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The task allocation problem (TAP) generally aims tominimize total execution cost and internode communication cost in traditional
parallel computing systems. New TAP (NTAP) considering additive intranode communication cost in emerging multicore cluster
systems is investigated in this paper. We analyze the complexity of NTAP with network flow method and conclude that the
intranode communication cost is a key to the complexity of NTAP, and prove that (1) the NTAP can be cast as a generalized linear
networkminimum cost flow problem and can be solved in𝑂(𝑚2𝑛4) time if the intranode communication cost equals the internode
communication cost, and (2) the NTAP can be cast as a generalized convex cost network minimum cost flow problem and can be
solved in polynomial time if the intranode communication cost ismore than the internode communication cost.More in particular,
the uniform cost NTAP can be cast as a convex cost flow problem and can be solved in 𝑂(𝑚2𝑛2 log(𝑚 + 𝑛)) time. Furthermore,
solutions to the NTAP are also discussed. Our work extends currently known theoretical results and the theorems and conclusions
presented in this paper can provide theoretical basis for task allocating strategies on multicore clusters.

1. Introduction

Since the single core processors rapidly reach the physical
limits of possible complexity and speed, computer architects
have designedmulticore processor, whichmeans place two or
more processing cores on the same chip.Multicore processors
are now growing as a new industry trend and widely used for
high performance computing. Further, multicore processors
are being configured in a hierarchical manner to compose
computing nodes or multicore nodes in cluster systems. Mul-
ticore clusters based on these computing nodes or multicore
nodes have already been one of the most popular models in
parallel computing [1, 2].

However, for a multicore node, on one side, the future
performance growth in multicore processors will almost cer-
tainly come from the exploitation of thread-level parallelism
through multicore processors, which consequently can lead
to memory access contention when multiple cores concur-
rently access the shared resources such as memory, cache,
and disk 𝐼/𝑂. The synchronization operation introduced to
avoid the access contention can require a lot of overhead.
In a larger-scale multicore node or high-contention situa-
tions, synchronization can become a performance bottleneck

because contention introduces additional delays and because
latency is potentially greater in such a multicore computing
node. On the other side, from the message distribution
experiments, it is found that on an average, about 50%
messages are transferred through intranode communication,
which is much higher than intuition.This trend indicates that
considering the intranode communication is as important
as considering the internode communication on a multicore
cluster [1]. As a matter of fact, synchronization can be
considered as a special formof communication [3].Therefore,
in this paper, in order to facilitate description, the intranode
communication overhead and synchronization overhead on
a multicore node can be referred to as intranode commu-
nication cost. The intranode communication cost tends to
increase dramatically when the numbers of multicore pro-
cessors and tasks communicating on a multicore computing
node increase. A report from Berkeley [4] predicts multicore
processors with thousands of parallel execution units as the
mainstream hardware of the future. Thus, the intranode
communication cost has become a key factor to be considered
in the TAP on multicore clusters.

In traditional parallel computing systems, the task allo-
cation problem (TAP) is to assign a set of tasks or modules
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to a set of processors or computing nodes, so that the total
execution cost and internode communication cost can be
minimized [5–10]. To our best knowledge, new TAP consid-
ering overall execution cost, internode communication cost,
and intranode communication cost in emerging multicore
cluster systems has yet to be investigated.This paper proposes
the new TAP (NTAP) aiming to minimize the total exe-
cution cost, internode communication cost, and intranode
communication cost on multicore clusters. However, we are
now encountering two important and challenging theoretical
problems: (1) how can the complexity of the NTAP be
efficiently analyzed and (2) what are the effects of intranode
communication cost on the complexity of the NTAP. Aiming
at the two important theoretical problems, we analyze and
prove the effects of the intranode communication cost on
the complexity of the NTAP via constructing equivalence
relation between theNTAP andminimum cost flow problem.
Moreover, solutions to the NTAP due to different complexity
are also discussed.

The rest of this paper is organized as follows. After
describing related work in Section 2, some basic definitions
are provided in Section 3. Complexity analysis of the NTAP
is performed in Section 4. Solutions to the NTAP are also
discussed in Section 5. We conclude this paper in Section 6.

