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This paper investigates cooperative trajectory planning of multiple unmanned combat aerial vehicles (multi-UCAV) in performing
autonomous cooperative air-to-ground target attackmissions. By integrating an approximate allowable attack regionmodel, several
constraint models, and a multicriterion objective function, the problem is formulated as a cooperative trajectory optimal control
problem (CTOCP). Then, a virtual motion camouflage (VMC) for cooperative trajectory planning of multi-UCAV, combining
with the differential flatness theory, Gauss pseudospectral method (GPM), and nonlinear programming, is designed to solve the
CTOCP. In particular, the notion of the virtual time is introduced to the VMC problem formulation to handle the temporal
cooperative constraints.The simulation experiments validate that the CTOCP can be effectively solved by the cooperative trajectory
planning algorithmbased onVMCwhich integrates the spatial and temporal constraints on the trajectory level, and the comparative
experiments illustrate that VMC based algorithm is more efficient than GPM based direct collocation method in tackling the
CTOCP.

1. Introduction

Nowadays, it is an active research area to perform auton-
omous cooperative air-to-ground target attack (CA/GTA)
missions using multiple unmanned combat aerial vehicles
(multi-UCAV) [1]. However, compared with single UCAV
planning and coordinated formation control problems [2],
new technical challenges in the CA/GTAmissions are emerg-
ing. The cooperative trajectory planning is one of the key
challenging technologies, due to its high dimensionality,
severe equality and inequality constraints involved, and
the requirement of spatial-temporal cooperation of multi-
UCAV.

Recently, various algorithms have been developed to solve
this cooperative trajectory planning problem [3, 4], including
artificial neural networkmethods [5], sample-based planning
methods [6], maneuver automation (MA) [7], and optimal
control methods. There is no doubt that the optimal control
theory is the most natural framework for this type of
problem with dynamic constraints [8]. However, the rapid
solution to optimal control problems (OCPs) for complicated
nonlinear systems, such as UCAVs, is a challenging task [9].

Analytical solutions are seldom available or even possible.
As a result, one usually resorts to numerical techniques
[3]. The techniques can be classified into two general types,
namely, indirect and direct methods. Indirect methods [10]
solve the OCPs by formulating the first-order optimality
conditions, applying Pontryagin’s Maximum Principle and
nonlinear programming (NLP) to tackle the resulting two-
point boundary value problem numerically. Direct methods
[11], on the other hand, are devoted to reduce the OCPs
to finite-dimensional NLP problems by discretization and
parameterization of subsets of the state and control vectors
and then are solved by developed optimizers. As one of
direct methods, Gauss pseudospectral method (GPM) is
applied widely and efficiently in the trajectory optimization
field [12–14], due to its advantages of fewer parameters and
higher precision in the calculation procedure. However, the
method to achieve the trajectory planning for a single vehicle
or cooperative multivehicle required a high computational
load. To reduce the computational complexity, the inverse
dynamics methods [15, 16] and differential flatness theory
(DFT) based methods [17–20] are introduced. Compared to
pseudospectral methods, these methods can use any models
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and any performance indexes and transform the OCP into a
low dimensional NLP problem. However, they are still time-
consuming. Particularly, when the number of the vehicles
is too large, the computational cost will be unacceptable.
For this purpose, the virtual motion camouflage (VMC)
algorithm [21–23] is introduced into this work. Inspired by
the biological motion known as the motion camouflage, the
VMC algorithm can dramatically reduce the problem dimen-
sion and the computational cost. Somenumerical simulations
[22–24] suggest that its computational speed could be much
faster than the pseudospectral methods. Motivated by these
advantages, this paper employs virtual motion camouflage
approach to develop cooperative trajectory planning algo-
rithms.

For the cooperative trajectory planning of multi-UCAV,
the objective is to generate dynamically feasible trajectories
for UCAVs, which can guide them to the goals in the shortest
time or distance, without collisions with obstacles or each
other. To date, a number of theories and techniques have been
developed to accomplish the cooperative tasks, including
several collision avoidance techniques and time adjustment
strategies [17, 25–30]. Bollino and Lewis [25] addressed the
optimal path planning of UAVs in obstacle-rich environ-
ments and proposed a collision-free path planning for multi-
UAV using optimal control techniques and pseudospectral
methods. Kuwata and How [26] presented a cooperative
distributed robust trajectory optimization approach, using
RH-MILPwith independent dynamics but coupled objectives
and hard constraints. To improve the convergence rate,
the virtual motion camouflage method was applied to the
cooperative electronic combat air vehicles (ECAVs) [27]
and unmanned aerial vehicle (UAV) formation control [28].
Reference [27] described how an interesting bioinspired
motion strategy can be used to design real-time trajectories
for cooperative electronic combat air vehicles. The constant
speed motion camouflage law was developed to derive
the feasible condition of a constant speed ECAVs and PT
coherent mission, and its feasibility conditions were found.
Reference [28] proposed a divide and conquer hierarchical
approach in three levels to solve the UAV formation flight
trajectory plan problem considering dynamics, state, and
control variable inequality and equality constraints. These
approaches mentioned above could generate collision-free
trajectories, but the temporal cooperation was ignored. In
contrast, Lian [17] introduced a differential flatness theory
(DFT) based method to optimally formulate the cooperative
path planning for multiagent dynamical systems considering
spatial and temporal constraints. McLain and Beard [29]
proposed the coordination variables (CV) and coordination
function (CF) based strategy to achieve cooperative timing
among teams of vehicles by coordinating the velocity and
path length of each vehicle. But these approaches failed to deal
with the dynamics constraints of vehicles, and the generated
paths were not always flyable and smooth. Kaminer et al.
[30] presented a general framework for coordinated control
problem of multiple autonomous agents. On the basis of
decoupling space and time in the problem formulation, it
reduced the number of optimization parameters and made
it easy to implement optimization in real time. However, the

time coordination lays in the path following and the design
of control laws in path following algorithms was much more
difficult. Although the previous investigations have described
several valuable strategies in the cooperative path planning,
these methods cannot tackle the point-to-region cooperative
trajectory planning for CA/GTA missions directly, which
needs to integrate both the spatial and temporal constraints
on the trajectory level.

To address the problems mentioned previously, a novel
cooperative trajectory planning method for multi-UCAV in
performing the CA/GTA missions is presented in this paper.
Firstly, some constraints including individual and cooper-
ative constraints are modeled. Particularly, an approximate
allowable attack region is built for the critical terminal
constraints. Then, after the multicriterion objective function
is constructed, the cooperative trajectory planning problem
is formulated as a cooperative trajectory optimal control
problem (CTOCP). Owing to the temporal constraints, a
notion of the virtual time is introduced and the VMC
problem is reformulated in the virtual time domain. Inspired
by VMC, DFT, and GPM algorithms, a new cooperative
trajectory planning algorithm in an optimal control frame-
work is proposed.The proposed approach is demonstrated by
two typical CA/GTA examples, and the comparative experi-
ments between GPM and VMC are carried out. The results
show that the proposed approach is feasible, effective, and
efficient.

The rest of the paper is organized as follows. In Section 2,
the integrated model is set up. In Section 3, the problem is
formulated as a CTOCP followed by a multicriteria objective
function. Section 4 develops a novel cooperative trajectory
planning algorithm based on virtual motion camouflage in
virtual time domain, which can solve the problem efficiently.
Section 5 presents several numerical examples, and finally the
conclusions and future works are outlined in Section 6.

