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We study the numerical methods for time-dependent natural convection problem that models coupled fluid flow and temperature
field. A coupled numerical scheme is analyzed for the considered problem based on the backward Euler scheme; stability and the
corresponding optimal error estimates are presented. Furthermore, a decoupled numerical scheme is proposed by decoupling the
nonlinear terms via temporal extrapolation; optimal error estimates are established. Finally, some numerical results are provided
to verify the performances of the developed algorithms. Compared with the coupled numerical scheme, the decoupled algorithm
not only keeps good accuracy but also saves a lot of computational cost. Both theoretical analysis and numerical experiments show

the efficiency and effectiveness of the decoupled method for time-dependent natural convection problem.

1. Introduction

In this paper, we consider the following time-dependent
natural convection problem in R* whose coupled equations
governing viscous incompressible flow and heat transfer for
the incompressible fluid are Boussinesq system:

u —vAu+w-Vyu+Vp=-k’j0+ f, in Qx(0,T],

divu =0, in Qx(0,T],

0, - AAB+u-VO=g, inQx(0,T],

u=0, 6=0, onoQx(0,T],

u(x,0)=uy, 0(x,0)=0, onQx{0},

O]

where Q is a bounded convex polygonal domain, u = (3!)
is the fluid velocity, p is the pressure, 0 is the temperature,
v > 0 is the viscosity, k is the Grashof number, A = Pr™!, Pr
is the Prandtl number, j = (}) is the vector of gravitational
acceleration, T' > 0 is the final time, and f and g are forcing
functions.

The time-dependent natural convection problem (1) is
an important system with dissipative nonlinear terms in

atmospheric dynamics (see [1]). Since this system not only
contains the velocity and pressure but also includes the
temperature filed, finding the numerical solution of problem
(1) becomes a difficult task. For the study of problem (1),
many researchers have developed several kinds of efficient
numerical schemes, for example, the standard Galerkin finite
element method (FEM) [2], the projection-based stabilized
MFEM (3, 4], and the references therein. Here, we need to
point out that all these numerical schemes for problem (1) are
coupled. It means that we need to find the variables u, p, and
0 of (1) simultaneously; as a consequence, a large nonlinear
algebra system is formed. In general, it is expensive to find the
numerical solutions of the coupled nonlinear system directly
in standard Galerkin FEM.

The decoupled algorithm is an efficient numerical scheme
for the multivarious problems. There are many advantages for
the decoupled method. For example, it allows us to search
the algorithm components flexibly and conveniently in terms
of physical, mathematical, and numerical properties for each
variable. It is suitable for todays computing environment
because it can efficiently and effectively exploit the existing
computing resources, including both hardware and software.
The decoupled method can be used in parallel in the conven-
tional sense; other appealing reasons were discussed in [5].
The decoupled algorithm has been successfully applied to the



multidomain problem, for example, Mu and his coworkers
[5, 6] for the Stokes-Darcy problem, Layton and his coauthors
[7, 8] for the groundwater-surface water flows, and Zhang
et al. [9, 10] for coupling fluid flow with porous media flow.
In view of the efficiency of the decoupled scheme, we try
to extend it to solve the time-dependent natural convection
problem (1). The decoupled time semidiscrete scheme is
closely related to the usual temporal extrapolation method
[8, 11]. Thanks to the decoupled scheme, we can decouple
the complex and nonlinear problem into two small linear
subproblems, and the coefficient matrix of each subproblem
is symmetric; therefore, these subproblems can be solved
easier than the origin problem.

In this paper we establish the optimal error estimates for
velocity, pressure, and temperature for problem (1) in both
coupled and decoupled numerical schemes. Firstly, problem
(1) is discrete in standard Galerkin finite element formulation
based on the backward Euler scheme; then a large and
nonlinear algebraic system is formed. Secondly, in order to
simplify the computation, we adopt the decoupled and lin-
earized algorithm to solve problem (1). Namely, the temporal
extrapolation technique is used to treat the nonlinear terms,
and then problem (1) is split into two subproblems, each
subproblem can be solved easier than the origin problem.
Furthermore, compared with the coupled scheme, these two
subproblems which were obtained by using the decoupled
method can be solved in parallel.

Under the conditions of (Al)-(A6) which are presented
in Section 2, the numerical solution (u®", pd’", 6%") of the
decoupled method at the time level t, = nAt satisfies the
following error estimates for all time step At > 0:

[veutts) =], + ot - o], + Vi@t - o)

< CAt,
2)

where C is a generic constant depending on the data (Q, , k,
Aty 0ps foor Goor T) independent of At and it may stand for
different values at different places:

d
foo = sup{|f O] + 1/ O} ftzd_J:
_ d (3)
9oo = sup {lg O] +]g; )]}, gt:d_!i'
t=0

Under the conditions of (Al)-(A6), the numerical solu-
tion (1", p", 8") of the coupled method satisfies the following
error estimates for all At > 0:

IVGu(t,) = u", + ) - p"[, + V6, - 6],
< CAt.
From (2) and (4), we can see that the coupled and

decoupled algorithms have the same order of approximation.
While there are only two small linear subproblems that need
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to be solved in the decoupled algorithm, a lot of memory and
computational work can be saved.

The outline of this paper is as follows. We recall some
basic notations and results for problem (1) in Section 2.
Section 3 is devoted to present the coupled and decoupled
algorithms for problem (1). Stabilities of both the coupled
and decoupled schemes are established in Section 4. Optimal
error estimates of numerical solutions in both the coupled
and decoupled numerical schemes are presented in Sections
5 and 6, respectively. Finally, we provide some numeri-
cal results to verify the efficiency and effectiveness of the
decoupled algorithm for time-dependent natural convection
problem.

2. Preliminaries

In this section, we will construct the variable formulation for
problem (1) and develop some necessary assumptions which
will be frequently used in this paper. To fix the idea, we set

X=Hy(Q)’, W=H (@), Y = L* (Q)%,
Z=1'(Q), M=I3(Q)= {(peLz(Q):J (pdsz}.
Q
(5)
In this paper, we adopt (-,) and || - ||, to denote the inner

product and norm in Z or Y. The spaces W and X are
equipped with the usual scalar product (V-,V:) and norm
IV - ll,- We define the continuous bilinear forms a(., -), d(, -),
and a(, -), respectively, by

a(u,v) =v(Vu,Vv), d(v,q) = (g, divv),

(6)
a(6,y) =1 (V0,Vy)
forallu,ve X,qe M,and 0,y e W.
Next, we introduce the closed subset V of X given by
V={veX:d(v.q) =0, Vq e M}
7)

={veX,V-v=0in Q}
and denote the H to be the closed subset of Y (see [11, 12]):
H={veY,V-v=0,v-nlyq = 0}. (8)

We denote by A the unbounded linear operator onY or Z
given by Au = —Au or A9 = —Af and assume that the domain
of A is given by (see [13, 14])

D(A)=H*(Q)?*nX or EA)=HQnW. (9

For instance, (9) holds if T is of class C* or if Q is a convex
plane polygonal domain.
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Moreover, the trilinear terms for all u, v, w € X and 0,y €
W can be defined as follows:

bu,v,w)=((u-V)v,w) + % ((div u) v, w)

=L@ vvw - L@ vy,
2 2
i 1 (10)
b(u,0,y)=(u-V)0,v)+ 3 ((divu) 6,vy)

1 1
= 5((”'V)9,w)—5((u-V)w,6).

With above notations, for a given f € L®(0,T;Y) with

u, € D(A)nVand g € L*(0,T;Z) with 6, € E(A), the

variational formulation of problem (1) reads as follows: for all
(v,q,¥) € X x M x W, find a pair (u, p, 0) with

ueLl™(R;X)nL*(0,T;V), u € *(0,T3V"),

6,e*(0.T;W'),  pel’(0,T; M),

()
6 e L™ (R;W)NL*(0,T;Z),

VT > 0,

such that

(u,v)+a@,v)—d (v, p)+bwuv)

= —kv* (j0,v) + (fov),
d(u,q) =0, (12)

Oy) +a(0,y) +b(u0,v) = (g,v),

u(x,0) = uy, 0(x,0) = 0,.

We make the regularity assumptions on the following
problems [15-17].

(A1) Assume that Q) is smooth such that there exists a
unique solution (v,q) € X x M of the following Stokes
problem:

-Av+Vqg=u, V-v=0, inQ,v[zo=0 (13

for any prescribed u € H. Furthermore, the solutionv = A™'u
satisfies

Il =A™y, < C lullss s=1,2. (14)
Form (13), it follows that (A u, u) = IIVA_luIIO and
Wiy = (A™vv), VveH, (15)

where V' is the dual space of V and C; (i = 1,2,...) denotes a
positive constant depending on Q.

(A2) Assume that Q) is smooth such that there exists a
unique solution y € W of the following elliptic problem:

Ay =6, inQ, yly, =0 (16)

for any prescribed @ € Z. Furthermore, the solutiony = A™'0
satisfies

lvl, =|ae], <col01 5, s=12. @)
Form (16), it follows that (A™0,0) = ||VA’19||0 and
“‘/’"xz/v' = (Ail@,e) , VYyeZ (18)

where W' is the dual space of W.

Assume that f € L*(0,T; X"), g € L*(0,T;W'"), and
u, € V,0, € W. Problem (12) has at least one solution
(u,0) satisfying u € L®(0,T;Q) n L*(0,T;V) and 6 ¢
L®0,T;Q) n LZ(O,T; W). Uniqueness and regularity of the
solution (u, p,0) can also be proved by strengthening the
assumptions on the data. In particular, we assume that u, p,
and 0 satisfy the following

(A3) u € L0, T; H*(Q)?), Vp € L®(0,T;Y), 6 «
L®(0, T; H*(QY).