2. Related Work

TAP is a classical problem in the field of parallel comput-
ing research. Solution methods already suggested for this
problem can be roughly classified into three categories [5],
namely, graph theoretic approach, mathematical program-
ming approach, and heuristic approach. The graph theoretic
approach uses a graph to represent the interconnections
between modules and represents the tasks to be allocated
as a set of nodes or vertices of a graph. The intermodular
communication cost between each pair of tasks is represented
by the weight of a nondirected arc or a nondirected edge
connecting two nodes or vertices. A communication cost
of zero means that there is no communication between
tasks or computing nodes, while a communication cost of
infinity indicates that the communicating nodes or vertices
must be assigned to the same processor or computing node.
The mathematical programming approach formulates task
assignment as an optimization problem and solves it with
mathematical programming techniques. And the heuristic
method provides fast but suboptimal algorithms for task
assignment, which are useful for applications where an
optimal solution cannot be obtained in real time.

In this paper, it is worth noting that our work is closely
related to the graph theoretic approach, and our emphasis will
be on the network flow method which is one of important
graph theoretic approaches. For network flow method, each
task and processor are represented by a node or a vertex.
The network flow model can be built according to intercon-
nections between modules, interprocessor communication,
and task execution overhead on processor and can be solved
with maximum flow and minimum cut algorithm. Research
by Stone [6] and Bokhari [7] has shown how an optimal
assignment may be found efficiently for the case of dual

processor systems using a network flow algorithm. While an
extension to three processors was developed by Stone [8],
algorithms for four or more processors have not been found.
Bokhari [9] has shown that the problem of finding an optimal
assignment for four or more processors is a NP-complete
problem and that the case where the graph of the communi-
cating tasks, whichwe call communication graph, is a tree and
can be solved exactly using dynamic programming. Towsley
[10] generalized Bokhari’s results to the case of series-parallel
structures. From the theoretical point of view, by combining
Bokhari’s and Towsley’s work, Fernandez-Baca [11] proposed
polynomial time optimal algorithms in the case where the
intertask communication graph is a k-tree. Lee et al. [12] and
Cho and Park [13] have suggested optimal algorithms for the
general structure problem in a linear array network with any
number of processors. Fernandez de la Vega and Lamari [14]
have investigated the case where all the tasks communicate
with communication costs all equal to a constant 𝑐

0
and

gave two exact polynomial time algorithms and a polynomial
time approximation schemeusingminimumcost flow theory.
In addition, the problem of finding an optimal dynamic
assignment of amodular program for a two-processor system
is analyzed and Stone’s formulation of the static assignment
problem is extended to include the cost of dynamically
reassigning amodule from one processor to the other and the
cost of module residence without execution by Bokhari [7].
Yadav et al. [15] have extended this model and considered the
dynamic TAP for a general program structure and heteroge-
neous𝑁 processors in distributed computing systems.

Traditional TAP generally aims tominimize the total exe-
cution cost and internode communication cost without con-
sidering the intranode communication cost inmulticore clus-
ter computing, which frequently results in inefficient solu-
tions since it cannot characterize and explore the hierarchical
design features and potential ofmulticore clusters. Compared
with above-mentioned traditional TAP, the NTAP considers
the additive intranode communication cost and can fully
characterize and exploit the hierarchical design features and
potential of multicore clusters but still remains to be studied.

3. Preliminaries

Without loss of generality, let 𝑇 = {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
} be a set of 𝑛

tasks and let 𝑃 = {𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑚
} be a set of 𝑚 computing

nodes. Let us denote a task assignment by a vector 𝑍 =

(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
){1, 2, . . . , 𝑚}

𝑛 and denote the total cost of an
assignment by 𝐶(𝑍), where 𝑧

𝑖
= 𝑞 means that 𝑡

𝑖
is allocated

to 𝑝
𝑞
with 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑞 ≤ 𝑚. If a task assignment

canminimize total execution cost, internode communication
cost, and intranode communication cost, then we call it an
optimal task assignment. Let 𝑥

𝑞
be the number of tasks

assigned to 𝑝
𝑞
and let 𝑒

𝑖𝑞
be the execution cost of 𝑡

𝑖
on 𝑝
𝑞
.

Let the binary variable 𝑥
𝑖𝑞
satisfy 𝑥

𝑖𝑞
∈ {0, 1} and the 𝑥

𝑖𝑞
is

defined to be 1 if 𝑡
𝑖
is assigned to 𝑝

𝑞
and be 0 otherwise. Let

the triple variable 𝑥
𝑖𝑗𝑞

satisfy 𝑥
𝑖𝑗𝑞
∈ {0, 1, 2} and the 𝑥

𝑖𝑗𝑞
is

defined to be (1) 0 if 𝑡
𝑖
and 𝑡
𝑗
both are not allocated to 𝑝

𝑞
, (2)

1 if 𝑡
𝑖
or 𝑡
𝑗
is allocated to 𝑝

𝑞
, and (3) 2 if 𝑡

𝑖
and 𝑡
𝑗
are both

allocated to 𝑝
𝑞
, where 1 ≤ 𝑗 ≤ 𝑛.
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Figure 1: The MCF problem equivalent to UCNTAP.