2. Modeling

2.1. Aircraft Model. The kinematic and dynamic model of
vehicles is needed in the cooperative trajectory planning
of multi-UCAV. In this work, a team of 𝑁V homogeneous
UCAVs is considered, each of which is described by the
kinematic and dynamic model according to a full-blown
three-degree of freedom (3-DOF) model as follows [31]:

�̇� = 𝑉 cos 𝛾 cos𝜓, ̇𝑦 = 𝑉 cos 𝛾 sin𝜓, �̇� = 𝑉 sin 𝛾,

�̇� = 𝑔 (𝑛
𝑥
− sin 𝛾) , ̇𝛾 =

𝑔

𝑉
(𝑛
𝑧
cos 𝜇 − cos 𝛾) ,

�̇� =
𝑔

𝑉 cos 𝛾
𝑛
𝑧
sin 𝜇,

(1)

where 𝑥, 𝑦, and 𝑧 are the aircraft coordinates, that is,
longitude, latitude, and height, 𝑉 is the aircraft velocity, 𝛾
is the flight-path angle, 𝜓 is the heading angle, 𝜇 is the
roll angle, 𝑔 is the gravity acceleration, and 𝑛

𝑥
and 𝑛

𝑧
are

the longitudinal and normal components of the load factor,
respectively.
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For the optimal control problem, the state vector x and
control vector u can be defined as

x =

{{{

{{{

{

(𝑥, 𝑦, 𝑧, 𝑉, 𝛾, 𝜓) |

𝑧min ≤ 𝑧 ≤ 𝑧max
𝑉min ≤ 𝑉 ≤ 𝑉max
𝛾min ≤ 𝛾 ≤ 𝛾max
𝜓min ≤ 𝜓 ≤ 𝜓max

}}}

}}}

}

∈ X ⊂ R
6

,

u =
{

{

{

(𝜇, 𝑛
𝑥
, 𝑛
𝑧
) |

𝜇min ≤ 𝜇 ≤ 𝜇max
𝑛
𝑥,min ≤ 𝑛

𝑥
≤ 𝑛
𝑥,max

𝑛
𝑧,min ≤ 𝑛

𝑧
≤ 𝑛
𝑧,max

}

}

}

∈ U ⊂ R
3

.

(2)

2.2. Allowable Attack Region Model. For the point-to-region
trajectory planning problem, the allowable attack regions
(AARs) of targets are defined as the areas where weapon
delivery operations can be effectively performed by UCAVs.
Therefore, in order to plan accurate and optimal attack
trajectories, the AARs and the delivery parameters need to

be obtained. The AARs of the 𝑖th target TAR
𝑖
, denoted as

𝑅(TAR
𝑖
), are such sets of all feasible release states that TAR

𝑖

can be effectively attacked whenever the aircraft belongs to
those state sets. When 𝑛V (𝑛V ≥ 2) UCAVs are assigned to
attack the same target TAR

𝑖
cooperatively, there will be 𝑛V

AARs in 𝑅(TAR
𝑖
); that is, 𝑅(TAR

𝑖
) = ⋃

𝑛V
𝑗
AAR
𝑗
. Each AAR

𝑗

can be formulated as an abstract 6-dimensional space [32]:

AAR
𝑗
= {𝑥, 𝑦, 𝑧, 𝑉, 𝛾, 𝜓} ⊂ R

6

. (3)

Obviously, AAR
𝑗
is a high-dimensional nonlinear space,

which is difficult to handle. By presetting an appropriate
weapon release speed

_
𝑉
𝑟
and the flight-path angle

_
𝛾
𝑟
based

on estimating the weapon impact effects and destruction
requirements to the target and predetermining release head-
ing

_
𝜓
𝑟
, AAR

𝑗
can be reduced to a 3-dimensional space as

LAR𝑗sp (TAR𝑖, [
_
𝑉
𝑟
,
_
𝛾
𝑟
])

=
{

{

{

(𝑥, 𝑦, 𝑧,
_
𝑉
𝑟
,
_
𝛾
𝑟
,

_
𝜓
𝑟
) |

(𝑥, 𝑦, 𝑧) ∈ LAR𝑗sp (TAR𝑖, [
_
𝑉
𝑟
,
_
𝛾
𝑟
,

_
𝜓
𝑟
])

_
𝜓
𝑟
= azimuth of TAR

𝑖
relative to position (𝑥, 𝑦, 𝑧)

}

}

}

.

(4)

In the point-to-region trajectory planning, weapon deliv-
ery points (WDPt) as terminals of trajectories need to be
included in the AARs, that is, meeting terminal constraints
[33]. The formula can be denoted as WDPt

𝑗
∈ AAR

𝑗
; that is,


𝑥
𝑗

𝐴
− 𝑥
𝑗

𝑓


≤ Δ𝑥,


𝑦
𝑗

𝐴
− 𝑦
𝑗

𝑓


≤ Δ𝑦,


𝑧
𝑗

𝐴
− 𝑧
𝑗

𝑓


≤ Δ𝑧,

(5)

where (𝑥
𝑗

𝐴
, 𝑦
𝑗

𝐴
, 𝑧
𝑗

𝐴
) are the coordinates of the center of

the AAR
𝑗
, (𝑥𝑗
𝑓
, 𝑦
𝑗

𝑓
, 𝑧
𝑗

𝑓
) are the coordinates of WDPt

𝑗
, and

(Δ𝑥, Δ𝑦, Δ𝑧) are the thresholds of errors.

2.3. No-Fly Zone Model. In the battlefield environment, the
no-fly zone (NFZ) is an area where vehicles are not permitted
to fly over, due to the presence of military restrictions (e.g.,
armed enemies and the missile killing range), the physical
obstacles (e.g., mountains and buildings within the natural
and urban environment, resp.), and civil restrictions mainly
due to safety reasons (e.g., densely populated areas and severe
weather condition zones).

It is complex and unnecessary to describe a NFZ’s exact
shape and size. In this work, the 𝑝-normmethod [34] is used
to mathematically model the shapes of the NFZs, given by

ℎ (𝑥, 𝑦, 𝑧) =



(
𝑥 − 𝑥c
𝑘
1
+ 𝑏s

,
𝑦 − 𝑦c
𝑘
2
+ 𝑏s

,
𝑧 − 𝑧c
𝑘
3
+ 𝑏s

)



𝑝

𝑝

− 𝑘
𝑝

4
, (6)

(𝑥, 𝑦, 𝑧)
𝑝

= (|𝑥|
𝑝

+ |𝑦|
𝑝

+ |𝑧|
𝑝

)
1/𝑝

, 𝑝 ∈ N, (7)

where (𝑥c, 𝑦c, 𝑧c) indicates the location of the geometric
center of the NFZ, ℎ(𝑥, 𝑦, 𝑧) is the distance between a point
(𝑥, 𝑦, 𝑧) and the boundary of the NFZ, while 𝑘

1
∼ 𝑘
4
are the

constant parameters chosen to define the size of the NFZ, and
𝑏
𝑠
represents the width of a safe buffer which can effectively

expand the NFZ boundary by an amount that accounts for
the size of the vehicle and improve the robustness of plans.
By varying parameters (𝑝, 𝑘

1
∼ 𝑘
4
), one can easily model a

number of generic shapes (see Figure 1). And any NFZ can be
approximately modeled by fitting one of those shapes around
it.