(A4) u, € L*(0,T; X), 6, € L*(0, T; W).

(A5) Vtu,, € L*(0,T;Y), Vt6,, € L*(0, T; L?).

(A6) u, € L*(0,T; V"), 0,, € L*(0, T; W").

(A7) u,, € L*(0,T; V'), 0,,, € L*(0, T; W').

Note that all such assumptions are feasible. For example,
(A3) and (A4) can be proved with assumptions u, € H 2(Q)°n
V,0, € H(Q), f € L0, T;H), f, € L*(0,T; H) and
g € L0, T;2), g, € L2(0,T; Z). When Q is of class of C*
or is a convex polygon, (A5) holds by [11, 12]. Furthermore,
(A6) holds by Shen in [18, 19] when he adds some nonlocal
compatibility conditions at + = 0. A review of regularity
results for Navier-Stokes equations and applications to error
estimates for Euler-type scheme can be found in [20], where
the proof of (A7) was given.

We recall the following discrete Gronwall lemma, which
can be found in [11, 18].

Lemmal. Let Cy and ay, by, ¢, d, for integers k > 0, be non-
negative numbers such that

a, +AtY b <AtY dya+At Y 6 +Cp, Vnz 1. (19)

k=0 k=0 k=0

Then,

a,,+Athk < (Athk+CO>exp<Atde> Vn> 1.
k=0 k=0 k=0

(20)

Following the proofs provided in [1, 12, 14, 21], we can
obtain that problem (12) possesses a unique solution (u, p, 6)
which satisfies the following regularity results under some
nonlocal compatibility assumptions at t = 0.

Theorem 2. Let f € L®(0,T;Y), f, € L*0,T;Y), g €
L®(0,T, Z), g, € L*(0,T, Z), and uy € D(A)NV, 6, € E(A).
Then for all T > 0 and 0 < t < T the solution (u, p,0) of
problem (12) satisfies

IAu(®)llg + [V, )] + [[Au, (D], + 14Oy

+[ve.0l, + 46.®)], < C.



We introduce the following inequalities:

IVl < C3lIVvlly Vv e X or Wi

(22)

Vv, < C,llAv], Vv e D(A) or H*(Q).

We end this section by recalling some properties of the
trilinear forms b(-, -, -) and b(:, -, -), which can be found in [1,
11, 13, 14, 22].

Lemma 3. The trilinear forms b and b satisfy the following.
(1) In view ole(Q) — LY(Q), one has
b, v,w)] < N [Valy [V¥] [Vwly, Vit vow € X,

b (1,6, 9)| < N [Vully [V, [V, VueX, O,y eW,

(23)
where
N= sup b (u, v, )] ,
oturwex IVl VIl IVwlly
_ (24)
= b (.6,y)|
N = sup .
oruex,06,yew [Vl VOl ||V1//||0
(2) Under the condition of divu = 0,
bu,v,v)=0 VYu,veX;
(25)

b,0,0)=0 YueX, 0eW.
(3) The j_collowing estimates about trilinear terms b(-,-, ")
and b(-, -, -) hold:
b (u, v, w)| < Cs [|AV]g llully [wlp
YueV,veD(A), welX,

1/2 1/2
Ib (14, v, w)| < Cs llully> 1 Aully I 1wy,

YueD(A),veV,weX,
} (26)
[b (14,6, v)| < Cq 1140, N1l v, »

YueV,0e€E(A),yveW,
[b (14,6, )| < Cq lullg IAully” 161, [,

YueD(A), O,y e W.

3. The Coupled and Decoupled
Algorithms for Time-Dependent
Natural Convection Problem

In this section, let At > 0 be the time step and ¢, =
nAt; u” and 6" denote the numerical solutions of u and
0 at t,, respectively. We consider the backward Euler time
discretization schemes for problem (1). Our schemes consist
of two kinds of numerical schemes. One is the coupled
scheme; the other is the decoupled scheme; these numerical
algorithms are formulated as follows.
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3.1. Coupled Algorithm for Time-Dependent Natural Convec-
tion Problem. The coupled time semidiscrete scheme for
time-dependent natural convection problem (1) based on the
backward Euler scheme can be written as

un+1 —u"

At
= k0" + £ (1)

_ 1)Aun-f-l + (un+1 . V) un+1 + vpn+1

(27)
V . un+1 _ 0’

0n+1 _ en ) . )
n+ n+ n+

T—/WAG +(u -V)Q =g(t,)

with 0 < n < N = [T/At]. The superscript n denotes the

time level ¢,,. The system (27) is a nonlinear problem; the weak
form of (27) can be formulated as for all (v, g, y) € XxMxW

(%;u") v) + (Vu"“, Vv) +b (u"“, ut v)

F (hTP) =k (G87*0) + ( (ta) ).

(V . u"“,q) =0, (28)

9"“—9" n+1 7 n+l An+l
<A—t,1//)+/\v(V0 ,Vw)+b(u ,0 )‘l/)

= (9(tn1) ).

The existence and uniqueness of 1", p"*!, and "' have
been established by Luo in [21]. From the expression of (28),
we can see that when we solve problem (28) numerically,
a large nonlinear algebra system should be solved, and the
coeflicient matrix is asymmetric. In general, it is expensive
to solve such a nonlinear and coupled system. In order to
improve the computational efficiency, we develop a decou-
pled and linearized scheme for problem (1).

3.2. Decoupled Algorithm for Time-Dependent Natural Con-
vection Problem. The decoupled and linearized semidiscrete
scheme for time-dependent natural convection problem (1)
based on the backward Euler scheme can be presented as
follows:

ud,n+1 _ ud,n 4 4 4 4
o — VAU s+l +(l/l ,n.v)u i+l +VP ;n+1
2 .nd,
= —kv"j0" + f (ti1),
V. ud,n+1 -0

6d,n+l _ ed,n el d dnil

Nt n N+
T A (u™ V)60 = g (t,.,).

(29)
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Scheme (29) is a mixed problem that contains a generalized
Stokes problem and an elliptic problem. Namely, problem
(29) can be split into two subproblem:s:

ud,nJrl _ ud,n 4 4 4 J
— vAu n+1 +(u ,n‘v)u i+l +VP n+1

At
= k70" + f (1),
V. ud,n+1 -0
0d,n+1 _ ed,n
o — AvAg* 4 (ud’" V) 67 = g(t,,,)-

(30)

The weak form of problem (29) consists of finding ubml ¢

L*(0,T; X), p™™*' € L*(0,T; M), and 6! ¢ L*(0,T; W)
such that for all (v,q,¥) € X x M x W,

ud,nJrl ud,n 4 4 4
— i+l , 1
(T,v> +v(Vu i ,Vv)+b(u " utt ,v)

+ (v, Vpd’"+1) = -k’ (j@d’", v) +(f (tyr)>v)s
(V . ud,nJrl’q) — 0)

6d,n+1 _ ed,n el - 4 At
(T,w> + M (VO Vy) + b (u, 67" y)
= (g (tn+1) > V/) .
31

If (V- u®™, q) satisfies the so-called inf-sup condition,

n+1,q)

W (B >0 is a constant),

Blal, < inf, sup

(32)

. . . dntl  dn+l
we can obtain the existence and uniqueness of u®"*", p®"*,

and %! by [13, 14]. From the expressions of (30) we
know that the variables u®"*!, p™**! and 6*"*! can be
solved separately with two small linear algebra systems (30).
Furthermore, the coefficient matrices of subproblems (30) are
symmetric. It is much easier to solve these two subproblems
than the original one.

4. Stabilities of the Coupled and
Decoupled Algorithms

In this section, we consider the stabilities of both the coupled
and decoupled numerical schemes under some assumptions
presented in Section 2.

Lemma 4. Under assumptions (A3)-(A7),
results of scheme (28) hold for all ] = 0, 1,...,

the following
[T/At] - 1:

J+1||% : ntl _n? : nil|2 _ 2
o e S -t a3
(33)

J J
+ 11 "n 71
J+12 +1 _ on? +1)12 2
[0 + 2. o -ey + avae 3. [we ] <
n= n=

QCIV IN(C2 A TgE, + 110°12) + 2C3 f2T v +
C2Tg? /v + [10°I12.

where yo
0112
15, v5 =

Proof. Taking v = 2Atu™", g = 2Atp™!, and v = 2At6™" in
(28) we derive that

(u"“ -u", 2u"+1) +2Aty ”Vu"+1 “i
= 2k’ At (O ") + 288 (f (t0) ™),

(0" - 0",20"") + 28000 [V} = 2t (g (1,,) . 6™").

(34)

By using the identities

(a-b,2a) = |a|* - |b]* + |a - b,
(35)
2(a,b) = lal* + [bI* = |a - bI,
problem (34) can be transformed into
o = ol + ot =+ 20 [
= =2k At (GO, u™) + 288 (f (t) ™),

(36)

n+1||2
o[,

= 2At (!] (tn+1) > 6n+1) .

el + ot - 67| + 280Av [V

For the right-hand side terms of (36) we have

|2k At (O, u™)| < 2ko? At

1 n+l
o], o]
0 0

vAt ||V n+1|| +2C? 21223 At ||6”+1“

|2At (f (tper) ’”n+1)| <20t || £t |1

n+l ||
0

VAt
> |

2C3
Vunn"z + T3At If e

2[a (96,).0"")| < 20,0ttt 90,

tn+1)"0 :
(37)

< AvAt "V@"”"i + C/%At
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Combining above estimates with (36) and summing them for
n from 0 to J yield

J J
1+1||2 " n+l nHZ “ n+1 |2
”u 0+Z u u O+Atvz Vu 0

n+1

<2C; 2120 At Z

(38)

oy

n=0

0" -0 +AvAtZ“V9”“

(39)
CATg2,
S A

c?
<5y arlg b+ [0 <
n=0

We complete the proof by substituting (39) into (38) and
using (22). O]
Lemma 5. Under assumptions (A3)-(A7), the following results
of scheme (28) hold forall ] = 0,1,..., [T/At] - 1:

J
N T P L

)syf,

(19 ) 4

= X Ja e 0
S (I -0+ 2 o) <92
n=0

where y22 = exp(v '(8/v)’Clyn)2IVUIZ + 2VE°IZ +
(10/1/)Tf + 10C4Tg v’ JA*Y) and y32 = exp((8//\v)3
C2Clyn)2IVO°|2 + (10/A)Tg2).