Let 𝑐
𝑖𝑗
denote the internode communication cost incurred

between 𝑡
𝑖
and 𝑡

𝑗
assigned to distinct computing nodes

and 𝐼
𝑖𝑗
denote the intranode communication cost incurred

between 𝑡
𝑖
and 𝑡

𝑗
allocated to the same computing node.

We assume that 𝑐
𝑖𝑗
= 0 if 𝑧

𝑖
= 𝑧
𝑗
, 𝐼
𝑖𝑗
= 0 if 𝑧

𝑖
̸= 𝑧
𝑗
,

and 𝑐
𝑖𝑗
= 𝑐
𝑗𝑖
, 𝐼
𝑖𝑗
= 𝐼
𝑗𝑖
. For any 𝑡

𝑖
∈ 𝑇, 𝑡

𝑗
∈ 𝑇 and

arbitrary constants 𝑐
0
and 𝐼
0
, if 𝑐
𝑖𝑗
= 𝑐
0
and 𝐼
𝑖𝑗
= 𝐼
0
, then

this version of the NTAP is called the uniform-cost NTAP
(UCNTAP), otherwise it is called the nonuniform-costNTAP
(NUCNTAP). In addition, we assume that 𝐼

𝑖𝑗
and 𝑐

𝑖𝑗
are

independent of computing nodes, which means that these
computing nodes and communication network of multicore
clusters to be considered in this paper are homogeneous.

4. Main Results

Some complexity problems of theNTAPonmulticore clusters
are analyzed in this section and the main analysis results of
this paper are stated in Sections 4.1, 4.2, and 4.3.

4.1. Analysis of Communication Cost for
a Single Computing Node

Theorem 1. For the UCNTAP and any 𝑝
𝑞
with 𝑥

𝑞
tasks, if

one supposes that every pair of 𝑥
𝑞
tasks communicates, then

the total internode communication cost and the total intranode
communication cost incurred on 𝑝

𝑞
are 𝑥
𝑞
(𝑛 − 𝑥

𝑞
)𝑐
0
and

0.5𝑥
𝑞
(𝑥
𝑞
− 1)𝐼
0
, respectively.

Proof. If 𝑥
𝑞
tasks are allocated to 𝑝

𝑞
, then other 𝑛 − 𝑥

𝑞

tasks must be assigned to other computing nodes and there
are 𝑥
𝑞
(𝑛 − 𝑥

𝑞
) communications on 𝑝

𝑞
in all, and thus the

total communication cost on 𝑝
𝑞
is equal to 𝑥

𝑞
(𝑛 − 𝑥

𝑞
)𝑐
0
.

The intranode communication cost is only incurred between
any two of the 𝑥

𝑞
tasks, and therefore the total intranode

communication cost is 0.5𝑥
𝑞
(𝑥
𝑞
− 1)𝐼
0
.

Corollary 2. For the NUCNTAP, the internode communica-
tion cost and the intranode communication cost incurred on
𝑝
𝑞
between any two tasks 𝑡

𝑖
and 𝑡
𝑗
are 𝑥
𝑖𝑗𝑞
(2 − 𝑥

𝑖𝑗𝑞
)𝑐
𝑖𝑗
and

0.5𝑥
𝑖𝑗𝑞
(𝑥
𝑖𝑗𝑞
− 1)𝐼
𝑖𝑗
, respectively, where 𝑥

𝑖𝑗𝑞
= 𝑥
𝑖𝑞
+ 𝑥
𝑗𝑞
.

Proof. From Theorem 1, the total internode communication
cost incurred on 𝑝

𝑞
equals 𝑥

𝑞
(𝑛 − 𝑥

𝑞
)𝑐
0
. When considering

only two tasks 𝑡
𝑖
and 𝑡
𝑗
, 𝑛 = 2, 𝑐

0
= 𝑐
𝑖𝑗
and 𝑥

𝑞
= 𝑥
𝑖𝑞
+ 𝑥
𝑗𝑞
=

𝑥
𝑖𝑗𝑞
, the internode communication cost incurred on 𝑝

𝑞
is

𝑥
𝑖𝑗𝑞
(2 − 𝑥

𝑖𝑗𝑞
)𝑐
𝑖𝑗
. Similarly, the intranode communication cost

on 𝑝
𝑞
is 0.5𝑥

𝑖𝑗𝑞
(𝑥
𝑖𝑗𝑞
− 1)𝐼
𝑖𝑗
.

