 𝜃𝑖) , (14)
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Figure 17: Time series of simulative dynamic displacement 𝑤(𝑡) and its power spectrum density.
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(b) Time series of monitoring lateral displacement

Figure 18: Time series of simulative and monitoring lateral girder displacement.

where 𝜃
𝑖
is the random variable of uniform distribution

within [0, 2𝜋]. With superposition of𝑤(𝑡, 𝑖) from each subin-
terval, the time series of dynamic girder displacement 𝑤(𝑡)
can be mathematically modeled by harmonic superposition
function as follows:

𝑤 (𝑡) =

𝑛

∑
𝑖=1

√2𝑝 (𝑓mid,𝑖) ⋅ Δ𝑓 sin (2𝜋𝑓mid,𝑖𝑡 + 𝜃𝑖) . (15)

3.2.2. Detailed Procedure. Based on the theory and method
above, the detailed procedure for mathematically modeled
time series of dynamic girder displacement is illustrated,

taking the correlation scatter plots from August 1 to August
8 in Figure 15(a), for example, as follows.

Step 1. Decreasing discreteness for original power spectrum
density. Considering that certain discreteness existing in
original power spectrum density can cover the acute peak
at 10−1Hz, adverse to fitting the 𝑛-order Gaussian series,
therefore, average process with double frequency scales is
carried out to decrease discreteness, specifically by 10−3Hz
average process within frequency band [10−1.5Hz, 10−0.5Hz]
and 10−2Hz average process within other frequency bands.
Process result is shown in Figure 15(b), showing distinct acute
peak for fitting the 𝑛-order Gaussian series.
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Figure 19: Simulative and monitoring results and their correlation scatter plots with fitting curve.
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Step 2. Fitting Gaussian series for two parts of processed
power spectrum density. The processed power spectrum
density can be divided into two parts: the whole trend
with ignorance of acute peak as shown in Figure 16(a); the
specific acute peak as shown in Figure 16(b). By means of the
MATLAB fitting tools (utilizing the fourth-order Gaussian
series (9) to fit two parts) [10], themathematicalmodels𝑝

1
(𝑓)

and 𝑝
2
(𝑓) of two parts are, respectively, shown in Figures

15(a) and 15(b), together with estimated parameters presented
in Table 4.The combination𝑝(𝑓) of𝑝

1
(𝑓) and𝑝

2
(𝑓) is shown

in Figure 16(c).

Step 3. Harmonic superposition for fitting power spectrum
density 𝑝(𝑓) ⋅ 𝑝(𝑓) is divided into 25000 subintervals within
frequency bands [10−5Hz, 10−0.5Hz]. In each subinterval,
one middle frequency 𝑓mid,𝑖 and its corresponding value
𝑝(𝑓mid,𝑖) are existent and then substituted into (15) for
summation; thus time series of dynamic girder displacement
𝑤(𝑡) can be acquired as shown in Figure 17(a) (simulated for
86400 s). By comparing its power spectrum density shown in
Figure 17(b) with the monitoring one shown in Figure 15(a),
good similarity of the whole trend and the acute peak verifies
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Table 4: Estimated parameter values of the fourth-order Gaussian series.

Fitting curves Estimated parameter values of the fourth-order Gaussian Series
𝑎
1

𝑎
2

𝑎
3

𝑎
4

𝑏
1

𝑏
2

𝑏
3

𝑏
4

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑝
1

(𝑓) −5.36 0.45 −4.86 −0.73 −4.98 −2.98 −0.75 −0.22 1.69 0.38 1.73 0.36
𝑝
2

(𝑓) 0.58 0.85 0.14 0.70 −0.96 −0.96 −1.20 −1.10 0.01 0.05 0.04 0.15

appropriateness of mathematical models for dynamic girder
displacement.

4. Model Test and Evaluation

According to mathematical modeling process above, time
series of lateral girder displacement are expressed by com-
bination of third-order Fourier series 𝑢

1
(𝑡), ARMA(7,4),

EGARCH(2, 1), and harmonic superposition function 𝑤(𝑡).
For verifying feasibility and effectiveness of the whole math-
ematical models, time series from September 1 to September
3 are simulated with intervention of monitoring static wind
(Figure 18(a)) and then compared with monitoring ones
during same period (Figure 18(b)).

According to mathematical modeling theory and proce-
dure above, comparison is divided into two parts: (1) time
series of static girder displacement; (2) time series of dynamic
girder displacement. As for the first part, its simulative and
monitoring results are shown in Figure 19(a) and linear fitting
curve of correlation scatter plots is shown in Figure 19(b),
presenting consistent variation tendency in Figure 19(a) and
𝑑
𝑠
(𝑡) approximating to 𝑑

𝑚
(𝑡) in Figure 19(b) (where 𝑑

𝑠
(𝑡)

and 𝑑
𝑚
(𝑡), respectively, denote simulative and monitoring

results), which verifies good feasibility and effectiveness of
mathematical models for static girder displacement. As for
the second part, power spectrum densities of simulative
and monitoring results are shown in Figure 20, present-
ing uniform variation tendency of both whole trends and
acute peaks, which verifies good feasibility and effectiveness
of mathematical models for dynamic girder displacement.
Therefore, mathematical models above can be reasonably
utilized to simulate time series of lateral girder displacement
from main girder of Sutong Cable-Stayed Bridge.

5. Conclusions

Based onmonitoring data frommain girder of Sutong Cable-
Stayed Bridge, time series of lateral girder displacement effect
are mathematically modeled by methods of fitting Fourier
series and Gaussian series, combined models of ARMA(7,4)
and EGARCH(2,1), and harmonic superposition function.
And conclusions can be drawn as follows.

(1) Scatter plots between lateral static wind velocity and
lateral static displacement present apparent nonlinear
correlation, which is similar to quadratic parabolic
curve, and time series of lateral dynamic displacement
contain obvious stable power spectrum density with
no variation by time.

(2) Time series of lateral static displacement can be
decomposed into nonlinear correlation term and

discreteness term. Moreover, nonlinear correlation
term can be mathematically modeled by third-order
Fourier series with intervention of lateral static wind
velocity, and discreteness term can bemathematically
modeled by the combinedmodels of ARMA(7, 4) and
EGARCH(2, 1).

(3) Through decreasing discreteness in double frequency
scales and division in double frequency bands, power
spectrum density of lateral dynamic displacement
can be mathematically modeled by the fourth-order
Gaussian series, and time series of lateral dynamic
displacement can be further mathematically modeled
by harmonic superposition function.

(4) By the comparison between simulative and moni-
toring lateral displacement effect from September 1
to September 3, mathematical models are feasible
and effective to simulate time series of lateral girder
displacement from main girder of Sutong Cable-
Stayed Bridge.
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