Proof. In order to simplify the notations, we set d,¢""" =
(™" — ¢™)/At, ¢ taking u or 6. Choose v = (v'd,u™" +
Au"MAt € Vand y = (Av)'d,0"" + AQ™)At in (28) to
obtain

Y R R e o L e e

+b( n+1 n+1 —ld un+l+A n+1)At

2

+ ”V (un+1 - un) 0

= (f (tn+1) >

_ k‘VZAt (j9n+1) v—ldtur&l + Aun+1) ,

v daut! 4 Au"“) At

) aefd o]+ |ver [ - [ver|:

3At Z ||f(tn+1)"0 + ”uO" ?
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+[@t - om|} + Avat Jag |
+E(un+1,6n+l,(/\v)—l dt9n+1 +A9n+l)At
= (g (tpe1) > )" dt6"+1 + AG”“) AL,

(41)
Using Lemma 3 and Cauchy inequality we arrive at

+1 +1 -1 +1 +1
|b(u" ATy dad"™ + A" )'
1/2 1/2
< G 4 ] Jaw],
-1 +1 +1
(" ™ + Jaw],)
0 0

1 1112 Y 112
vl A e R

+ CZ ”AI/Z n+l

n+l n+1
ol

< gl o+ 5w

A Y et e
|E(Mn+1,6n+1,(/\1/)_1 dt9n+1 +A0n+l)|
<C, |'A1/2un+1

o e

)

x ()t ||a.0m, + Ao

" 0n+1 2

Ao
< + 5 Jao

e el o e,

"d 0,,“ 2 3/\1}

e =+ lae™,

(LY ctparme

|(f (tn+1)>7/_1dtun+1 +Au"+1)'

2
n+1
0 0’

< 4_11] ”dtun-f—l

2 + 1_1}6 “Au"Jrl 3 +

5
Sl
|k'V2 (jen+1,v_ldtun+l +Aun+1)'

n+1||2

2 23 12
+5k7v |0,
0 0 0

< o+ 2w

(9 (tyr) . A9) 1 4,07 + A0™))|

< g |48 [+ g oo

5
ot}
(42)
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Combining above inequalities with (41) one finds

@) atdau™ [ + 2 ||} - 2|0

+2 “V (M"Jr1 - u")

8\’
<(=)cC
<V)5

# U ()l 0+ 10K [0

z+ Yt | 4w}
4 0

2

At
0

n+1

u

+1|2 2 +1
v v
0 0

(43)

@)™t a8 + 2| ver |} - 2 ve;

w2l (e - o)+ e

<(5) v,

10 2
+ W ”9 (tn+1)"0 At.

0n+1 i"vu;ﬁl iAt

Summing (43) for n from 0 to ], using Lemmas 1 and 4, we
have

o)+ 2 v

]
Y ((zv)‘1 [ | +
n=0

Y ||Aun+1
4
4 n+1 n\||2
e (T
< exp (v_l <%>3 Céyé) (2 "Vuou(z) + %Tf;
F 1009 3 o At>
WAL,
n=0
|4e;)

J ~ , A
) (@ Jas [+

c25o 2y [ (o - o)

Sexp((A > CCg g>< "VGO“ géo>,

(44)

which together with Lemma 4 implies the desired results.
O

Furthermore, following the proofs provided in [23, 24],
we obtain the following stability results for the numerical
solutions u®" and 6*" of the decoupled numerical scheme
(31).

7

Lemma 6. Under assumptions (A3)-(A7), the following
results of problem (31) hold:

d,J+1]|2 4 dn+l dn||? L dn+1|)?
[ DN Tl RN \ T
n=0 n=0

0
< Yo>

d.J+1|? : dntl _ pdn|? : dnt1||?
oo o 3 e - 0 3 o

<y
R R (O
n=0

d.n 2 1 d,n+1 2
a7 [
4y

1 L S

v,

+ AvAt i (”V(Bd’”” —™|
n=0

“AGd n+1

|| Gd ,n+1

><V§

(45)

4(/\)

forall] =0,1,..., [T/At] — 1, where y4 = exp(v’ 14C5)/0)
IV ||0 + (3/v)Tf + 3k*° fT) and y5 = exp((}w)
iy UIVE°ll; + 2/AnTgl.).

5. Error Estimates of the Coupled
Numerical Scheme

This section is devoted to present the optimal error estimates
of velocity, pressure, and temperature in the coupled numer-
ical scheme (28) introduced in Section 3. In order to simplify
the descriptions, we denote

E,=u(t,) -, E,=p(t,)-p"
Ep=06(t,)-6"
(a) Error estimates for velocity and temperature in

scheme (28) are as follows.
Let us define the truncation errors R}, and Rj by

(46)

- (th)A; - (t") —vAu (trﬁ-l) + (u (tn+1) ) V) u (tn+1)
+ Vp (tn+1) = —kv2j9 (tn+1) + f (tn+1) + RZ’
V- u(tn+1) =0,
%;G(tn) - AvAf (tn+1) + (u (tn+1) ’ V) 0 (t"+1)

=9 (tn+1) + Rg’
(47)
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where
" 1 9%
RMZ_E L (t—t,)u, () dt,
(48)
" 1 [ 6 d
R,=—-—— t—t t)dt.
R I LAC

Firstly, we present the estimates of E'*' and Ej;"' which

show that both ™! and 8"*! are order 1/2 approximations
touand 0 in L*(Y) and in L*(Z), respectively.

Lemma 7. Assume that assumptions (A3)-(A6) hold. Then for
all] =0,1,..., [T/At] — 1 one has

J+1 2 ! n+1 _n 2
e+ 3 e -

+ VAt i [vE:|; < cat,

||E’“|| + Z |Es - E@|| + AvAt Z |vE;™ | < CAt.
(49)
Proof. By subtracting (27) from (47) we have

En+1 _E" .
+
> At - - VAEZ + (u (tn+1) : V) u (tn+l)

- (u"t V) U+ VE = k0P jEgT + R,

V-EM" =0, (50)
En+1 _ En
0 @ MWAES! + (u(tysr) - V) 0 (11)

_ (un+1 . V) 9n+1 _ Rg

Taking the inner product of (50) with 2AtE"*, 2AtE;+1,

and 2AtE”+1, we can transform problem (50) into

n+1 n+1 nl|2
£, -El,

u

- IEXIG +

+2Ath (E;“, u(ty), Ej) + 20At | VE, é

u

= —2kv*At (GE, E““) +2At (R}, E““) : (51)

n+1

n+1 n+1
5], - By

IE5l5 +
+ 2085 (7,0 (t,,1), E"“) = 20t (RG, Eg™).

Now, the right-hand side terms of (51) can be treated as
follows:

l2at (R3, E;)|
Loy 2
<l e ma CFIE o
< CAtJ | dt + ”—At [vEz|:,

Mathematical Problems in Engineering

Jaae (R, E5™)|
<< f (t —t,)0,dt +v—At||VEg+1||
sone [ el S E
|-2k?ar (GER E)|
< 2k7aeE5" | JEL,
< KA B+ ac B
For the nonlinear term, thanks to Lemma 3, we have
|28¢b (B} u (t,,0) B
< 20,0t |7, JAutt,)l, [VE,
< 2%t + 22 o
(54)

2866 (E;,0(t,,1) . E5™)|
< 2cat |EX, 146G, [VES,

n+1

2C )WAt
< /\_At |

a6, )l + = VESE-

From above inequalities we arrive at
n+1
&2 s - 12206 +

< <1+ M>At"E2H”2

v

EM —E" || + VAt ||VE”“

+CAt r"“ t oo dt + v At | EGH ||
t

n+1

n+1 n+l
E9 EG

2
e

2C§ 2 n+1||2 ! 2
< WAt ||A6(tn+1)||o ||Eu "O +CAt J; t ||0tt||0 dt.
' (55)

Summing (55) from #n = 0 to J one finds

ey

n=0

Ept - E9” +)wAtZ||VE"“

C?
. a—;At Y 146 ()l B2
n=0

T
+cmj 6, dt,
0
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B 2 ¢
[+ 2

n=0

]
ay (1 + 2% au e, l|o) [,

EM! - E”||2 + VAt i |vE;™ ’
u uflo Z u 0

N Z “EnH" + cAt JT t |y |2 dit.
0
(56)

Combining Lemma 1 and Theorem 2 with (22) yields the
desired results. O

Remark 8. In particular, Lemma 7 shows that the coupled
finite element method provides uniformly stable velocity and
temperature in X and W, respectively. Using the fact that
IVE ', < C, IVEg" |y < Cand u € L®(0,T;X), 0 €
L®(0, T; W), we know that there exists a positive constant C
independent of the time step At such that for all 0 < n <
[T/At] -1,

[y, = Ive,

<C. (57)