4.2. Complexity Analysis of the UCNTAP

Theorem 3. The UCNTAP is a P-problem and can be solved
in polynomial time if 𝐼

0
≥ 𝑐
0
.

Proof. (1) Transforming the UCNTAP into a minimum cost
flow problem. As shown in Figure 1, the UCNTAP can be
modeled as a minimum cost flow (MCF) problem on a
network 𝐺. The 𝑖th task corresponds to a task vertex V𝑡

𝑖
and

all tasks correspond to a set𝑉𝑇 = {V𝑡
1
, V𝑡
2
, . . . , V𝑡

𝑛
}. Similarly,

the 𝑞th computing node 𝑝
𝑞
corresponds to a computing

vertex V𝑝
𝑞
and all computing nodes correspond to a set

𝑉𝑃 = {V𝑝
1
, V𝑝
2
, . . . , V𝑝

𝑚
}. The source 𝑟 is connected to

all task vertices by source edges of capacity 1 and cost 0,
and all computing vertices are connected to the terminal 𝑠
by terminal edges of capacity 𝑛 and cost 0.5𝑥

𝑞
(𝑛 − 𝑥

𝑞
)𝑐
0
+

0.5𝑥
𝑞
(𝑥
𝑞
− 1)𝐼
0
, where 1 ≤ 𝑞 ≤ 𝑚. Moreover, each task vertex

is connected to all computing vertices by edges of capacity 1
and cost 𝑒

𝑖𝑞
𝑥
𝑖𝑞
. In addition, we specify the initial amount of

flow as 𝑛 and the flows on all edges as integer flows.
(2) Proving the equivalence between the UCNTAP and

the MCF problem, firstly, we prove that each feasible flow
corresponds to a task assignment. With the initial amount
of flow being 𝑛, for any V𝑡

𝑖
∈ 𝑉𝑇, the amount of flow

entering V𝑡
𝑖
equals 1. According to flow conservation law, the

amount of flow leaving V𝑡
𝑖
is also equal to 1. As the flows

on all edges are integer flows, the edges emanating from V𝑡
𝑖

have one and only one edge of amount of flow 1. In other
words, the 𝑖th task corresponding to V𝑡

𝑖
is assigned to one

and only one computing node 𝑝
𝑧𝑖
. Given any feasible flow 𝐹0,

without loss of generality, we assume that the set of all edges
having amount of flow 1 and pointing to vertices of 𝑉𝑃 from
vertices of𝑉𝑇 is {(V𝑡

1
, V𝑝
𝑧1
), (V𝑡
2
, V𝑝
𝑧2
), . . . , (V𝑡

𝑛
, V𝑝
𝑧𝑛
)}; then,

the feasible flow 𝐹0 corresponds to a task assignment 𝑍0 =
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
). Secondly, we prove that each task assignment

corresponds to a feasible flow. Given any task assignment𝑍0,
we can construct a feasible flow 𝐹

0 in this way as follows.
With the number of tasks being 𝑛, the initial amount of flow
is 𝑛; that is, the amount of flow entering any V𝑡

𝑖
∈ 𝑉𝑇 equals
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Figure 2: The generalized MCF problem equivalent to NUCNTAP.

1. If the 𝑖th task 𝑡
𝑖
is allocated to 𝑝

𝑧𝑖
, then the amount of

flow on edge (V𝑡
𝑖
, V𝑝
𝑧𝑖
) equals 1. Therefore, we can construct

a feasible flow 𝐹0, on which all the edges having amount of
flow 1 and pointing to computing vertices from task vertices
constitute an edge set {(V𝑡

1
, V𝑝
𝑧1
), (V𝑡
2
, V𝑝
𝑧2
), . . . , (V𝑡

𝑛
, V𝑝
𝑧𝑛
)}.