Accordingly, the above NFZs can be expressed by the
following path constraints in the OCP formulation as

ℎ
𝑛
(𝑥, 𝑦, 𝑧) ≥ 0, 𝑛 = 1, 2, . . . , 𝑁NFZ, (8)

where ℎ
𝑛
represents the 𝑛th NFZ and 𝑁NFZ is the total of

NFZs. However, (8) is not well scaled. If a large 𝑝 is chosen
or the vehicle is far from the NFZ, ℎ

𝑛
(𝑥, 𝑦, 𝑧) can produce

very large numbers; hence, for computational efficiency, the
path constraint is scaled by the natural logarithm function as
follows:

ℎ
𝑛
(𝑥, 𝑦, 𝑧) = ln( 1

(𝑘
𝑛

4
)
𝑝
𝑛

((
𝑥 − 𝑥
𝑛

c
𝑘
𝑛

1
+ 𝑏s

)

𝑝
𝑛

+ (
𝑦 − 𝑦
𝑛

c
𝑘
𝑛

2
+ 𝑏s

)

𝑝
𝑛

+(
𝑧 − 𝑧
𝑛

c
𝑘
𝑛

3
+ 𝑏s

)

𝑝
𝑛

)) ≥ 0.

(9)

2.4. Cooperative Constraint Model. In order to make the
UCAVs arrive in the AARs of targets safely in an expected
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Figure 1: Several shapes generated from (6).

time sequence, cooperative trajectories should satisfy the
following constraints.

2.4.1. Spatial Constraints. During the mission, multi-UCAV
should maintain a safe distance to guarantee them not to
collide with each other. The model can be denoted as


𝜌
𝑗

(𝑡
𝑖
) − 𝜌
𝑘

(𝑡
𝑖
)
2

≥ max (𝑑𝑗safe, 𝑑
𝑘

safe) ,

∀𝑗 ̸= 𝑘, 𝑗, 𝑘 = 1, 2, . . . , 𝑁V,

(10)

where 𝜌𝑗(𝑡
𝑖
) = {𝑥

𝑗

(𝑡
𝑖
), 𝑦
𝑗

(𝑡
𝑖
), 𝑧
𝑗

(𝑡
𝑖
)} is the spatial position

of each UCAV
𝑗
at the time 𝑡

𝑖
, 𝑑𝑗safe is the predetermined

minimum safety radius of UCAV
𝑗
(based on the vehicle size,

maneuver agility, etc.), and𝑁V is the total of UCAVs.

2.4.2. Temporal Constraints. The temporal constraints
include the simultaneous arrival constraint and sequencing
constraint, which are described as

𝑡
𝑗

𝑓
+ Δ
𝑗𝑘
− 𝑡
𝑘

𝑓
≤ 0, ∀𝑗 ̸= 𝑘, 𝑗, 𝑘 = 1, 2, . . . , 𝑁V, (11)

where 𝑡
𝑗

𝑓
is the terminal time of each UCAV

𝑗
and Δ

𝑗𝑘

is the arrival interval between UCAV
𝑗
and UCAV

𝑘
. For

the simultaneous arrival constraint, Δ = 0, and for the

sequencing constraint, Δ is the plus fixed quantity. Equation
(11) is of the general form 𝑓

𝑇
(𝑡
1

𝑓
, . . . , 𝑡

𝑁V
𝑓
) ≤ 0.

3. Problem Formulation

3.1. Objective Function. The objective function of the entire
team is a sumof each individual cost, which is amulticriterion
objective function, and each criterion could compete with
each other as follows:

𝐽 = min
𝑁V

∑

𝑗=1

𝐽
𝑗

= min
𝑁V

∑

𝑗=1

(𝑤
𝑗

𝑡
𝐽
𝑗

𝑡
+ 𝑤
𝑗

𝑝
𝐽
𝑗

prd + 𝑤
𝑗

𝑟
𝐽
𝑗

rob) , (12)

and the criterions can be, respectively, defined as

𝐽
𝑗

𝑡
= ∫
𝑡

𝑑𝑡 = 𝑡
𝑗

𝑓
− 𝑡
𝑗

0
, (13)

𝐽
𝑗

prd = ∫
𝑡

PRD𝑗 (𝑡) = ∫
𝑡

(1 −

𝑛
𝑟

∏

𝑟=1

(1 − 𝑃
𝑗

𝑑
(𝑡, 𝑟)) ) , (14)

𝐽
𝑗

rob = ∫
𝑡

𝑅
𝑗

(𝑡) = ∫
𝑡

𝑁NFZ

∑

𝑛=1

𝑤
𝑛,𝑗

𝑟
(𝑒
𝑒
−ℎ𝑛

− 1) , (15)
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where 𝑡
𝑗

0
and 𝑡

𝑗

𝑓
denote the initial and terminal time of

UCAV
𝑗
. The first term, 𝐽

𝑗

𝑡
, denotes the total fight time

of UCAV
𝑗
. The second term, 𝐽𝑗prd, denotes the detection-

probability of the 𝑛
𝑟
-radar system to UCAV

𝑗
at the time 𝑡,

which describes the threat risk criterion of UCAV
𝑗
as follows:

PRD𝑗 (𝑡) = 1 −

𝑛
𝑟

∏

𝑟=1

(1 − 𝑃
𝑗

𝑑
(𝑡, 𝑟)) , (16)

where 𝑃𝑗
𝑑
(𝑡, 𝑟) is the model of the radar detection probability

between the trajectory point of UCAV
𝑗
at the time 𝑡 and

the 𝑟th radar [35]. The final term, 𝐽
𝑗

rob, guarantees the
robustness of the vehicle collision avoidance against the
model imprecision, disturbing in the battlefield and operating
errors that could otherwise cause vehicles to collide with
obstacles or other vehicles. The robustness cost is defined as

𝑅
𝑗

(𝑡) =

𝑁NFZ

∑

𝑛=1

𝑤
𝑛,𝑗

𝑟
(𝑒
𝑒
−ℎ𝑛

− 1) , (17)

where 𝑤𝑛,𝑗
𝑟

are weights that are incremented to increase the
maneuver robustness when the trajectory of a vehicle passes
in close proximity to an obstacle or another vehicle, which
can be chosen by the method presented by Hurni et al. [36].

As can be seen, the individual objective function 𝐽
𝑗 is

defined by the weighted sum of the three separate running
cost terms with appropriate weighting factors𝑤𝑗

𝑡
,𝑤𝑗
𝑝
, and𝑤𝑗

𝑟
.

The three criteria (13)–(15) represent different physical mean-
ings, and they are difficult to be compared directly. Hence the
selection of these weighting factors is a skilled technique. In
the experimentations, the multi-objective fuzzy optimization
method proposed by Wang et al. [37] is employed. The
method includes two main steps: (a) normalizing each single
objective function and (b) solving the membership function
about each criterion by using fuzzy distribution function.

3.2. Cooperative Trajectory Planning Problem Formulation.
After establishing the above models, the cooperative tra-
jectory planning problem is formulated in this section.
The problem under consideration is a cooperative scheme,
consisting of 𝑁V homogeneous UCAVs. According to the
system equations (1), the general form of the system for
UCAV

𝑗
is given by

ẋ𝑗 (𝑡) = 𝑓
𝑗

[x𝑗 (𝑡) , u𝑗 (𝑡) , 𝑡] , 𝑗 = 1, . . . , 𝑁V. (18)

As stated above, to obtain optimal or suboptimal coop-
erative trajectories, the cooperative trajectory planning for
the CA/GTA missions can be formulated as a cooperative
trajectory optimal control problem (CTOCP).