Lemma9. ForallJ =0,1,..., [T/At] - 1, under assumptions
(A3)-(A6), one has

e e <o

En+1 _ En

u u

B 2 <
A ED)

Z JE5 - Eill +

. bty S e = car

(58)

Proof. Taking the inner product of (50) with 2AtA™ E/*" and
2AtAT'ERT, using the fact that V - E™' = 0 and the self-
adjointness of A, we obtain

(B, AT ES™) - (ELAT'E])
+ (B - ELAT ()Y -E)))
- 20At (AE], AT ELT)
= —2Ath (E}" u(t,,,), A" E})
—20tb (u™ BT ATED) + 248 (R, ATVEL)
- 2kv’ At (jE§H, ATELT),
(Ey*, A Ey™) - (Eg, AT Ep)
+(Eg" - B A7 (B} - Bp))

- 200t (AEgH, AT EYT)

= 22Atb (E},0(t,,,,), A E™)

—20th (u™ Byt ATEST) + 20t (R, AT ERT)
(59)

Taking u = EZ“ in (13) and 0 = Eg” in (16). For the
terms —2vAt(AE™!, AT E"') and —20vAH(AEST, AT ERT),
we have

- 2vAt (AES, ATEST)
=20t (E}",-AAT'EST)

= 2yAt (En+1 En+1

u

-ve) -2
(60)
- 2MvAt (AE;™, AT E;T)

= 2MvAt (Eg*', -AAT'E™)

2
= 20t (g™ Eg™) = 200t |E5T

For the right-hand side terms of (59), we can estimate them
as follows:

22t (R, AT E;™)| < 2t |RY AT EL,

= 2At ”RZ”V’ |'EZ+1 ”V’
<At|ES, + At R
[
< a1}, + car j el

|2ae (Rg, AT EZ™)| < 24t R AT EG),,

= 20t [ Ryl | E5

W/

< At “E”“" ,+ AR

< At

tn+
By 3\, + CAF L 1||6n||§v, dt,

|—2kv2 jEnH,A_lEnH)At'

<araefi ], JateY,

=2k’ A ||| | ER

[

<kPat|B ], + kot a|EX
(61)

For the nonlinear term, using Lemma 3, one finds

|28tb (B} u (t,,), ATE}))|

n+1

< 2CAt |E

o NAutt, )l ||VA*1EZ“ .
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n+1 n+1

< 2C;At |E

o [Autt, Do |E

V!

vAt

SZ—fSAtnAuwuznEz“n; e,

o B A7 B
ot B A7 E) - (e B AR
|2Atb (u (tn+1) , EZ+1> A_IEZ+1)|

n+1

< 2C5At ||Ault,, ), | E

o [VATE
< 2G50t [Autty, o B2, 1B,

< 25 pantt, R [ [ + 2

e
|2Atb (E EX, A“Eg“)j

n+1

< 2CsAt|E"

oIVE:

Jaa ]

<car” [ve |, e,

2

2 nll|2 |V n+l
< Cat | vE e A

l2ath (E;™,6(t,,,,), A E5™)|
< 2CAt B Ve, )l [AAT ES,
< 2CeAt B IVOct. 0l |E6™

n+1 2

2C2
At Vo)l | E

At "E;ﬁl"
|E(u”+1,EZH,A7 EZ+1)|

[P ) B A7) =B (7 B A7)
|2Atl; u(t n+1)’Eg+1’A_1Eg+l)|

< 2Cott Jautty )l 857, VA7 557,

< 2Cat [Autt,)], |5, |E5

WI
202 A
< ot fautt )l |E5™ L, + o £
l2ath (E; E5™, AT B )|

n+1

< 2C4At |E

N 2 N T

i

2 A 2
<C() Al |[VE;| + 7” B

At .
0

(62)
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Combining above inequalities with (59) and adding them
fromn = 0 to J, one finds

A z [ z B

cay (1 + 2 ||Au(tm>||0> [z,

+ CAP J 164, dt +C (1) At - AtZ"VE"“

0

N A L
n=0

J J
Z En+1 _ En 2 LN n+1]2
u ulfy! 2 =

J+1||2
[e ] +

<At i(mw . 5||Au(tn+1)||o)'|E”“"
n=0

]
+ CAP LT |5 dt + CAt - At ZO |vE; ||§
=

+ kv Atz |Es “|| .

(63)

Thanks to Lemmas 1, 4 and Theorem 2, we derive that

J A ]
(A W 2 |5 - Byl + 2 > 2l
J
Sexp<AtZ(1+£||Au(tn+1)||0>> (64)
n=0
x {CAE + 2_C§Ati 196 (1) | E ]
Ay = n+1/1lo u |of>

J
)

J
Sexp(Atz<l+kv + 5||Au n+1)“0>> (65)

n=0

J
e 3 e -

{cm rer Y |55, }

Substituting (65) into (64) and using Lemma 1, we complete
the proof. O
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Lemma 10. Assume that assumptions (A3)-(A6) are valid.
Then, forall ] = 0,1,..., [T/At] — 1, one has

< CAP,

J+1|2 : ntl  pn||? : n+1]|2
e+ 3 et - e 3 o

lES | + Z |Eat ~ B3 + Avat Z [VE;"|; < car.
(66)

Proof. Based on Lemma 9, we reestimate the trilinear terms
and right-hand side terms of (51) as follows:

n+1

l2ae (R, B < 24t R || E

v

L R

l2ae (RS, B3| < 26t |R |57,

/\vAt

[VES" [ + car? Lt "6 .
(67)

Thanks to (67), taking into account (53) and (55) and
summing up (51) from n = 0 to J, we have

Z ||En+1

[2a 1, +

n+1 ||

C?
< 2%y a0 ()l IIEZ“||§
n=0

+Caf JT 10,7 dt,
0
] , (68)
£+ 3 [ - B+ vt 2. [l
n=0 n=0

ullo

2
0

n+1

< Atni (1 + =8 ||Au (tn+1)"0)

J
+ CAP LT et |20 it + K2v* At ZO s

We obtain the desired results with application of Lemma 1 at
above inequalities. O

Lemma 11. Under assumptions (A3)-(A6), for all ] =
0,1,..., [T/At] — 1, one has

]
[vei,+ 2 v (e

BN i [AE [ < cac,

||VE’“|| + Z |veEs - E0)|| + AvAt Z |aEs™ | < CAF.

(69)

1

Proof. Taking the inner product of (50) with 2AtAE!"" and
2AtAES™, using the fact that V - E™*' = 0, we obtain

Ve[ - IvEG + v - £l
+20th (B u (t,,,), AELT) + 2vAt ||AE"”||
+2Atb( n+1 n+1,AEZ+1)
= -2k’ At (E;, AE,™) + 24t (RI, AE™ ),
[VESE - IVES: + [veEs - B + 20mae |AES";
+ 20t (u™, Eg*, AE;™)

+2Ath (E),0(t,,,,) AE') = 24t (R}, AEG™).

(70)
We treat the right-hand side terms of (70) as follows:
|2t (R, AL
< 2ae Ry, A,
scart [ fufp e+ 5 e
|2at (R, AES™)|
<2t Ry, |AES™, (71)
CAP Ltm "6””(2) d + /\vAt " AESH“

|-2kr?at (E;™, AES™)|

<ok, |z,

< CAt VAt \

12
En+
o flo T

ey |
By Lemma 3, for the trilinear terms, one finds

286 (B0 (t01) . AES )|

< 201G, | A6(t,..))], HVE"“H Jags™],

< —At ||AE““|| 6At a6, ||VE"+1 ,

'ZAtb n+1,Eg+1,AES+1)'

< acqae o, axg”),

< el + 6Af||A o IvEs s
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o (26,0, L)

< 2AtC; || Aut,, )|, ||VEZ+1||O “AEZ”"O

Vv n+1]|2 4C§ 2 n+1||2
< JAr |AE;"| + — At [l Au(t, )] Ve s
2atb (u, B, AE)|

< 2Csat Jau| [VE, JAEL

v n+1||? 4C§ n+1|)? n+1||2
< Taufar [+ S e

(72)

Combining above inequalities with (70) and summing n from
0 to J we obtain

ot e 3 Ivees” - £+ ot Y
n= n=
T 2 J
<onr® [ ol Sptae a0, Ol 0E;
2C2 L n+1]|2 n+1]|2
ey e v,
Av n=0
] ]
e, + X v - £l + e X Jai,
T J )
< CAf J lueello dt + Cae Y |E5T
0 n=0

ch J 2 n+1]|? n+1]|2
+ Tmzo(nAu (w0 + A 0 [VEL"), -

(73)

Thanks to Lemmas 10 and 1 we complete the proof. O

(b) Error estimates for pressure in scheme (28) are as
follows.