Lastly, we prove that the total cost of the feasible flow equals
the total cost of corresponding task assignment and the MCF
corresponds to an optimal task assignment. Clearly, the cost
function 0.5𝑥

𝑞
(𝑛−𝑥
𝑞
)𝑐
0
+0.5𝑥

𝑞
(𝑥
𝑞
−1)𝐼
0
of theMCF problem

corresponds to the sum of internode communication cost
and intranode communication cost, and 𝑒

𝑖𝑞
𝑥
𝑖𝑞
corresponds

to execution cost. Hence, the total cost of any feasible flow
equals the total cost of corresponding task assignment. In
addition, for any MCF, we assume that 𝐹∗ corresponds to a
nonoptimal task assignment𝑍0; that is,𝐶(𝐹∗) = 𝐶(𝑍0); then,
there must exist an optimal task assignment 𝑍∗ such that
𝐶(𝑍
∗
) < 𝐶(𝑍

0
). Furthermore, the 𝑍∗ must correspond to a

feasible flow 𝐹0 such that 𝐶(𝑍∗) = 𝐶(𝐹0), so 𝐶(𝐹0) < 𝐶(𝐹∗),
which contradicts that 𝐹∗ is a MCF. Thus, each MCF must
correspond to an optimal task assignment.

(3) Analyzing the effect of communication cost on prob-
lem complexity. Nowwe analyze the effect of communication
cost on the complexity of the NTAP by analyzing the effect
of cost function on the complexity of the MCF problem.
According to the construction process, the quadratic cost
function of the MCF problem is given as

0.5𝑥
𝑖
(𝑛 − 𝑥

𝑖
) 𝑐
0
+ 0.5𝑥

𝑖
(𝑥
𝑖
− 1) 𝐼
0

= 0.5 (𝐼
0
− 𝑐
0
) 𝑥
2

𝑖
+ 0.5 (𝑛𝑐

0
− 𝐼
0
) 𝑥
𝑖
.

(1)

The convexity/concavity of the quadratic cost function is
determined by the quadratic coefficient 𝐼

0
− 𝑐
0
. According to

the positive/negative sign of 𝐼
0
− 𝑐
0
, the MCF problem can be

distinguished as

𝐼
0
= 𝑐
0
, linear cost network MCF problem;

𝐼
0
> 𝑐
0
, convex cost network MCF problem;

𝐼
0
< 𝑐
0
, concave cost network MCF problem.

(2)

Here, the MCF problem is a P-problem in the cases of
linear cost network and convex cost network, and the concave
cost network MCF problem is a NP-hard problem. Hence,
we can conclude that the UCNTAP is a P-problem if the
intranode communication cost is not less than the internode
communication cost and can be transformed into a convex
cost network MCF problem. The convex cost network MCF
problem can be solved in 𝑂(𝑀 log𝑁(𝑀 + 𝑁 log𝑁)) time
[16], where 𝑀 denotes the number of edges and 𝑁 denotes
the number of vertices. Thus, the UCNTAP can be solved in
𝑂(𝑚
2
𝑛
2 log(𝑚+𝑛)) time if the intranode communication cost

is not less than the internode communication cost, where 𝑚
denotes the number of computing nodes or multicore nodes
and 𝑛 denotes the number of tasks.

4.3. Complexity Analysis of the NUCNTAP

Theorem 4. For any 𝑡
𝑖
∈ 𝑇 and 𝑡

𝑗
∈ 𝑇, the NUCNTAP

is a P-problem and can be solved in polynomial time if the
intranode communication cost is not less than the internode
communication cost.

Proof. (1) Transforming the NUCNTAP into a generalized
network MCF problem. As shown in Figure 2, the NUC-
NTAP can be modeled as a generalized MCF problem on
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a network 𝐺, of which all vertices, with the exception of
source vertex 𝑟 and terminal vertex 𝑠, are divided into
three levels. The first level is a task vertex level 𝑉𝑇 =

{V𝑡
1
, V𝑡
2
, . . . , V𝑡

𝑛
}, where the vertex V𝑡

𝑖
corresponds to the 𝑖th

task 𝑡
𝑖
.The second level is a task assignment vertex level𝑉𝐴 =

{V𝑎
1:1
, V𝑎
1:2
, . . . , V𝑎

𝑛:𝑚
}. If the amount of flow through vertex

V𝑎
𝑖:𝑞

equals 1 (0), then it denotes that 𝑡
𝑖
is (not) allocated

to the qth computing node 𝑝
𝑞
. The third level is a task pair

assignment vertex level 𝑉𝐼 = {V𝑖
1,2 : 1

, V𝑖
1,2 : 2

, . . . , V𝑖
𝑛−1,𝑛:𝑚

}.
For the amount of flow through vertex V𝑖

𝑖,𝑗:𝑞
, in case 0, it

denotes that the 𝑖th task 𝑡
𝑖
and the 𝑗th task 𝑡

𝑗
are not assigned

to 𝑝
𝑞
; in case 1, it denotes that 𝑡

𝑖
or 𝑡
𝑗
is allocated to 𝑝

𝑞
; in case

2, it denotes that 𝑡
𝑖
and 𝑡
𝑗
are both allocated to 𝑝

𝑞
.