Problem 1 (CTOCP). Find the trajectories, which drive the
system from given initial conditions to desired final con-
ditions over time horizons [𝑡

0
, 𝑡
𝑓
], while the cooperative

objective function is minimized as

min 𝐽 =

𝑁V

∑

𝑗=1

𝐽
𝑗

(x, u)

=

𝑁V

∑

𝑗=1

[𝑤
𝑗

𝑡
(𝑡
𝑗

𝑓
− 𝑡
𝑗

0
) + 𝑤

𝑗

𝑝
∫

𝑡
𝑗

𝑓

𝑡
𝑗

0

(1 − 𝑃
𝑗

𝑑
(𝑡, 𝑟)) 𝑑𝑡

+𝑤
𝑗

𝑟
∫

𝑡
𝑗

𝑓

𝑡
𝑗

0

𝑁NFZ

∑

𝑛=1

𝑤
𝑛,𝑗

𝑟
(𝑒
𝑒
−ℎ𝑛

− 1) 𝑑𝑡] ,

(19)

subject to the system equation (18) and the boundary con-
straints (i.e., the initial and terminal states (5))

Φ[x𝑗 (𝑡𝑗
0
) , u𝑗 (𝑡𝑗

0
) , 𝑡
𝑗

0
, x𝑗 (𝑡𝑗

𝑓
) , u𝑗 (𝑡𝑗

𝑓
) , 𝑡
𝑗

𝑓
] = 0,

∀𝑗 = 1, 2, . . . , 𝑁V,

(20)

and several inequality and equality constraints, the individual
and cooperative constraints, including the state and control
vectors (2) and (9)–(11), are denoted as

𝛿
𝑗

[x𝑗 (𝑡) , u𝑗 (𝑡) , 𝑡] ≤ 0,

𝜑
𝑗

[x𝑗 (𝑡) , u𝑗 (𝑡) , x𝑘 (𝑡) , u𝑘 (𝑡) , 𝑡] ≤ 0,

𝑓
𝑗

𝑇
(𝑡
𝑗

𝑓
, 𝑡
𝑘

𝑓
) ≤ 0, ∀𝑗 ̸= 𝑘, 𝑗, 𝑘 = 1, 2, . . . , 𝑁V.

(21)

4. Virtual Motion Camouflage Based
Cooperative Trajectory Planning

To tackle the cooperative trajectory planning for CA/GTA
missions, an efficient virtual motion camouflage based plan-
ningmethod is proposed for numerically solving the CTOCP,
which combines with the benefits of several other classical
trajectory generation techniques, including DFT, GPM, and
NLP. Correspondingly, this task contains three primary steps.
The first is to determine outputs by VMC and DFT in
the virtual time domain, such that the dynamics system
can be mapped to a lower-dimensional output space. Then,
GPM is used to discretize the outputs. Finally, the system is
transformed into aNLPproblem and the sequential quadratic
programming (SQP) is used to solve theNLP tominimize the
cost and subject to constraints in output space.

4.1. Virtual Motion Camouflage and Problem
Formulation in the Output Space

4.1.1. Virtual Motion Camouflage. Inspired by mating hov-
erflies, Srinivasan and Davey [38] described a new form of
the stealth strategy which is the so-called motion camouflage
(MC). MC involves two moving objects, a prey and an
aggressor, and occurs when the aggressor conceals its motion



6 Mathematical Problems in Engineering

(i.e., maintains a constant bearing in the prey’s coordinates),
except the inevitable size change, as viewed by the moving
prey. Here the MC concept is introduced into the optimal
trajectory planning and is called virtual motion camouflage
(VMC) [21–23] because the “prey” is a virtual one. In the
VMC framework, the aggressor trajectory (i.e., the aggressor
position vector) 𝜌

𝑎
(𝑡) ∈ R𝑛𝑎 is confined by the virtual prey

trajectory (VPT) 𝜌
𝑝
(𝑡) ∈ R𝑛𝑎 , the selected reference point

𝜌ref(𝑡) ∈ R𝑛𝑎 , and the path control parameter (PCP) V(𝑡) ∈ R

as follows:

𝜌
𝑎
(𝑡) = 𝜌ref + V (𝑡) (𝜌

𝑝
(𝑡) − 𝜌ref) . (22)

The reference point is considered fixed over time, so the
derivatives of the trajectory can be described as

�̇�
𝑎
(𝑡) = V̇ (𝑡) (𝜌

𝑝
(𝑡) − 𝜌ref) + V (𝑡) �̇�

𝑝
(𝑡) ,

�̈�
𝑎
(𝑡) = V̈ (𝑡) (𝜌

𝑝
(𝑡) − 𝜌ref) + V (𝑡) �̈�

𝑝
(𝑡) + 2V̇ (𝑡) �̇�

𝑝
(𝑡) .

(23)

From [23], it can be known that when the proposed VMC
suboptimal trajectory design method is used, the complexity
of the problem can be reduced by (𝑛

𝑠V + 𝑚
𝑐V) times from

the collocation method or 𝑛
𝑠V times from the differential

inclusion, where 𝑛
𝑠V and 𝑚

𝑐V are the numbers of the state
variables and the control variables. In VMC framework, if the
dimension of the position vector x

𝑎
(𝑡) is one (i.e., 𝑛

𝑎
= 1), the

dimension of the problem is the same as that of the differential
inclusion method. Otherwise, when 𝑛

𝑎
> 1, the reference

point can be fixed or regarded as a parameter to be optimized,
whereas VPT can be predefined or predetermined by the
initial and terminal conditions of the aggressor trajectory.
Thus, the dimension of the problem is lowered from 𝑛

𝑎
to one,

such that the solving speed can increase.

4.1.2. VMC Problem Formulation in Virtual Time Domain.
Obviously, the time factor of trajectories is an argument of
the state and control. To deal with temporal constraints and
achieve the time cooperation of multi-UCAV, the time along
the trajectories should be considered separately. Therefore,
the independent intermediate variable (called virtual time
here, 𝑡 ∈ [0, 1]) is introduced and described as

𝑡 =
(𝑡 − 𝑡
0
)

(𝑡
𝑓
− 𝑡
0
)

, (24)

such that the trajectories can be generated in the virtual time
domain from 𝑡

0
= 0 to 𝑡

𝑓
= 1.

For UCAVs, which are required to take off at the same
time, it can be assumed that the initial time of all UCAVs is
zero (𝑡

0
= 0).Thus, the terminal time 𝑡

𝑓
can bewritten as 𝑡

𝑓
=

𝑡/𝑡.That is, 𝑡
𝑓
denotes the ratio between the true time variable

and the newly defined virtual time variable. To coordinate
the arrival time of all UCAVs, the terminal time can be
defined as an argument to be optimized in the dynamical
system, designated as 𝑇

𝑓
. Then, the following relationship

between the virtual time domain and true time domain can
be obtained for an arbitrary variable 𝜒 as follows:

𝜒


(𝑡) =
𝑑𝜒 (𝑡)

𝑑𝑡
=

𝑇
𝑓
𝑑𝜒 (𝑡)

𝑑𝑡
= 𝑇
𝑓

̇𝜒 (𝑡) ,

𝜒


(𝑡) =
𝑑𝜒


(𝑡)

𝑑𝑡
=

𝑇
𝑓
𝑑𝜒


(𝑡)

𝑑𝑡
=

𝑇
𝑓
𝑑 (𝑇
𝑓

̇𝜒 (𝑡))

𝑑𝑡
= 𝑇
2

𝑓
̈𝜒 (𝑡) .