Now, we give the estimates for "' = p(t,,,) — p
which shows that p"*! is order 1 approximation to p in both
L°°(L?) and L*(L*) norms. In order to achieve this aim, we
firstly provide some estimates for thZ“ = (EZJrl - E})/At
and d,E;"" = (Ej*' - Ej)/At.

n+1

Lemma 12. Under assumptions (A3)-(A7), for all ] =
0,1,..., [T/At] — 1, one has

4. + i 4B a1 + e i [va, £
n= n=

< CAP,

Mathematical Problems in Engineering

By [+ 3 B - i + e Y, vy
n=0 n=0

< CA#%.
(74)

Proof. From problem (50) we obtain that for all v € V and
vew

(duEy"v) - v(adE],v)
= (d,R},v) - kv’ (jd,Ey",v) = b(d,E)"  u(ty,),v)
—b(E),du(ty,),v) - b(du"™ E},v)
~b(u" dENv),
(duEg™ w) - v (ad g™ y)
= (d,Rg, ) - b(d,E;".6 (t,1). v)
~b(E}d,0 (tpr) ) ~b(d™ Eg™y)

-b (u", thg“, 1//) .
(75)

Choosing v = 2Atd,E'*" and y = 2Atd,E}"" in (75) we
deduce

|2 | - Bl + | Bt — d,EL] + 20t [V, B2

0

=20 {(d,R;, d,E) - ko (ja B3,
-b (d[EZ-H) u (tn+l) 4 thZ+1)
- b (EZ> dtu (tn+l) > thZ-“)

-b (dtun+1’Ez+1)thz+l)} ,
(76)

a5y~ WSl + 5 ~
+ 20t |V 5
=20t {(d, Ry, d,Eg™") - b (d,E},0(t,,,,) . d,Eg™)  (77)
~b(Ed0 (t,.,).d,E;")

_E(dtunJrl,E;Hl,thngl)} .
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Now, we estimate the right-hand side terms of (76)-(77)
separately. For (d,R",d,E"") and (d,R},d,E;"), using the
techniques that are adopted by He in [20], we have

298] t
s [ [ e aEasa
t, t—At

tn+1 t
_ _LJ (t-t, I (6 (), ) dsal
t, t—At
(78)

for all 2 < n < J. We deduce from above equalities that
|24t (d,R), d,E;" )|

< 2at |d, Ry, |4 B,

v 2
< C(») At||d,R|; + ey |va.E;" |

<c(v) At

x |iAt3/2 (Jt"*‘ -
t"

+ ZZAt |va. B

2 1/2 2
dt)
0

t
2 J Uy, (8) ds
t—At

[
< caf J ot i + Zac|va, .
t,_
1 (79)
In the same way, we obtain
|20t (d,RG, d,E5"))|

< C (W) AP fm 16,0: 2 dt g At |vd, E”“||

For the nonlinear terms, with the help of Lemma 3, one finds
l2ath (d ) (t,,)  diEL|

< 2C;At|Ault,,), |V EL"

1
d.E" ||
o" t“u |l

<2 o+

4C?
+ =2t Jautt, )l |75,
l2atb (E}, du (8,41) . E) )|

< 2C; At | B2, [ Adatt, )], [V,

vAt

n+1 4C§ 2 n )%
”Vd E, “ TN |Au,(t,) + o) |Ell, »

13
l2ath (du™ EL, B
< 2c.ae fadar | 2, a2,

VAt

e ||Vd E”““ %At |Au? + 0 (At)| ||EZ”“(2),

|2ath (d.E}", 6 (t,.1)  d, By )|

< 2AtCq | AL, ), ||Vd E”“|| ||th2“ .

/\vAt

(7,5 + 2 acfaote, o Ja 22 |
286 (Ed,0 (t,.1) . E5™)|

< 2CAt |Ad,6(t,, )|, [V E5"

o IEzlo

S K

w 46,cc,) + a0 LI,
|2Atb (du™ E5*, dE"“)|

< 2CAt | Ad ™! JlEs

||Vd En+1

0

/\vAt

(7, + 2 acay + o0 5

|2kv’ t (jd,Eg™, d,E))|

< kot |d B} + koo |d B
(81)

Combining above inequalities with (76)-(77) and summing
from n = 0 to J, we arrive at

]
B g+ X JaeEs - i
n=0

/ 2
Z "VdeZJr1 "o
n=0

<car j it s + kvt Z Exzall

]
+ At ZO (14w (1,0 + K?) |, B2 2

LG Ati A + 6(a0)|: |E
” Z Uy 0

n+1]|2
0

J
v ar Y Ju (6) + 0 A0 ||E::u§) ,

n=0

(82)
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[ B+ 3 M - d B + dvae 3 [va 5|
n=0 n=0

4 2

T C2 J "
<COE [ [Bulh s 5200 X 14000 o2
n=0

4C§ ] 2 on|2
| e ) 46, + ool IE];
n=0

J
+ ALY |Aul + 02D ||Ee+1||§) :
n=0
(83)

Substituting (83) into (82) and using Lemma 1, we obtain the
desired results. O

Remark 13. In the estimates of trilinear terms, we used the
bounds of ||Au/*"||, and || A6, which can be proved by
differentiating (12) with respect to time, using the backward
Euler scheme to discrete the equations and following the
proofs of Lemmas 4 and 5. In the same way, we can also obtain

the bounds of |Auf"*' [, and [|A8>"*! |, for the decoupled
scheme. Here, we omit these proofs for simplification.

Now, we are in the position of deriving the optimal error
estimate for pressure in L®°(L?) norm based on the results
presented in Lemmas 10, 11, and 12.

Theorem 14. Under assumptions (A3)-(A7) for all ] =
0,1,...,[T/At] — 1 one has

|p(tun) - P, < CA. (84)
Proof. We rewrite the first equation of (50) as follows:
-VE,"! = d,E}"! —vAE," - R}, + kv’ jE5"!
+ (u (tyer) - V) 1 (t) = (”nJrl : V) u"™h

Take the inner product of (85) with an arbitrary v € X and
use Poincare inequality to obtain

(85)

(B2 )| < B vl < Cs B, 1970 (86)

[ (A )| < v || VES | 19vlo » (87)

- 172
(R ) < IRl Wl < e ([ el ) 1990, 89)

|v? (jEG™,v)| < ko? |E5™ |, Ivlo < Cskv? | E5™ |, 19Vl -
(89)

For the nonlinear terms, use the results provided in Lemma 3
to arrive at

|b (EZH’ u(tu), V)| <GCs ”EZH"() lAu (t0)]lo 1VVo »

u

a2 ) = s w2 -
(90)

Mathematical Problems in Engineering

Thanks to (32), we have

gl s o)l

# (Jau |+ aw ()l) |E7],

+v ||VEZ”|| + ko? |Eg“||
0

0
%) 2 1/2

+At<J t||utt||0dt> .
t,

With the results obtained in Lemmas 5, 10, 11, and 12, we
complete the proof. O

(o1

6. Error Estimates of the Decoupled
Numerical Scheme

In this section, we try to establish the optimal error estimates
for the decoupled algorithm (31). We just point out the
differences between the coupled and decoupled numerical
schemes in the following lemmas. In order to simplify the
representation, we denote

EJ" = ¢(t,) - ¢™" (¢ takes u, p,0),
298} Lol (92)
S

n n

Lemma 15. Under assumptions (A3)-(A6), for all ] =
0,1,...,[T/At — 1], one has

2

R N A R N
n=| n=

< CAt,
(93)

o[+ 3 g - B+ doee Y B
n= n=

< CAt.

Proof. By subtracting (29) from (47) we have

Ed,n+1_ d.n it
P BT () V) ()

_ (ud,n . V) ud,n+1 + VEZ,nH
= kv JES" — kv jzj + R,
(94)
V. Ed,n+1 -0,

u

dn+l _ pdn
E0

= WAEG™ (1 (1) - V) 0 (1)

_ (ud,n . V) Gd,nJrl _ Rg
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Taking the inner product of (94) with 2AtEZ‘"“, 2AtEZ’"“,
and ZAtEg’””, problem (94) can be transformed into

H dn+1|' _”Edn” ” dn+1_Edn||

+ 2088 |[VES U 4 280 (B2, u(8,,,)  EX™T)
+2Atb (z", u(ty), Ed’"“)

- kv At( Edn Edn+1) 2ky At(]Ze in+1)
+ 24t (R EX™),

H dn+1|' _“Edn” “ dn+1 Eg,n 2

0

+ 2015 (2,6 (1) E™) + 20wt [VES™ |

+2Atb (EX",0(t,,,), Eg™") = 24t (Ry, Eg™).

(95)

Now, we estimate the right-hand side terms of (95) as follows:

o e 52 < o e
|—2kv2At (]z:(9 i"”)|
< 2kv At Iz51l, "Ei’"”"0

< 220 g2
5

d,n+1
u

[
+CAP j o ds.

(96)
For the nonlinear term, thanks to Lemma 3, we arrive at

28tb (B3 u (t00) EL)|

< 2C,At ||Ej’"||0 [Autt,. )|, ||VEZ’"“||O

< 25 a2 Yt + 22 o
|2atb (2], u (t,,,1), B2

< 2G5t |22, [ Autt, )], [VES™ |,

< CAP jtm "ut”g dt + vAt "VEdnH“O )

ty

[2Atb (EZ",0 (t,,1), E5™))|

< 2CgAt “Ed’n” [A6(,.)], ||VEd’n+1 0

< 2o A e Ao, )+ e o

15
28tb (2,60 (t,..,) Eg™))|
< 2G5t |23, 146Gt Dl [VET™ ],
[
<ot [ fufyde + P2 e
tn
(97)

Combining above inequalities with (52) and (53) and sum-
ming from n = 0 to J one finds

2 dn+l d
N+ N7
ot 2 |E - E
n=0

2™

2 J 2
|+ At Y ||VEZ’"““O
n=0
I , T ,
c {At > e [ oo, lfas
n=0 0
T
+ AtZJ ||ut||§ ds]» ,
0

* i "EZJIH - EZ’”"E + VAt i ||VE5,n+1 HZ
n=0 =

0
<c

£,

2 T 2
Ol ae el
0

J 2 T )
v oY el ||ut’|odt]> |
n=0 0

(98)
We complete the proof by using Lemma 1 and (22). O
Lemmalé. Forall] =0,1,..., [T/At] -1, under assumptions

(A3)-(A6), one has

gl N gl _ pdin)? A el

£+ 2 B = B+ 5 2 I
< CAf?,

"Ed]H Z “Edn+1 3 Edn"W N % nz:) ||Eg,n+1 z
< CAF.