The edges of network 𝐺 can be divided into four levels.
The first level is 𝐸

1
= {(𝑟, V𝑡

𝑖
)}, a set of edges having capacity

1, cost 0, and gain 1. The second level is 𝐸
2
= {(V𝑡

𝑖
, V𝑎
𝑖:𝑞
)},

a set of edges having capacity 1, cost 𝑒
𝑖𝑞
𝑥
𝑖𝑞
, and gain 𝑛 − 1.

The third level is 𝐸
3
= {(V𝑎

𝑖:𝑞
, V𝑖
𝑖,𝑗:𝑞
)} ∪ {(V𝑎

𝑗:𝑞
, V𝑖
𝑖,𝑗:𝑞
)}, a set

of edges having capacity 1, cost 0, and gain 1. The fourth
level is 𝐸

4
= {(V𝑖

𝑖,𝑗:𝑞
, 𝑠)}, a set of edges having capacity 2,

cost 0.5𝑥
𝑖𝑗𝑞
(2 − 𝑥

𝑖𝑗𝑞
)𝑐
𝑖𝑗
+ 0.5𝑥

𝑖𝑗𝑞
(𝑥
𝑖𝑗𝑞
− 1)𝐼
𝑖𝑗
, and gain 1. The

cost network is a generalized cost network because the gain
coefficients on edges of𝐺 are not all 1. In addition, we specify
the initial amount of flow as 𝑛 and the flows on all edges as
integer flows.

(2) Proving the equivalence between the NUCNTAP and
the generalized MCF problem. Firstly, we prove that each
feasible flow corresponds to a task assignment. With the
initial amount of flowbeing 𝑛, for any V𝑡

𝑖
∈ 𝑉𝑇, the amount of

flow entering V𝑡
𝑖
is equal to 1. According to flow conservation

law, for𝑚 edges leaving V𝑡
𝑖
, there is one and only one edge of

amount of flow 1 and all other𝑚−1 edges have amount of flow
0.That is to say, the 𝑡

𝑖
corresponding to V𝑡

𝑖
is allocated to one

and only one computing node 𝑝
𝑧𝑖
. Given any feasible flow 𝐹0,

without loss of generality, we assume that the set of all edges
having amount of flow 1 and pointing to vertices of 𝑉𝐴 from
vertices of𝑉𝑇 is {(V𝑡

1
, V𝑝
𝑧1
), (V𝑡
2
, V𝑝
𝑧2
), . . . , (V𝑡

𝑛
, V𝑝
𝑧𝑛
)}; then,

the feasible flow 𝐹0 corresponds to a task assignment 𝑍0 =
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
). Secondly, we prove that each task assignment

corresponds to a feasible flow. Given any task assignment
𝑍
0
= (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
), we can construct a feasible flow 𝐹

0

in this way as follows. With the number of tasks being 𝑛,
the initial amount of flow is 𝑛; that is, the amount of flow
entering any V𝑡

𝑖
∈ 𝑉𝑇 is equal to 1. If 𝑡

𝑖
is allocated to

𝑝
𝑧𝑖
, then the amount of flow on edge (V𝑡

𝑖
, V𝑎
𝑖:𝑧𝑖
) ∈ 𝐸

2
is

equal to 1. The amount of flow on 𝐸
3
can be determined after

having determined the amount of flow on 𝐸
2
. For any edge

(V𝑡
𝑖
, V𝑎
𝑖:𝑧𝑖
) ∈ 𝐸
2
having amount of flow 1 and gain coefficient

𝑛−1, we canmake the amount of flow leaving V𝑎
𝑖:𝑧𝑖

to be 𝑛−1.
Thereby, the amount of flowon each of 𝑛−1 edges leaving V𝑎

𝑖:𝑧𝑖

and having capacity 1 equals 1 and we can construct a feasible
flow 𝐹0, where the edges of amount of flow 1 of 𝐸

2
constitute

an edge set {(V𝑡
1
, V𝑎
1:𝑧1
), (V𝑡
2
, V𝑎
2:𝑧2
), . . . , (V𝑡

𝑛
, V𝑎
𝑛:𝑧𝑛
)}. Lastly,

we prove that the total cost of the feasible flow equals
the total cost of corresponding task assignment and the
MCF corresponds to an optimal task assignment. Clearly,
the cost function 0.5𝑥