(25)

Particularly, the derivative of the speed variable can be
denoted as

𝑉 (𝑡) = √(𝑥)
2

+ (𝑦)
2

+ (𝑧)
2

= 𝑇
𝑓
√�̇�2 + ̇𝑦2 + �̇�2 = 𝑇

𝑓
𝑉 (𝑡) ,

(26)

where the superscript “” represents the derivative with
respect to the virtual time.

According to (18) and (24), the system equations can be
rearranged as

x𝑗 (𝑡) = 𝑇
𝑓
ẋ𝑗 (𝑡) = 𝑇

𝑓
𝑓
𝑗

[x𝑗 (𝑡) , u𝑗 (𝑡) , 𝑡]

= 𝑔
𝑗

[x𝑗 (𝑡) , u𝑗 (𝑡) , 𝑇𝑗
𝑓
] ,

𝑇
𝑗

𝑓
= 0, 𝑗 = 1, . . . , 𝑁V.

(27)

Hence, the Problem 1 can be reformulated in virtual time
domain (VTD) as follows.

Problem 2 (CTOCP-VTD). Minimize the cooperative objec-
tive function (19) of all UCAVs represented with respect to
the new independent variable 𝑡 as

min 𝐽 =

𝑁V

∑

𝑗=1

𝐽
𝑗

(x, u, 𝑇𝑗
𝑓
)

=

𝑁V

∑

𝑗=1

[𝑤
𝑗

𝑡
𝑇
𝑗

𝑓
+ 𝑤
𝑗

𝑝
∫

1

0

PRD𝑗 (𝑡) 𝑑𝑡

+𝑤
𝑗

𝑟
∫

1

0

𝑅
𝑗

(𝑡) 𝑑𝑡] ,

(28)

subject to the system equations (27), and the boundary con-
straints (20), written as

𝜙 [x𝑗 (0) , u𝑗 (0) , x𝑗 (1) , u𝑗 (1) , 𝑇𝑗
𝑓
] = 0, (29)

Meanwhile satisfying the inequality and equality constraints
(21) and additional temporal constraints as follows:

𝛿
𝑗

[x𝑗 (𝑡) , u𝑗 (𝑡) , 𝑇𝑗
𝑓
] ≤ 0,

𝜑
𝑗

[x𝑗 (𝑡) , u𝑗 (𝑡) , x𝑘 (𝑡) , u𝑘 (𝑡) , 𝑇𝑗
𝑓
, 𝑇
𝑘

𝑓
] ≤ 0,

𝑓
𝑗

𝑇
(𝑡
𝑗

𝑓
, 𝑡
𝑘

𝑓
) ≤ 0, ∀𝑗 ̸= 𝑘, 𝑗, 𝑘 = 1, 2, . . . , 𝑁V.

(30)
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From (1), it can be clearly known that the dynamics
system under consideration is a higher-dimensional space
system. Due to the complexity in solving this type of the
problem, the VMC based method is used to lower the system
dimension and the state and control vectors can be related
by the differential flatness theory based method [39]. In
this system, the state vector x ∈ R6 can be separated into
two parts: the trajectory position (e.g., spatial trajectory)
𝜌
𝑎
= [𝑥, 𝑦, 𝑧] ∈ R3 and the corresponding state rate 𝜌

𝑟
=

[𝑉, 𝜓, 𝛾] ∈ R3, by which the trajectory position in virtual time
domain and the terminal time 𝑇

𝑓
can be defined as the flat

output vector

𝜗 = [𝜌
𝑎
(𝑡) , 𝑇
𝑓
] = [𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑇

𝑓
]
𝑇

. (31)

Thus, the original state vector x and control vector u can
be recovered from the flat outputs and their derivatives as

x = 𝛼 (𝜗, 𝜗


, 𝜗


) = 𝛼 (𝜌
𝑎
,𝜌


𝑎
,𝜌


𝑎
, 𝑇
𝑓
) ,

u = 𝛽 (𝜗, 𝜗


, 𝜗


) = 𝛽 (𝜌
𝑎
,𝜌


𝑎
,𝜌


𝑎
, 𝑇
𝑓
) .

(32)

According to (1), the relation of the state vector and
control vector in the VTD is described as follows:

𝑉 = √(𝑥)
2

+ (𝑦)
2

+ (𝑧)
2

,

𝜓 = arctan(
𝑦


𝑥
) ,

𝛾 = arctan( 𝑧


√(𝑥)
2

+ (𝑦)
2

),

𝑛
𝑥
=

𝑉


(𝑇
2

𝑓
𝑔)

+ sin 𝛾,

𝑛
𝑧
=

√(𝑉𝛾 + 𝑇
2

𝑓
𝑔 cos 𝛾)

2

+ (𝑉𝜓 cos 𝛾)2

𝑇
𝑓
𝑔

,

𝜇 = arctan(
𝑉𝜓
 cos 𝛾

(𝑉𝛾 + 𝑇
2

𝑓
𝑔 cos 𝛾)

) .

(33)

In the VMC framework, the trajectory position 𝜌
𝑎
can be

defined as the aggressor position vector. As described above,
the state and the control variables of the dynamics system
can be recovered from the flat outputs. Hence, according
to (22), these variables are also functions of the PCP, the
predefined virtual prey motion, the reference point, and their
corresponding derivatives. Once the predefined virtual prey
motion and the reference point are selected, the system of
cooperative trajectory planning of UCAVs, including the
objective function and the constraints, is mapped to a lower-
dimensional output space (here, the dimension is one).
Obviously, the dynamic constraints of this system (27) can
be automatically satisfied. Therefore, the Problem 2 can be
redefined as follows.

Problem 3 (CTOCP-VTD in the output space). Consider

min 𝐽 (V) =
𝑁V

∑

𝑗=1

𝐽
𝑗

(V𝑗)

=

𝑁V

∑

𝑗=1

[ (V𝑗, V
𝑗

, . . . , 𝑇
𝑗

𝑓
)

+∫

1

0

𝑓
𝑗

(V𝑗, V
𝑗

, . . . , 𝑡) 𝑑𝑡]

s.t. 𝜙
𝑗

[V𝑗 (0) , V𝑗 (1) , 𝑇𝑗
𝑓
] = 0,

𝛿
𝑗

(V𝑗, V
𝑗

, . . . , ) ≤ 0,

𝜑
𝑗

(V𝑗, V
𝑗

, . . . , V𝑘, V
𝑘

, . . .) ≤ 0,

𝑓
𝑗

𝑇
(𝑡
𝑗

𝑓
, 𝑡
𝑘

𝑓
) ≤ 0, ∀𝑗 ̸= 𝑘, 𝑗, 𝑘 = 1, 2, . . . , 𝑁V.

(34)

4.2. Collocation Using Gauss Pseudospectral Method. In order
to solve the Problem 3 through a NLP algorithm, the PCP
history V(𝑡) should be discretized into 𝑐 = 0, 1, . . . , 𝑁

𝑐
, 𝑁
𝑐
+1

nodes, with V
0
= V(𝑡
0
) and V

𝑁
𝑐
+1

= V(𝑡
𝑁
𝑐
+1
). In this paper,

GPM is selected as the discretization method [12], which
is an orthogonal collection method where the collocation
points are the Legendre-Gauss (LG) points. Similar to other
pseudospectral methods, a finite basis of global interpolating
polynomials is used to approximate the state and control
space at a set of discretization nodes in the GPM and then the
optimal control equations can be transformed into nonlinear
algebra equations, such that the OCP can be solved by a NLP
algorithm.

The standard interval considered here is denoted as 𝜏 ∈

[−1, 1]. By using a linear transformation, the virtual time 𝑡
can be expressed as a function of 𝜏 via

𝑡 =

[(𝑡
𝑓
− 𝑡
0
) 𝜏 + (𝑡

𝑓
+ 𝑡
0
)]

2
=
(𝜏 + 1)

2
. (35)

Let 𝜏
1
< ⋅ ⋅ ⋅ < 𝜏

𝑁
𝑐

be collocation points in (−1, 1) and
𝜏
0
= −1, 𝜏

𝑓
= 1. The time history of the approximated PCP at

the𝑁
𝑐
LG points is given by

V (𝜏) ≈ V (𝜏) =
𝑁
𝑐

∑

𝑐=0

V (𝜏
𝑐
) 𝐿
𝑐
(𝜏) , (36)

where V(𝜏
𝑐
) is an approximant at the node 𝜏

𝑐
and the base

function 𝐿
𝑐
(𝜏) is the Lagrange interpolating polynomial of

degree𝑁
𝑐
, expressed as

𝐿
𝑐
(𝜏) =

𝑁
𝑐

∏

𝑙=0, 𝑙 ̸= 𝑐

𝜏 − 𝜏
𝑙

𝜏
𝑐
− 𝜏
𝑙

, 𝑐 = 0, 1, . . . , 𝑁
𝑐
, (37)

satisfying the isolation property

𝐿
𝑐
(𝜏
𝑙
) = 𝛿
𝑐𝑙
= {

1, 𝑐 = 𝑙,

0, 𝑐 ̸= 𝑙.
(38)
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Figure 2: Two collision-free UCAV trajectories with arriving
simultaneously.

And the endpoint can be approximated according to the
following formula:

V (𝜏
𝑓
) ≈ V (𝜏

𝑓
) = V (𝜏

0
) +

𝑡
𝑓
− 𝑡
0

2
×

𝑁
𝑐

∑

𝑐=1

𝑤
𝑐
𝑓 [V (𝜏

𝑐
) , 𝜏
𝑐
] ,

(39)

where 𝜏
𝑐
(𝑐 = 1, . . . , 𝑁

𝑐
) are the LG points and the variables

𝜔
𝑐
are the LG weights given by

𝑤
𝑐
= ∫

1

−1

𝐿
𝑐
(𝜏) 𝑑𝜏. (40)

The derivative of the state can be approximated as the
exact derivative of the interpolating polynomial. Evaluating
the derivative at the LG points results in

V (𝜏
𝑙
) ≈ V (𝜏

𝑙
) =

𝑁
𝑐

∑

𝑐=0

V (𝜏
𝑐
) 𝐿


𝑐
(𝜏
𝑙
)

=

𝑁
𝑐

∑

𝑐=0

V (𝜏
𝑐
)𝐷
𝑙𝑐
, 𝑙 = 1, . . . , 𝑁

𝑐
,

(41)

whereD = [𝐷
𝑙𝑐
] ∈ R𝑁𝑐×(𝑁𝑐+1) is a differential matrix and can

be offline determined as

𝐷
𝑙𝑐
=

𝑁
𝑐

∑

𝑘
1
=0

∏
𝑁
𝑐

𝑘
2
=0,𝑘
2
̸= 𝑐,𝑘
1

(𝜏
𝑙
− 𝜏
𝑘
2

)

∏
𝑁
𝑐

𝑘
2
=0,𝑘
2
̸= 𝑐
(𝜏
𝑐
− 𝜏
𝑘
2

)

,

𝑙 = 1, . . . 𝑁
𝑐
, 𝑐 = 0, . . . , 𝑁

𝑐
.

(42)

The discretized states and controls satisfying the vehicle
dynamics can be computed by ensuring that equation

𝑁
𝑐

∑

𝑐=0

V (𝜏
𝑐
)𝐷
𝑙𝑐
−

𝑡
𝑓
− 𝑡
0

2
𝑓 [V (𝜏

𝑙
) , 𝜏
𝑙
] = 0, 𝑙 = 1, . . . , 𝑁

𝑐
.

(43)
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Figure 3: PCP histories of two UCAVs.

As described above, the continuous OCP can be trans-
formed to the discretized NLP problem. The parameters to
be optimized are the PCP nodes v = [V

𝑐
]
𝑐=0,1,...𝑁

𝑐
+1
. When

the prey motion 𝜌
𝑝,𝑐

is equal to the aggressor motion 𝜌
𝑎,𝑐

for 𝑐 = 0,𝑁
𝑐
+ 1, one can assume that V

0
= V
𝑁
𝑐

= 1, so
the boundary conditions are no longer considered. And the
discretized NLP problem can be denoted as follows.

Problem 4 (CTP-NLP). Its standard form is denoted as

min 𝐽 (v) =
𝑁V

∑

𝑗=1

𝐽
𝑗

(v𝑗)

=

𝑁V

∑

𝑗=1

[

[

Φ
𝑗

[v𝑗, 𝑇𝑗
𝑓
]

+

𝑡
𝑓
− 𝑡
0

2

𝑁
𝑐

∑

𝑐=1

𝑓
𝑗

(v𝑗, 𝑇𝑗
𝑓
)𝜔
𝑐
]

s.t. 𝛿
𝑗

𝑙
[v𝑗] ≤ 0, 𝑙 = 1, . . . , 𝑁

𝑐
,

𝜑
𝑗

[v𝑗, v𝑘] ≤ 0,

𝑓
𝑗

𝑇
(𝑡
𝑗

𝑓
, 𝑡
𝑘

𝑓
) ≤ 0, ∀𝑗 ̸= 𝑘, 𝑗, 𝑘 = 1, 2, . . . , 𝑁V,

(44)

where V𝑗 = [V𝑗
𝑐
]
𝑐=1,...𝑁

𝑐

is the vector form of the discretized
PCP.

Then the resulting Problem 4 can be solved through well-
developed algorithms, such as the SQP algorithm. In this
paper, TOMLAB/SNOPT software toolbox is chosen due to
its advantages on solution effectiveness for the large-scale
NLP problems [40].

4.3. Convergence and Initial Guess. As analyzed in [41],
the GPM exhibits global convergence properties in many
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Figure 4: Example 1—state and control time histories of two UCAVs.

applications. In addition, the convergence of the virtual
motion camouflage has been proved by Xu et al. [21, 23],
in which [23] showed that if the problem was only one-
dimensional, the VMC based trajectory designmethod could
converge to the optimal solution, but when the problem was
multi-dimensional and highly nonlinear, the result might
be suboptimal in the full solution space, and [21] showed
that the VMC framework together with the pseudospectral
discretizationmethod could converge to the optimal solution.

By Introducing elastic programming concept and some
advances in bothmathematical programming techniques and
pseudospectral methods, Ross and Gong [42] designed a
guess-free trajectory optimization algorithm.These advances
have the effect of eliminating the guessing problem in the
trajectory optimization, which has been used in the current
GPM algorithm. In the proposed VMC method, the motion
of the virtual prey and a reference point are guessed.However,
both of them have direct physical relation to the problem.
Typically the virtual prey motion is selected according to the
boundary conditions and a proper guess is not a difficult task
[23]. In this paper, the trivial guess for the reference point
can be the initial point (IP), and an initial guess of V

𝑐
= 1

is chosen for 𝑐 = 1, . . . , 𝑁
𝑐
.The virtual prey motion is defined

as a 2-order curve, determined by the initial and terminal
conditions.

5. Numerical Examples

The basic ideas presented in this paper are illustrated in
the following three examples. The specific vehicle platform
used in simulations is the Storm shadow UCAV. Its relevant
parameters are all taken from [43], summarized in Table 1.

The experimental test environment is a rectangle area of
30 × 40 km2, as shown in Figure 2, where the NFZ1 caused
by the severe weather condition is modeled as a cuboid
with infinite altitude, and the NFZs caused by enemy threats
are modeled as two hemispheres, denoted as THT1 and
THT2. According to Figure 1, the shape parameters can be
set as follows: for the NFZ1, 𝑘

1
= 𝑘
2

= 𝑘
3

= 𝑘
4

=

1, 𝑝 = 2, and the length of a side is set as 8 km; for
THT1 and THT2, 𝑘

1
= 𝑘
2

= 𝑘
4

= 1, 𝑘
3

= 2, 𝑝 =

6, and the radius of the threats can be set as 7 km and
9 km, respectively. In order to avoid contact, a safe buffer
𝑏
𝑠
(𝑏
𝑠
= 200m) is added around the outside edge of each

obstacle/threat boundary. All the results presented below are
generated using TOMLAB/SNOPT software toolbox on a
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2.4GHz CPU and 2G RAM computer runningWindows XP
and MATLAB R2009b. Table 2 summarizes the parameters
used in the algorithm. To simplify the problem, the same
weight coefficients for the objective function of each UCAV
are set, and it is assumed that the target assignment is already
completed before.

5.1.𝐸𝑥𝑎𝑚𝑝𝑙𝑒 1: Cooperative Trajectories of TwoUCAVsArriv-
ing Simultaneously. In this example, two UCAVs coopera-
tively attack two stationary ground targets while avoiding a
series of static obstacles/threats detected and collision with
each other en route and meeting aircraft dynamical con-
straints, especially simultaneous arrival constraint. UCAV1
and UCAV2 start at each initial point, that is, IP1 (10, 2,
2) km and IP2 (17, 2, 2) km. Then they fly into the AARs of
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Figure 7: Distance between each pair of UCAVs.

two targets, TAR1 (4, 34, 0) km and TAR2 (13, 40, 0) km,
respectively. The initial remaining three states and control
inputs of each UCAV are preset as 𝜌1

𝑟,0
= (𝑉

1

0
, 𝛾
1

0
, 𝜓
1

0
) =

(220m/s, 0∘, 90∘), 𝜌2
𝑟,0

= (𝑉
2

0
, 𝛾
2

0
, 𝜓
2

0
) = (220m/s, 0∘, 140∘),

and u1
0
= u2
0
= (𝜇
0
, 𝑛
𝑥,0

, 𝑛
𝑧,0
) = (0

∘

, 0 g, 1 g), and the terminal
remaining three states of each UCAV are predetermined

as 𝜌1
𝑟,𝑓

= (
_
𝑉

1

𝑓
,
_
𝛾
1

𝑓
,

_
𝜓

1

𝑓
) = (250m/s, 0∘, 110∘) and 𝜌2

𝑟,𝑓
=

(
_
𝑉

2

𝑓
,
_
𝛾
2

𝑓
,

_
𝜓

2

𝑓
) = (250m/s, 0∘, 160∘. In VMC framework, the

reference point 𝜌ref for each UCAV is presumed as its IP,
and the virtual prey path is predefined as a 2-order curve,
determined by the initial and terminal conditions.

Figure 2 shows the overall collision-free attack trajecto-
ries of two UCAVs, whose total flight time is equal, equaling
to 124 s. It means that two UCAVs arrive simultaneously.
As can be seen from Figure 2, along the resulting smooth
trajectories, the UCAVs can avoid collision with all obstacles,
threats, and the other en route and then successfully fly
into the AARs (fuchsin areas) to perform weapon delivery
missions. In addition, the approximate weapon trajectories
are drawn to illustrate the attack process.The PCP histories of
two UCAVs are shown in Figure 3, which are smooth and lie
in the range from 0 to 1. And the time histories of the UCAVs’
states (𝑉, 𝛾, 𝜓) and control inputs (𝜇, 𝑛

𝑥
, 𝑛
𝑧
) are shown in

Figure 4. It is clear that the constraints on these variables,
especially the cooperative constraints, are all satisfied (see
Tables 1 and 2), which means that the resulting trajectories
are feasible and safe.

5.2. 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 2: Cooperative Trajectories of Multi-UCAV
Arriving in Sequence. In this example, three UCAVs attack
two stationary ground targets cooperatively. The only addi-
tional requirement is that the UCAVs arrive at their AARs
in sequence rather than simultaneously, and the intervals
between UCAVs are set to 20 s and 30 s, respectively, denoted
as Δ
12

= 20 s and Δ
23

= 30 s. The coordinates of the
initial points IP1, IP2 and two targets TAR1, TAR2 are the
same with those in Example 1, and the third initial point is
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Figure 8: Example 2—state and control time histories of three UCAVs.

IP3 (4, 2, 2) km. The result of the previously finished target
assignment is that the UCAV1 and UCAV2 attack TAR1 and
UCAV3 attacks the other one. The initial remaining three
states and control inputs of the UCAV3 are preset as 𝜌3

𝑟,0
=

(𝑉
3

0
, 𝛾
3

0
, 𝜓
3

0
) = (220m/s, 0∘, 45∘) and u3

0
= (𝜇
0
, 𝑛
𝑥,0

, 𝑛
𝑧,0
) =

(0
∘

, 0 g, 1 g), and the terminal remaining three states of the

UCAV3 are predetermined as 𝜌3
𝑟,𝑓

= (
_
𝑉

3

𝑓
,
_
𝛾
3

𝑓
,

_
𝜓

3

𝑓
) =

(220m/s, 0∘, 160∘). In VMC framework, the reference point
and the virtual prey path are predetermined, using the same
strategy as the one in Example 1.

The overall collision-free attack trajectories of multi-
UCAV are shown in Figure 5, and the total flight time of three
UCAVs is 100 s, 120 s, and 150 s, respectively. It can be clearly
demonstrated that UCAVs can avoid all obstacles or threats
and successfully fly into the AARs in sequence to perform
the weapon delivery. The PCP histories of three UCAVs are
shown in Figure 6. And Figure 7 shows the distance between
each pair of UCAVs. From it, one can find that the minimum
distance between eachUCAV ismore than theminimal safety
radius of 𝑑safe (𝑑safe = 500m); that is, the UCAVs can avoid
collision with each other en route. Figure 8 shows the time

Table 1: State and control constraints of UCAVs.

Item Minimum value Maximum value
Flight altitude (m) 𝑧min = 200 𝑧max = 8 000

Airspeed (m/s) 𝑉min = 60 𝑉max = 300

Flight-path angle (deg) 𝛾min = −89 𝛾max = 89

Roll angle (deg) 𝜇min = −80 𝜇max = 80

Tangential load factor (g) 𝑛
𝑥,min = −0.725 𝑛

𝑥,max = 0.91

Normal load factor (g) 𝑛
𝑧,min = −3.2 𝑛

𝑧,max = 8

Roll angle rate (deg/s) �̇�min = −30 ̇𝜇max = 30

Rate of change of tangential
load factor (g/s)

̇𝑛
𝑥,min = −0.2 ̇𝑛

𝑥,max = 0.2

Rate of change of normal
load factor (g/s)

̇𝑛
𝑧,min = −2 ̇𝑛

𝑧,max = 2

histories of the UCAVs’ states (𝑉, 𝛾, 𝜓) and control inputs
(𝜇, 𝑛
𝑥
, 𝑛
𝑧
). Obviously, the resulting trajectories are feasible

and safe, since all the constraints listed in Tables 1 and 2 are
satisfied.
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Table 2: Parameter values for the algorithm.

Item Parameter Value
Minimum safety radius (m) 𝑑safe 500

Weighting factors of the objective function
𝑤
𝑡

0.3
𝑤
𝑝

0.4
𝑤
𝑟

0.3

Weighting factors of the robust subobjective
𝑤
1

𝑟
0.5

𝑤
2

𝑟
0.3

𝑤
3

𝑟
0.2

Safe buffer of NFZs (m) 𝑏
𝑠

200
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Figure 9: Comparison of two collision-free UCAV trajectories with
arriving simultaneously.

In order to validate the convergence rate of VMC based
algorithm in cooperative trajectory planning for multi-
UCAV further, the comparative experiments are carried out
with different numbers of UCAVs (𝑁V is set as 1, 2, 3, 5, 8,
and 10, resp.) and the same number of nodes (𝑁

𝑐
= 20). The

performance comparison of multi-UCAV is summarized in
Table 3. As can be seen clearly, along with the increase of the
number of UCAVs, the average planning time is rising at a
slow rate, which is acceptable for the preplanning applica-
tions. Particularly, for one UCAV, the average planning time
is 2.21 s. When the number of UCAVs increases to 10, the
average planning time increases by onlymore than quadruple
of that for one UCAV, which is 9.62 s.

5.3. Comparison between VMC Based Method and GPM
Based Direct Collocation Method. To further evaluate the
performance of the proposed algorithm, a recently developed
optimal trajectory generation method, GPM based direct
collocationmethod, is used for comparison,which is basically
converting the original optimal control problem to a NLP
problem via the GPM directly. In the following comparative
experiments, Example 1 is simulated again using the two
algorithms, respectively, performed on the same desktopwith
different numbers of nodes (𝑁

𝑐
is set as 10, 15, 20, and 30,

resp.). All the results are presented below.

Table 3: Performance comparison with the increase of the number
of UCAVs.

Number of
UCAVs (𝑁

𝑣
)

Number of
optimization
variables

Average
planning
time (s)

Ratio of the
planning time

(%)
1 (20 × 1 + 1) × 1 = 21 2.21 —
2 (20 × 1 + 1) × 2 = 42 2.83 128.05
3 (20 × 1 + 1) × 3 = 63 3.32 150.23
5 (20× 1+1)× 5 = 105 4.93 223.08
8 (20× 1+1)× 8 = 168 7.70 348.42
10 (20×1+1)×10 = 210 9.62 435.29

Figures 9 and 10 show the comparative solutions attained
by using the GPM and VMC based methods, respectively.
It can be seen that the trajectories and the state and control
time histories of these two algorithms are similar. The
detailed performance comparison is summarized in Table 4.
With comparison, when the number of nodes increases, the
number of optimization variables in GPM is much more
than VMC. As a result, the computational speed of VMC is
more than an order of magnitude faster than GPM, while the
optimization performance has only small loss.

In order to compare the convergence rate and analyze the
impacts of the number of UCAVs on the computation time
betweenVMCandGPMfurther, the comparative experiment
is run multiple times with different numbers of UCAVs (𝑁V
is set as an integer from 1 to 10, resp.) and the same number
of nodes (𝑁

𝑐
= 20). Figure 11 shows the change of the average

planning time required to solve the optimization problem
as the number of UCAVs increases. It can be seen that the
increase of the number of UCAVs results in an exponential
increase of the required computation time for GPM. In
contrast, the computation time for VMC based algorithm
increases slowly. When the number of UCAVs increases to
10, the number of the optimization variables for GPM is up
to 1810. However, for VMC, the number is only 210. Since the
required computation time strongly depends on the number
of optimization variables, the computational time required
by VMC is more than an order of magnitude less than that
required by GPM. Maybe it can be concluded that the larger
the number of UCAVs is, the more obvious the advantage of
VMC to GPM is.

6. Conclusions

This paper is devoted to explore the cooperative collision-free
trajectory planning for multiple UCAVs in performing the
CA/GTA missions. The main contributions of the paper are
as follows. Firstly, the cooperative trajectory planning prob-
lem under consideration is mathematically formulated as a
cooperative trajectory optimal control problem (CTOCP).
In order to consider the weapon delivery constraints, an
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Figure 10: Comparison of state and control time histories.

Table 4: Comparison between GPM and VMC for Example 1.

Method 𝑁
𝑐

Number of optimization variables Objective
function value

Average planning
time (s)

Ratio of the planning
time (%)

GPM

10 (10 × 9 + 1) × 2 = 182 1.776 12.31 —
15 (15 × 9 + 1) × 2 = 272 1.731 16.28 —
20 (20 × 9 + 1) × 2 = 362 1.698 20.31 —
30 (30 × 9 + 1) × 2 = 542 1.705 28.67 —

VMC

10 (10 × 1 + 1) × 2 = 22 1.851 2.23 18.12
15 (15 × 1 + 1) × 2 = 32 1.840 2.46 15.11
20 (20 × 1 + 1) × 2 = 42 1.769 2.83 13.93
30 (30 × 1 + 1) × 2 = 62 1.731 3.18 11.09

approximate allowable attack region model is proposed and
integrated into the problem formulation. Secondly, a par-
ticular virtual motion camouflage approach combining with
differential flatness theory, Gauss pseudospectral method,
and nonlinear programming is used to develop the trajectory
planner for solving CTOCP. The advantages of this method
are that it can automatically satisfy all boundary conditions
and use any models and any performance indexes, does not
require numerical integration of differentiation of the state

equations, and transforms the OCP into a NLP problem of
very low dimension. Finally, in order to handle the temporal
constraints, the notion of the virtual time is introduced into
the virtualmotion camouflage approach to realize the spatial-
temporal cooperation.

The proposed approach is validated by numerical exam-
ples. The results show that the approach is able to gener-
ate both feasible and near-optimal attack trajectories with
meeting the spatial and temporal constraints very efficiently.
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Figure 11: Comparison between GPM and VMC with the increase
of the number of UCAVs.

Moreover, the convergence rate and average planning time of
the method and optimality of the generated trajectories are
evaluated via a detailed comparison with GPM based direct
collocation method. The results show that the computational
speed of virtual motion camouflage approach is more than
an order of magnitude faster than GPM, at small loss of
optimality.

For the future work, we will analyze some uncertain
factors in the true battlefield environment and carry out the
research on the real-time cooperative trajectory planning. For
the presence of a larger number of UCAVs, we will make
further efforts to exploit more efficient trajectory planning
algorithm and improve the time cooperative strategy. More-
over, we will try to study another important aspect about how
to plan in the opposability battlefield environment.
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