(99)

Proof. Taking the inner product of (94) with 2AtA™ E#™!
and 2AtA™ E&"!, using the fact that V - E2"*' = 0 and the
self-adjointness of A™", we get

(Ed,n+1’ A—lEi,nH) _ (Ez,n) A*lEZ,n)

u
_ Ed,n A—l (Ed,n+1 _ Ed,n))

u u

+ (Ed,n+1

u

N (A dn+1)A—lEZ,n+1)
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(E

= —2Atb (zn’ u (t ) , A_IEZ’nH) +2AL (RZ) A—lEi,nH)

n+1

d+1 -1 d,n+l
un ’A E” )

u

— 2Atb (u®”
—20tb (B, u (t,,,), A EX™Y)

- 2kv* At (JE§", AT ERMY) - 2ko? At (g, AT ES™),
g,n-f—l’ A—lEd,n+1) _ (Ed,n, A—lEd,n)
+ (Ed n+l Edn A—l ( d,n+1 Ed,n))
0
— 200t (AEg™, AT EG™Y)
= “2Atb (EX™,0/(t,,,,), A EG™ ") + 24t (R, A EZ™")
—ZAtb( dn+1 A—lEdn+1)

- 2Ath (z;, 0 (), A EG™).
(100)

For the right-hand side terms of (100), we have
|-2kv? (E§", A EZ™) |

< CAt ||Ed

e,
< cat g5, |E d"“llvf
< cat|[E2"}, + cat|EX .
[2Ath (.0 (t,). A7 S|

<t |52 19060l A B,

< cat |5

NCOI g

AVAE 2
2 e

2
< ot 960, |2 :

w 't
2

|E (ud,n) E;l,nﬂ) A—lEg,n+1)|
_ |E (u (tn) , Eg,n+1’ A—lEg,n+l)
_ E (Ed,n Ed,n+1 A—lEd,n+1)'
u >0 4 0 ’
|2At5 (u (tn) ,Etgl,n+l’ A—lEg,n+1)|

< CAt | Aue,)|, [Ee], [vA™ ES,

< cae fautel, |85, |85,

2 /\VAt "Ed o+l ’

w'

< CAt |Auct,)|. ||15§j’"+1

|2At5 (Ei,n) E;l,n+1’ A—lEg,rHl)l

< cat ||,

|VEZ,n+1||O “AAflEg,rHl .

Mathematical Problems in Engineering

< one” [y, i,

< C (W) A |VES™! ||z + %Vm |6 ||(2) ,
[28¢b (2,0 (t,.1), 4™ S|
< 20t |22, 1460t ), VAT B,

< 2CoAt |2, 140G, )l [ B8,

2981
< bt b5 o [l e
t,

[2tb (", u (t,,1), A7 ES)

u

< CAt[ES"| |Autt,.)ll, VAT EL™,

< |E&"|, NAut,, ol |EZ],

<t Autt,, |2 B, + 25 ”Ed”"

b (u, 4+, A7 )|
ot )
b (EM ES, AT ER)
l2tb (u (1), B2, AT EH))|

< 2C;At | Autt,)], |E*!

. ”VA—IEZJHI

0
< 2Csat fAute,) |, e8], |25,

2 At 2
<o) atfaute,)|s |E, + 5

u 0’

||Ed,n+1

|2Atb (E;l,n) Ei,nﬂ’ A_lEi’n+1)|

<2C,

d,n+1
u 0 |VE14

. “AA—IEZJHI

0
< on” [y, [,

At
5

< C(v) AP “VEZ,nJrl"Z Edn+1" i

2t (2 (t0) A7 ES™)|
< 26,8t 2], BAute, )], [va &),

< 2Cst [z, Autt, )], |EX.

< C|Aut,, )| |[E“ ]

tn+1
o+ cor [ gl e

(101)
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For the other terms, we can treat them as we have done in
Lemma 9. By combining above inequalities and adding (100)
from »n = 0 to J, one finds

J Y 7
||Eg,/+1”iv i ; 2 - Eg,n"i], N ”TAt 20 “ Eg,m“i

<C {At O S JT 61415
n=0 0

T ]
+ At L a2 it + At Y ||Ej”||z 1V6 (£,
n=0

2
uf.
0
J

J
2 2 VAt 2
Lo RN Ll P
\% u u |y 2 u 0
n=0 n=0

+ At i |vEg™!
n=0

J 2 T 2
<C <|At Z "EZ’"H“V, + A J e it
n=0 0

AP jT g2 it + At i [vE 1 At
0 o n=0 ! 0

/ 2
car 3|
n=0

(102)

Applying Lemmas 1, 15 and assumptions (A3)-(A7) we finish
the proof. O

Lemma 17. Under conditions (A3)-(A6), for all ] =
0,1,..., [T/At] — 1, one has

2
0

[+ 3 [ = o e Y, [
n=0 n=0

< CA#,
(103)

it 3 e - B e 3 v
n=0 n=0
< CAF.

Proof. Taking the inner product of (94) with 2A1‘EZ’"+1 and

2AtEg’"+1, using the fact that V - E*™!' = 0, we obtain
(95). Based on (67), and the estimates presented in Lemma 7.

17

Taking these inequalities of Lemmas 7 and 9 into (95),
summing (95) from n = 0 to ], we arrive at

] J
[ o 3 i - i o S oo
J dn|? 2 T 2
e {At > e o [ o as
n=0

T
A7 L | ds},

I 2 g+l _ pdn 2 A : v pdntl 2
el X |E =B ome 3 [VES
n=0 n=0
] ) T
<c {At S e ot [ ol

n=0 0

2 4 d dn+ ||2 2 (7 2
+ Ky Atzouge |2+ at L | dis

(104)

We obtain the desired results with application of Lemma 1 at
above inequalities. O

Lemma 18. Under assumptions (A3)-(A6), for all | =
0,1,..., [T/At] - 1, one has

2
0

PR+ 3 [Fae - B o 3 g
n=0 n=0
< CAF?,
dJ+1|? : dntl _ pdn |12 : dnt+1||?
(I AN LT SOV MR
n= n=

< CA#.
(105)

Proof. Taking the inner product of (94) with 2AtAE*™*! and
2AtAES™!, using the fact that V - 2™ = 0, we get

ot |- ot « ocedt s

2

+ 20t (B (£,,,) , AE“") + 298t [ AES

+2Atb (u", B, AES™)

u

+2Ath (2 1 (t,,,) , AES™)

= —2kv*At (JE§", AEY™") - 2kv* At ( jzg, AEZ™)

+2A¢ (R, AEZ™),
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for [, o+ ot - £

2
0

+2AvAt ”AES’"““i +2Ath (u", Eg’"ﬂ, AEg,n+1)

+2Ath (2,0 (t,.,,) , AEG™")

n+l

2008 (B97,0(1,). AEL™) = 200 (R AEL™).
(106)

For the trilinear terms, using Lemma 3, we have

|2ath (EL",6 (t,,,), AES™")|

< 280C, |46t [VE

d,n+1
|AE]

0 0

2
< Datarg |, + 2o arla0, 0l JoE
|2atb (u®", E5™, AES™))|
<2, Jrsg | st

0

2
0

< Mae Jarg [+ e Ja | o

|VEg,n+l “
[2865 (2.6 (t0.) . AES"™)|

< 2AtCq || A0t ), V22, ||AEZ’”“

0
< S otfaggm |,

%)
+ COM a0t s o [ e vl ds,

|2Atb (Ei’n> u (tn+1) > AEd’Vl+1)|

u

< 200G, Jauty 2], B,

< 2 st o 20t O L

|2Atb (ud,n, Ei,nﬂ’AEd,nH)'

u

< 2AtC; | Aut"

d,n+1
VE;

'AEz,rﬁl

0 0 ' 0

2
0

2

2
0 0’

d,n+1
VE]

< 2arfas o S e
2t (2w (1) AEL™)|

< 2AtC; | Autt,, )|, IVZ0, “AEZ’"“HO

298]
< Zatfas s+ o) Aute, Dl A° J t Vi | ds.
' (107)
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Combining above inequalities with (106) and summing n
from 0 to ] we obtain

2
0

R dnel pdm 2 AV : din+1
fog 3 o - 5l o g
n= n=
T
< cf [ (16,0 + 19l e
2C§ J 2 dn 2
v AtZ)HA@(th)"O IvEZ"|;
-
L 2 dn+1]?
+ Atn; |aw"|; |VES" ||0} ,

[P+ 3 st - 5
n=0

u

2 q d,n+1 2
0+vAtr;)||AEu ||0

T J
<nt? [ (Juols + [l + cae 3 [

e )

]
oSt B o
n=0

(108)
Thanks to Lemmas 1, 6, and 17 we complete the proof. O

Lemma 19. Under assumptions (A3)-(A7), for all ] =
0,1,..., [T/At] — 1, one has

o+ 3 e -t
2

+ At i |va, B2} < car?,
"=0] (109)
Ja. 57" [, + 2. | - 4.5,

+ MvAt i |vd.Eg™! ||§ < CAP.
n=0

Proof. From problem (94) we can obtain that for all v € V
andy e W

(dttEj’"“, v) -y (AthZ’"“, v)
= (d,R,v) - kv* (jd,EG",v) = b (dES", 1 (t,,1) 5 v)
-b (EZ’"_I, dou(t,1), v) -b (dtud’", EZ’"H, v)

~b(u® dEF V)~ kv (jd, 2. v)
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~b(d 2 u(t,,).v) - b2 du(t,,).v),
(duEg™w) - v (Ad,Eg™y)
= (iR y) b (diEy", 0 (t1) ¥)
~b (B d,0 (L)) -
~b (L A B ) < b(diz, 0 (1) )

B (A () ).