𝑖𝑗𝑞
(2 − 𝑥

𝑖𝑗𝑞
)𝑐
𝑖𝑗
+ 0.5𝑥

𝑖𝑗𝑞
(𝑥
𝑖𝑗𝑞
− 1)𝐼
𝑖𝑗

of the generalized network MCF problem corresponds to

the sum of internode communication cost and intranode
communication cost, and 𝑒

𝑖𝑞
𝑥
𝑖𝑞

corresponds to execution
cost. Therefore, the total cost of any feasible flow equals the
total cost of corresponding task assignment. For any MCF
𝐹
∗, we assume that 𝐹∗ corresponds to a non-optimal task

assignment 𝑍0; namely, 𝐶(𝐹∗) = 𝐶(𝑍
0
); then, there must

exist an optimal task assignment 𝑍∗ such that 𝐶(𝑍∗) <

𝐶(𝑍
0
). Furthermore, the 𝑍∗ must correspond to a feasible

flow 𝐹
0 such that 𝐶(𝑍∗) = 𝐶(𝐹

0
), so 𝐶(𝐹0) < 𝐶(𝐹

∗
),

which contradicts that the𝐹∗ is aMCF.Thus, eachMCFmust
correspond to an optimal task assignment.

(3) Analyzing the effect of communication cost on
problem complexity, we analyze the effect of internode
communication cost and intranode communication cost on
the complexity of the NTAP by analyzing the effect of
cost function on the complexity of the generalized network
MCF problem. According to the construction process, the
quadratic cost function of the generalized network MCF
problem is given as

0.5𝑥
𝑖𝑗𝑞
(2 − 𝑥

𝑖𝑗𝑞
) 𝑐
𝑖𝑗
+ 0.5𝑥

𝑖𝑗𝑞
(𝑥
𝑖𝑗𝑞
− 1) 𝐼

𝑖𝑗

= 0.5 (𝐼
𝑖𝑗
− 𝑐
𝑖𝑗
) 𝑥
2

𝑖𝑗𝑞
+ (𝑐
𝑖𝑗
− 0.5𝐼

𝑖𝑗
) 𝑥
𝑖𝑗𝑞
.

(3)

The convexity/concavity of the quadratic cost function is
determined by the quadratic coefficient 𝐼

𝑖𝑗
− 𝑐
𝑖𝑗
. According to

the positive-negative sign of 𝐼
𝑖𝑗
−𝑐
𝑖𝑗
, the MCF problem can be

distinguished as

𝐼
𝑖𝑗
= 𝑐
𝑖𝑗
, generalized linear cost

network MCF problem;

𝐼
𝑖𝑗
> 𝑐
𝑖𝑗
, generalized convex

cost network MCF problem;

𝐼
𝑖𝑗
< 𝑐
𝑖𝑗
, generalized concave

cost network MCF problem.

(4)

Here, the generalized linear cost network MCF problem
and generalized convex cost network MCF problem are P-
problem, and the generalized concave cost network MCF
problem is a NP-hard problem. Hence, we can conclude that
the NUCNTAP is a P-problem if the intranode communica-
tion cost is not less than the internode communication cost
and can be cast as a convex cost network MCF problem.
The generalized convex cost network MCF problem can be
solved in 𝑂(𝑀𝑁) time [16], where 𝑀 denotes the number
of edges and 𝑁 denotes the number of vertices. Thus, the
NUCNTAP can be solved in 𝑂(𝑚2𝑛4) time if the intranode
communication cost equals the internode communication
cost, where 𝑚 denotes the number of computing nodes or
multicore nodes and 𝑛 denotes the number of tasks.

5. Discussing Solutions to the NTAP

The effects of communication cost on complexity of the
NTAP have been analyzed and proven. Further, solutions
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Figure 3: The piecewise linear approximation representation for convex cost function: (a) convex cost function and (b) piecewise linear
approximation representation.

to the NTAP are discussed in this section. Unfortunately,
Bokhari [9] has shown that the traditional TAP for four or
more processors is a NP-complete problem. Needless to say,
the NTAP can be difficult. Therefore, solving the NTAP is a
challenging problem.

The NTAP can be modeled as a generalized network
flow model and thus can be solved with minimum cost flow
algorithms. However, solutions should have much difference
in complexity due to the convexity/concavity of minimum
cost flow problems [17]. In general, the NTAP is a NP-hard
problem and cannot be solved in polynomial time, which
usually is solved with approximation algorithms or heuristic
suboptimal algorithms [5]. When the intranode communi-
cation cost equals the internode communication cost, the
NTAP can be cast as a linear network minimum cost flow
problem and can be solved with flow augmentation approach
or primal approach [17].When the intranode communication
cost is more than the internode communication cost, the
convex network minimum cost flow can be converted into a
linear network minimum cost flow and thus can be solved
with flow augmentation method or primal approach. The
transformation process is shown in Figure 3. Convex cost on
edge of set 𝐸

4
in Figure 2 can be approximately represented

as piecewise linear cost and each convex cost curve shown
in Figure 3(a) can be approximately represented as two linear
cost edges or arcs shown in Figure 3(b). Thus, the convex
network minimum cost flow problem can be converted into
a linear network minimum cost flow problem to be solved.

Furthermore, themathematical programmingmodel cor-
responding to the model represented in Figure 2 can be
modeled as formulation (5). Thus, the NTAP also can be
solved with mathematical programming approaches, where
𝐸
+
(𝑖) denotes the outgoing edge set of vertex 𝑖 and 𝐸−(𝑖)

denotes the incoming edge set of vertex 𝑖, 𝑞
𝑘
= 𝑒
𝑖𝑗
, 𝑘 denotes

edge (V𝑡
𝑖
, V𝑎
𝑖:𝑗
); 𝑢
𝑘
= [(1 − 0.5𝑥

𝑖𝑗𝑞
)𝑐
𝑖𝑗
+ 0.5(𝑥

𝑖𝑗𝑞
− 1)𝐼
𝑖𝑗
]𝑥
𝑖𝑗𝑞
, 𝑘

denotes edge (V𝑖
𝑖,𝑗:𝑞
, 𝑠), 𝑓
𝑘
denotes amount of flow on edge 𝑘,

and 𝑉 denotes vertex set of 𝐺.
In fact, the excellent results, as shown in [18], demonstrate

that solution to the NTAP presented in this paper is partic-
ularly efficient when a large number of tasks communicate,

solving reasonably large problems faster than other exact
approaches available:

Min ∑

𝑘∈𝐸2

𝑞
𝑘
𝑥
𝑘
+ ∑

𝑘∈𝐸4

𝑢
𝑘
𝑥
𝑘
,

s.t. − ∑

𝑘∈𝐸
−
(𝑖)

𝑓
𝑘
+ ∑

𝑘∈𝐸
+
(𝑖)

𝑓
𝑘
= 0, 𝑖 ∈ 𝑉 \ {𝑟, 𝑠, 𝑉𝐴} ,

− ∑

𝑘∈𝐸
−
(𝑖)

(𝑛 − 1) 𝑓
𝑘
+ ∑

𝑘∈𝐸
+
(𝑖)

𝑓
𝑘
= 0, 𝑖 ∈ 𝑉𝐴,

− ∑

𝑘∈𝐸
−
(𝑟)

𝑓
𝑘
+ ∑

𝑘∈𝐸
+
(𝑟)

𝑓
𝑘
= 𝑛,

− ∑

𝑘∈𝐸
−
(𝑠)

𝑓
𝑘
+ ∑

𝑘∈𝐸
+
(𝑠)

𝑓
𝑘
= −𝑛 (𝑛 − 1) ,

0 ≤ 𝑓
𝑘
≤ 2, 𝑘 ∈ 𝐸

4
,

0 ≤ 𝑓
𝑘
≤ 1, 𝑘 ∈ 𝐸

1
∪ 𝐸
2
∪ 𝐸
3
.

(5)

6. Conclusions

This paper investigates the effects of communication cost on
complexity of the NTAP and demonstrates the relationships
between complexity and communication cost. We also have
proved that (1) the NTAP can be solved in 𝑂(𝑚2𝑛4) time if
the intranode communication cost equals the internode com-
munication cost; (2) the NTAP can be solved in polynomial
time if the intranode communication cost is more than the
internode communication cost and specifically, theUCNTAP
can be solved in 𝑂(𝑚2𝑛2 log(𝑚 + 𝑛)) time; (3) the NTAP is
a NP-hard problem if the intranode communication cost is
less than the internode communication cost, which indicates
that efficient polynomial time algorithms still remain to be
further investigated. Furthermore, solutions to the NTAP
are also discussed and need to be further studied. Our
work extends currently known theoretical results and the
theorems and conclusions presented in this paper can provide
theoretical basis for task allocating strategies in multicore
cluster systems.
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