(d ud n’Eg,nﬂ,V/)

(110)

Choosing v = 2Atd,E*™! and v = 2Atd,E5"™" in
gets

(110) one

o i - o

+ vAt|Vd,EZ™! ;

=20t {(d,R],, d, EZ’”“) — ko (jd, B d, EZ,M)

~b(d,ES" u(t,,,). dE")

b (B du (1) EL)

-b (dtud,n, EZl,nH’ th;j,n+1)
kv’ (jd,zp, d,EE™)

= b(dzhu(ten) dE")

~b(20 " du(t,,) dET )},

d,n+1
|d.Eg

“d Edn

“d Edn+l d Edn

+2\vAt |vd, B! ”0
= 20 {(dRG" d B ) = b (B0 (1) i)
~B(E,d0 () )
(d dn dn+1 dEd”H)
~b(diz,0 (1) 4, Ey"")
~b(z]

(2l d0 (t,,), dEF" )}
(111)

For the nonlinear terms, thanks to Lemma 3, we deduce that
l2ath (d B, u (), d EZ™)|
< 2AtCs | Ault, )|, | Ve EZ™ | |l B

< 2 |va, g2+ ot faute, I} | B2

l2atb (EF"", dyu(t,,)  d EL™))|

n+1

< 2G5 | Ad,ult,,,y)), "thEZ’nH“ "EZ’H_I“

vAt

|2ab ( dtud’”, Eq™, d ES)|

< 208G | Adu™|

a1, [

< TN Ll

||Vd E® "+1|| + CAt || Auy™!
|28t (d 2o (tyr) dEL)
< 2CsAt | Autt,,, )|, |V B2, Izl

< 2C,AF | Au (b)), |V EL™

VAt “Vd Edn+1||

+ CAFP "Mn + O(At )" | Autt,, o
|2Atb (ZZ_I, dtu (tn+1) > thi:"+1)|

< 2C,At |Adyult,, )|, | Ve EZ™, 22,

VAf ||Vd Ed il

+ CAP Au, (¢ )+@(At>||oj o

285 (d,EL 0 (t,01) By
< 20¢Cg [ 40(t,,), [V 5", JaeEz"]

)WN “Vd B n+1||

+ CAt || A0(t,,)|e ||th3’"||§ )
|2Atb EZ,n—l) dte (tn+1) > thg’n-H)'
< 20¢C, | Ad Ot ), [V EG™ | |EE,
AvAt

|2Atb dtudn, dn+l,thdn+l)'

< 2MtC; | Ad,u™|

[ve.Eg™ |, [ ™",

)WAt

|2k At ( jthg’”“,thj’”“)|

< k? At |d, EZ™|] + koPar |d, E2C

19

”Vd Ed"”" + CAt||Auy(t,) + 0D et || ,

o e (82) + 0 (a8%)],

2 |V L+ cat |46, + oan]) B2

d"“|| + CAt | Au]™" + 0(A) || ||Ed”“|| )
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l2ath (d,2], 0 (t,,1) . d Eg™))|

< 2CoAt | A, )|, [V B

o Id:zzl,

/\vAt

||Vd Edn+1"

+CAF ||utt(t,,) + @(Atz)ui ||A9(tn+1)||(2)’
[2ath (21,0 (t,.,) . B

< 2C6At ||Adt0(tn+1)”() '|thEg)n+1

o 122l

/\vAt

[va.

tn—l
+ Car [46,(t,) + 00} [ .

n-2

(112)

Combine above inequalities with (79)-(80) with (111), sum-
ming them from n = 0 to J, to arrive at

Jo 8 3 st - s e Y v,
n= n=

c{ j ||um||0ds+AtZ |t 1|2

J 2 T
v 80 Yty )l [ B2+ e [l
n=0

]
+ArY (||Aut(tn) + 6|}

n=0

+aut v o @) B,
+ A JAute, ||u”||§} |

o+ 3 e -t
2

+ WAt i |V, B2
n=0
e { j [0, dis + At z 146,12 | B
T 2 4 2 dn—1]2
e e [l e+ ot Y 40, + 0ol [
n=0

o z 4+ oo “EZ’”””z} .

(113)

Thanks to Lemma 1, we obtain the desired results. O
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Finally, we present the optimal error estimate for pressure
in L*(L?) norm based on the results presented in Lemmas 18
and 19.

Theorem 20. For all | =
assumptions (A3)-(A7), one has

SHIT/At] = 1, under

]
At Y | pltnn) - pd’””"z < CA#. (114)
n=0

Furthermore, if u, € L°°(0,T; X) and 6, € L (0, T; W), then

|p(tn) - p

Proof. We can rewrite the first equation of problem (94) as

_VEf)’n+l = thZ’”‘H + (Ll (tn+1) : v) u (tn+1)

d,n+1

|, < Cat. (115)

_ (ud,n . V) ud,nJrl _ vAEd,nJrl (116)

u
— R + kv’ JES" + k0 jz).

Take the inner product of (116) with an arbitrary v € X and
use Poincare inequality to obtain

|kv2 (jzg» v)| < kv? Iz61l, 1vllo

298] 1/2
< C (kv) (Atj 6. ds) 19vly, (17)
t,

n

|kv2 ( ng,v)| < kv ||Ej|l, Illg < kv* | Ejlly 19Vl -

For the nonlinear terms, use Lemma 3 to arrive at

|b (), v ' <G “Ei’n"o “A“ (tn+1)"0 Vvllg
b (u™, EZ™, )| < Cs | Au™|, B2, 19Vl
b (2, 1 () )

< Cs [lzillo [Autt,. Dl 197

tn+1 1/2
<C (Atj ||ut||gds> [ Aut, )] 1971 -
ty
(118)
Thus, thanks to (32), (86)-(88) and above inequalities, one
finds

e

<c(e) o), oo fvet |

o :

+fau] JE
0 u 0

+lau o[£, + 7 B3],

n+1)||0

tn+l 2 1/2
eoe( [ el )
t

n

) 5 5 1/2
(o[ ki e 0R2) -

(119)
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TaBLE 1: The convergence performance and CPU time of the coupled algorithm (3.2) at time T' = 1.0 with varying time step At but fixed mesh

h=1/32.

At llee = u"llo/ lluslly IV (= u")lo/IVull, llp = p"llo/Iplly 16 - 6"1l,/101, IV(© - 0")1,/1V0ll, CPU (S)
0.1 0.000171956 0.0127757 0.00415879 0.000115897 0.0104146 174.829
0.05 0.000162403 0.0127748 0.00416427 0.000107522 0.0104136 270.308
0.025 0.00015784 0.0127745 0.00416706 0.000103686 0.0104134 433.188
0.0125 0.000155623 0.0127744 0.0041685 0.000101859 0.0104133 864.545
0.00625 0.000154529 0.0127744 0.00416949 0.000100969 0.0104133 1626.97

TaBLE 2: The convergence performance and CPU time of the decoupled algorithm (3.6) at time T' = 1.0 with varying time step At but fixed

mesh h = 1/32.

At lle = u"llo/Nully V(@ = u™)llo/ IVl o = p"llo/1plly 16 - 6"1l,/1161l, V(6 = 6")lls/1V6lly CPU (§)
0.1 0.000148351 0.0127747 0.00424037 0.000115877 0.0104146 103.932
0.05 0.000150406 0.0127744 0.00419557 0.000107511 0.0104136 167.195
0.025 0.00015181 0.0127744 0.00418087 0.000103673 0.0104134 310.22
0.0125 0.000152594 0.0127744 0.0041747 0.00010185 0.0104133 658.11
0.00625 0.000153011 0.0127744 0.00417207 0.000100964 0.0104133 1121.69

Squaring (119) and summing it from n = 0 to J, with the
results obtained in Lemmas 6, 18, and 19, we obtain the
desired result.

Furthermore, under the assumptions of 1, € L™(0, T; X)
and 0, € L*(0, T; W), (119) can be transformed into

=571, = (B ) {llacE"],
v |VES | + fan], [E

+flAu )l B, + 007 [ ES™

tn-v-l 1/2
eae( [ el ar)
t

n

+ 0t (lallg + e}

0

(120)

With the help of Lemmas 6, 18, and 19, we obtain the optimal
error estimate for pressure in L™ (L?) norm. O

7. Numerical Experiments

In order to gain insights into the established convergence
results in Sections 5 and 6, we present some numerical tests
in this section. Our main interest is to verify and compare
the performances of the coupled and decoupled algorithms
(28) and (31). In all experiments, the time-dependent natural
convection problem is defined on a convex domain Q =
[0,1] x [0,1]. The mesh consists of triangular elements that
are obtained by dividing () into subsquares of equal size and
then drawing the diagonal in each subsquare. The model
parameters v, k, and A are simply set to 1. We fix the mesh
size h = 1/32 and use the MINI element which satisfies
the discrete inf-sup condition to approximate the velocity u

and pressure p and the linear polynomial to approximate the
temperature 0. The boundary and initial conditions and right-
hand side functions f and g are selected such that the exact
solutions are given by

u, = 10x* (x - 1) y(y - 1) (2y - 1) cos (¢),

uy = —10x(x-1)2x - 1) y* (y - 1)2 cos (),
p=1002x-1)(2y - 1)cos(t), (121)
0=10x"(x-1)* y(y-1)(2y - 1) cos (t)

—10x (x - 1) 2x = 1) y* (y = 1)*cos (£),

where the components of u are denoted by (u,, u,) for conve-
nience.

Firstly, we compare the errors and CPU times for the
coupled and decoupled numerical schemes with varying time
step At. From Tables 1 and 2, we can see that two kinds of
numerical schemes almost get the same accuracy, but the
decoupled scheme (31) spends much less CPU time than the
coupled scheme (28). In other words, the decoupled scheme
is comparable with the coupled scheme but cheaper and more
efficient.

Secondly, we focus on examining the orders of conver-
gence of the coupled and decoupled numerical schemes with
respect to the time step. Following [6], we introduce a more
accurate approach to examine the orders of convergence with
respect to the time step At due to the approximation errors
O(At"). For example, assuming

VM v (xt,) + C(x,t,) ALY, (122)
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TaBLE 3: Convergence orders of the coupled algorithm (28) at time T = 1.0 with varying time step At but fixed mesh h = 1/32.

LA LAL/2 ,A L,AL[2 LA L,AL[2
At "un t_un t/. ”0 nt_un t/ "1 nAt _ nAt/ ”0

Puato llu Puat1 Ip p Pp.ato
0.1 1.09819e — 005 2.06348 7.97307e - 005 2.06314 2.09931e - 005 2.0025
0.05 5.32202e - 006 2.04257 3.86453e — 005 2.03837 1.04834e — 005 1.64187
0.025 2.60556e — 006 2.01799 1.89589e — 005 1.91156 6.38507e — 006 0.618958
0.0125 1.29116e - 006 9.91804e — 006 1.03158e — 005
At lgmat — grairz Ponco gt — grairz Pones
0.1 1.14663e — 005 2.06739 8.10132e - 005 2.06742
0.05 5.54628e — 006 2.03617 3.91857e - 005 2.03617
0.025 2.72388e — 006 2.01728 1.92448e - 005 2.01729
0.0125 1.35028e - 006 9.53992e - 006

TaBLE 4: Convergence orders of the decoupled algorithm (31) at time T = 1.0 with varying time step At but fixed mesh h = 1/32.

dnAt

At st _ itz Punrio Jumat _ ydmbelz) Pusin Ip P Poao
0.1 4.44724¢ - 006 172372 5.735¢ — 005 2.42956 0.000276178 222171
0.05 2.58002¢ — 006 1.88641 2.36051e - 005 1.91411 0.000124308 195476
0.025 1.36769¢ — 006 1.9327 1.23322¢ - 005 193498 6.35925¢ — 005 2.00686
0.0125 7.07654¢ — 007 6.37328¢ — 006 3.16876e — 005
At lgmae _ gemarizy Ponco gt _ gmatizy Pones
0.1 1.14672¢ — 005 2.06806 8.10194e — 005 2.06807
0.05 5.54493¢ — 006 2.03505 3.91763¢ — 005 2.03508
0.025 2.72472¢ - 006 2.01706 1.92505¢ — 005 2.01679
0.0125 1.35084¢ — 006 9.54514¢ — 006

thus we have Acknowledgments

[ 0ot - Py

o ~ 123
Prat,j ||1/At/2(x, t) - VAL (x) tn)“]' 2w _1" (123)

Here, v can take u, p, 6 and j can be 0 or 1. While p, 5, ;
approach 4.0 or 2.0, the convergence order will be 2.0 or 1.0,
respectively.

In Tables 3 and 4, we present the convergence orders with
the fixed spacing h = 1/32 and varying time steps At =
0.1,0.05,0.025,0.0125. From these results, we can see that
the decoupled scheme almost gets the same accuracy with
the coupled scheme. For the numerical solutions " and 6"
of the coupled scheme (28), we can get the optimal orders of
convergence; for the pressure p”, the results are undesired. In
contrast, the results in Table 4 strongly suggest that the orders
of convergence in time are O(At), which implies that the error

@1 and

estimates for the L*-norm and H'-norm of u®", p
6%" in the decoupled algorithm (31) are optimal. Our numer-
ical results confirm the established theoretical analysis very

well.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

This work was supported by the NSF of China (no. 11301157),
the Doctor Fund of Henan Polytechnic University (B2012-
098), the Natural Science Foundation of Education Depart-
ment of Henan Province (no. 14A110008), and the Foundation
of Distinguished Young’s Scientists of Henan Polytechnic
University (J2015-05).

References

[1] E Brezziand M. Fortin, Mixed and Hybrid Finite Element Meth-
ods, vol. 15 of Springer Series in Computational Mathematics,
Springer, New York, NY, USA, 1991.

[2] S. M. Shen, “The finite element analysis of conduction-convec-
tion problem,” Journal of Computational Mathematics, vol. 16,
pp- 170-182, 1994 (Chinese).

[3] M. A. Christon, P. M. Gresho, and S. B. Sutton, “Computational
predictability of time-dependent natural convection flows in
enclosures (including a benchmark solution),” International
Journal for Numerical Methods in Fluids, vol. 40, pp. 953-980,
2002, MIT Special Issue on Thermal Convection.

[4] A. Cibik and S. Kaya, “A projection-based stabilized finite
element method for steady-state natural convection problem,”
Journal of Mathematical Analysis and Applications, vol. 381, no.
2, pp. 469-484, 2011.

[5] M. Mu and J. Xu, “A two-grid method of a mixed Stokes-Darcy
model for coupling fluid flow with porous media flow;” SIAM
Journal on Numerical Analysis, vol. 45, no. 5, pp. 1801-1813, 2007.



Mathematical Problems in Engineering

[6] M. Mu and X. Zhu, “Decoupled schemes for a non-stationary
mixed Stokes-Darcy model,” Mathematics of Computation, vol.
79, no. 270, pp. 707-731, 2010.

[7] W.]. Layton, E Schieweck, and I. Yotov, “Coupling fluid flow
with porous media flow;” SIAM Journal on Numerical Analysis,
vol. 40, no. 6, pp. 2195-2218 (2003), 2002.

[8] W. Layton, H. Tran, and C. Trenchea, “Analysis of long time
stability and errors of two partitioned methods for uncoupling
evolutionary groundwater-surface water flows,” SIAM Journal
on Numerical Analysis, vol. 51, no. 1, pp. 248-272, 2013.

[9] T. Zhang and J. Y. Yuan, “Two novel decoupling finite element
algorithms for the steady Stokes-Darcy model based on two grid
discretization,” Discrete and Continuous Dynamical Systems,
Series B, vol. 19, pp. 849-865, 2014.

[10] T.Zhang, X. Zhao, and P. Z. Huang, “Decoupled two level finite
element methods for the steady natural convection problem,”
Numerical Algorithms, 2014.

[11] Y. He, “Two-level method based on finite element and Crank-
Nicolson extrapolation for the time-dependent NAVier-Stokes
equations,” SIAM Journal on Numerical Analysis, vol. 41, no. 4,
pp. 1263-1285, 2003.

[12] J. Heywood and R. Rannacher, “Finite element approximation
of the nonstationary Navier-Stokes problem I; regularity of
solutions and second-order error estimates for spatial dis-
cretization,” SIAM Journal on Numerical Analysis, vol. 19, pp.
275-311, 1982.

[13] P. G. Ciarlet, The Finite Element Method for Elliptic Problems,
North-Holland, Amsterdam, The Netherlands, 1978.

[14] R. Temam, Navier-Stokes Equation: Theory and Numerical
Analysis, North-Holland, Amsterdam, The Netherlands, 3rd
edition, 1984.

[15] J. Blasco and R. Codina, “Error estimates for an operator-
splitting method for incompressible flows,” Applied Numerical
Mathematics, vol. 51, no. 1, pp. 1-17, 2004.

[16] J. Blasco, R. Codina, and A. Huerta, “A fractional-step method
for the incompressible Navier-Stokes equations related to a
predictor-multicorrector algorithm,” International Journal for
Numerical Methods in Fluids, vol. 28, no. 10, pp. 1391-1419, 1998.

[17] E Guillén-Gonzilez and M. V. Redondo-Neble, “New error
estimates for a viscosity-splitting scheme in time for the three-
dimensional Navier-Stokes equations,” IMA Journal of Numeri-
cal Analysis, vol. 31, no. 2, pp. 556579, 2011.

[18] J. Shen, “On error estimates of projection methods for Navier-
Stokes equations: first-order schemes,” SIAM Journal on Numer-
ical Analysis, vol. 29, no. 1, pp. 57-77,1992.

[19] J. Shen, “Remarks on the pressure error estimates for the
projection methods,” Numerische Mathematik, vol. 67, no. 4, pp.
513-520, 1994.

[20] Y. He, “The Euler implicit/explicit scheme for the 2D time-
dependent Navier-Stokes equations with smooth or non-
smooth initial data,” Mathematics of Computation, vol. 77, no.
264, pp. 2097-2124, 2008.

[21] Z. D. Luo, The Bases and Applications of Mixed Finite Element
Methods, Chinese Science Press, Beijing, China, 2006.

[22] Y. He, “Stability and error analysis for a spectral Galerkin
method for the Navier-Stokes equations with H* or H' initial
data,” Numerical Methods for Partial Differential Equations, vol.
21, no. 5, pp. 875-904, 2005.

[23] Y. He and J. Li, “A penalty finite element method based
on the Euler implicit/explicit scheme for the time-dependent
Navier-Stokes equations,” Journal of Computational and Applied
Mathematics, vol. 235, no. 3, pp. 708-725, 2010.

23

[24] T. Zhang, D. Pedro, and J. Y. Yuan, “A large time stepping
viscosity-splitting finite element method for the viscoelastic
flow problem,” Advances in Computational Mathematics, 2014.



Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo




