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In the past, the proportional and additive hazard rate models have been investigated in the works. Nanda andDas (2011) introduced
and studied the dynamic proportional (reversed) hazard ratemodel. In this paper we study the dynamic additive hazard ratemodel,
and investigate its aging properties for different aging classes. The closure of the model under some stochastic orders has also been
investigated. Some examples are also given to illustrate different aging properties and stochastic comparisons of the model.

1. Introduction

It is common practice in statistical analysis that covariates
are often introduced to account for factors that increase
the heterogeneity of a population. When the effect of a
factor under study has a multiplicative (or additive) effect
on the baseline hazard function, we have a proportional (or
an additive) hazard model. The latter category of model is
preferred in any situation. For example, in tumorigenicity
cases, where the dose effect on tumor risk is of interest, the
excess risk becomes an important factor. Clinical trials that
seek the effectiveness of treatments often experience lag times
of treatment effectiveness after which treatment procedures
will be in full effect.

In reliability and survival analysis, devices or systems
always operate in a changing environment. The conditions
under which systems operate can be harsher or gentler in
modeling lifetime of the devices or systems.Themost known
Cox [1] model is that the changing conditions are assumed to
act multiplicatively on the baseline hazard rate. This model
has been widely used in many experiments where the time to
systems’ failure depends on a group of covariates, which may
be regarded as different treatments, operating conditions,
heterogeneous environments, and so forth. P. L. Gupta and R.
C. Gupta [2] studied the relation between the conditional and
unconditional failure rates inmixtureswhen the distributions

in the mixture follow the proportional hazard rate. For
further research, one may see Cox and Oakes [3], Kumar and
Westberg [4], Dupuy [5], Lau [6], Zhao and Zhou [7], X. Li
and Z. Li [8], and Yu [9].

R. C. Gupta and R. D. Gupta [10] proposed and studied
the proportional reversed hazard model to analyze failure
time data. For more details on this model, see Gupta andWu
[11], X. Li and Z. Li [12], and so forth.

Recently, Nanda and Das [13] introduced the dynamic
proportional hazard rate (DPHR) model and the dynamic
proportional reversed hazard rate (DPRHR) model and
studied their properties for different aging classes.The closure
of the models under different stochastic orders has also been
studied.

Aranda-Ordaz [14] first dealt with an additive hazard
model

ℎ (𝑡 | 𝑍 (𝑠) , 𝑠 ≤ 𝑡) = 𝛽

𝑧 (𝑡) + ℎ

0
(𝑡) , for 𝑡 ≥ 0, (1)

where ℎ
0
(𝑡) is a baseline hazard rate and a time-dependent

covariate vector 𝑍, representing the changes in the operating
conditions, and 𝛽 is a vector of parameters. For more details,
one may see Cox and Oakes [3], Thomas [15], Breslow and
Day [16], Finkelstein and Esaulova [17], Lim and Zhang [18],
and so forth.
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Assume that𝑋 and𝑌 are the lifetimes of two systemswith
corresponding hazard rate functionsℎ

𝑋
(𝑡) andℎ

𝑌
(𝑡) for 𝑡 ≥ 0.

Let 𝑐(𝑡) = 𝛽𝑧(𝑡); themodel (with time-dependent covariates)
in (1) would reduce to the form

ℎ
𝑌
(𝑡) = 𝑐 (𝑡) + ℎ

𝑋
(𝑡) , ∀𝑡 ≥ 0, (2)

which is named as dynamic additive hazard rate (DAHR)
model.

Sometimes the hazard rate functions of𝑋 and 𝑌may not
be additive over the whole interval [0,∞), but they may be
additive differently from different intervals. Specifically, they
may be related as

ℎ
𝑌
(𝑡) = 𝑐

𝑖
+ ℎ
𝑋
(𝑡) , 𝑡

𝑖−1
≤ 𝑡 ≤ 𝑡

𝑖
(3)

for 𝑖 = 1, 2, . . ., and 𝑡
0
= 0, where 𝑐

𝑖
(𝑖 = 1, 2, . . .) are

some constants. When the intervals [𝑡
𝑖−1
, 𝑡
𝑖
)(𝑖 = 1, 2, . . .)

become smaller and smaller, amodel as in (2)will be naturally
obtained.

In order to guarantee that ℎ
𝑌
(𝑡) is a hazard rate function

of a nonnegative random variable 𝑌, the following lemma is
given.

Lemma 1. Assume that 𝑐(𝑡) and ℎ
𝑋
(𝑡) are defined before.

Then, for 𝑡 ≥ 0, ℎ
𝑌
(𝑡) = 𝑐(𝑡) + ℎ

𝑋
(𝑡) is a hazard rate function

if and only if the following conditions hold:

(i) 𝑐(𝑡) + ℎ
𝑋
(𝑡) ≥ 0, for all 𝑡 ≥ 0;

(ii) ∫∞
0
(𝑐(𝑡) + ℎ

𝑋
(𝑡))𝑑𝑡 = ∞;

(iii) if ∫𝑡0
0
ℎ
𝑋
(𝑡)𝑑𝑡 = ∞, then

∫

𝑡0

0

(𝑐 (𝑡) + ℎ
𝑋
(𝑡)) 𝑑𝑡 = ∞, (4)

for some 𝑡
0
< ∞.

In Section 2 of the paper, we discuss some aging proper-
ties of the DAHR model. In Section 3, the closure of DAHR
model under different stochastic orderings is studied. Some
examples are given to illustrate the results concerned in
Sections 2 and 3.

Throughout the paper, assume that all random variables
under consideration have 0 as the common left end point of
their supports, and the terms increasing and decreasing stand
for monotone nondecreasing and monotone nonincreasing,
respectively.

2. Aging Properties of DAHR Model

At first we introduce some concepts of aging notions that will
be useful in the section. Recall that a random variable 𝑋 is
said to be (a) increasing in failure rate (IFR) [decreasing in
failure rate (DFR)] if ℎ

𝑋
(𝑡) is increasing [decreasing] in 𝑡 ≥ 0;

(b) increasing in failure rate in average (IFRA) [decreasing in
failure rate in average (DFRA)] if ∫𝑡

0
ℎ
𝑋
(𝑢)𝑑𝑢/𝑡 is increasing

[decreasing] in 𝑡 ≥ 0; (c) new better than used (NBU) [new
worse than used (NWU)] if 𝐹(𝑥 + 𝑡) ≤ [≥]𝐹(𝑡)𝐹(𝑥), for all

𝑡, 𝑥 ≥ 0; (d) new better than used in failure rate (NBUFR)
[new worse than used in failure rate (NWUFR)] if ℎ

𝑋
(𝑡) ≥ (≤

)ℎ
𝑋
(0), for all 𝑡 ≥ 0; (e) new better than used in failure rate

average (NBAFR) [newworse thanused in failure rate average
(NWAFR)] if∫𝑡

0
ℎ
𝑋
(𝑢)𝑑𝑢/𝑡 ≥ [≤]ℎ

𝑋
(0), for all 𝑡 ≥ 0. Formore

discussions on properties of aging notions, readers may refer
to Barlow and Proschan [19], Müller and Styan [20], and so
forth.

In the following we give some aging closure properties
between the random variables 𝑋 and 𝑌 under some condi-
tions of 𝑐(𝑡). Some results are obvious and hence their proofs
are omitted.

Proposition 2. If the random variable𝑋 is IFR (DFR) and, for
𝑡 ≥ 0, 𝑐(𝑡) is increasing (decreasing), then the random variable
𝑌 is IFR (DFR).

In the following, we give two examples related to this
proposition. Example 3 is an application of the proposition.
Example 4 indicates that the condition of 𝑐(𝑡) is sufficient but
not a necessary one.

Example 3. Let 𝑋 be a random variable having Weibull
distribution with hazard rate function ℎ

𝑋
(𝑡) = 2𝑡, 𝑡 ≥ 0.

Take 𝑐(𝑡) = 𝑡 for 𝑡 ≥ 0. It is obvious that 𝑐(𝑡) satisfies all
the conditions of Lemma 1. Obviously, if 𝑋 is IFR and 𝑐(𝑡)

is increasing in 𝑡, hence 𝑌 is IFR.

Example 4. Let 𝑋 be a random variable having Weibull
distribution with hazard rate function ℎ

𝑋
(𝑡) = 2𝑡, 𝑡 ≥ 0.

Let 𝑐(𝑡) = (2 + 𝑡
2
)/(1 + 𝑡) for 𝑡 ≥ 0. It can be verified

that ℎ
𝑋
(𝑡) + 𝑐(𝑡) is increasing in 𝑡 ≥ 0, and hence 𝑌 is IFR.

However, 𝑐(𝑡) is decreasing in 𝑡 ∈ [0, √3 − 1) but increasing
in 𝑡 ∈ [√3 − 1, +∞).

Proposition 5. If the random variable 𝑋 is IFRA (DFRA)
and 𝑐(𝑡) is increasing (decreasing) in 𝑡 ≥ 0, then the random
variable 𝑌 is IFRA (DFRA).

Proof. For 𝑡 ≥ 0, let

𝑞 (𝑡) =
∫
𝑡

0
ℎ
𝑌
(𝑥) 𝑑𝑥

𝑡
=
∫
𝑡

0
(𝑐 (𝑥) + ℎ

𝑋
(𝑥)) 𝑑𝑥

𝑡
. (5)

Note that 𝑋 is IFRA (DFRA) and 𝑐(𝑡) is increasing (decreas-
ing) implying that

𝑞


(𝑡) =
𝑐 (𝑡) + ℎ

𝑋
(𝑡)

𝑡
−
∫
𝑡

0
(𝑐 (𝑥) + ℎ

𝑋
(𝑥)) 𝑑𝑥

𝑡2

=
∫
𝑡

0
(𝑐 (𝑡) − 𝑐 (𝑥)) 𝑑𝑥

𝑡2
+
𝑡ℎ
𝑋
(𝑡) − ∫

𝑡

0
ℎ
𝑋
(𝑥) 𝑑𝑥

𝑡2

≥ 0 (≤ 0) .

(6)

Hence the desired result follows directly.

Example 3 can be regarded as an application of the above
proposition. Example 6 below indicates that the condition of
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𝑐(𝑡) is sufficient but not a necessary one for the monotone
property of 𝑌.

Example 6. Let 𝑋 be a random variable having Weibull
distribution with hazard rate function ℎ

𝑋
(𝑡) = 2𝑡, 𝑡 ≥ 0.

Take 𝑐(𝑡) = −𝑡 for 𝑡 ≥ 0. It is obvious that 𝑐(𝑡) satisfies all the
conditions of Lemma 1. Obviously,𝑋 is IFRA and 𝑌 is IFRA.
However, 𝑐(𝑡) is decreasing in 𝑡 ≥ 0.

Proposition 7. If the random variable𝑋 is NBU (NWU) and
𝑐(𝑡) is increasing (decreasing) in 𝑡 ≥ 0, then the random
variable 𝑌 is NBU (NWU).

Proof. We only give the proof for the case of NBU. In order to
prove that 𝑌 is NBU, it is sufficient to prove that, for all 𝑡 ≥ 0

and 𝑥 ≥ 0,

𝑒
−∫
𝑥+𝑡

0
(𝑐(𝑢)+ℎ𝑋(𝑢))𝑑𝑢 ≤ 𝑒

−∫
𝑥

0
(𝑐(𝑢)+ℎ𝑋(𝑢))𝑑𝑢

× 𝑒
−∫
𝑡

0
(𝑐(𝑢)+ℎ𝑋(𝑢))𝑑𝑢.

(7)

It is equivalent to

𝑒
−∫
𝑥+𝑡

𝑡
(𝑐(𝑢)+ℎ𝑋(𝑢))𝑑𝑢 ≤ 𝑒

−∫
𝑥

0
(𝑐(𝑢)+ℎ𝑋(𝑢))𝑑𝑢. (8)

That is,

𝑒
−∫
𝑥

0
(𝑐(𝑢+𝑡)+ℎ𝑋(𝑢+𝑡))𝑑𝑢 ≤ 𝑒

−∫
𝑥

0
(𝑐(𝑢)+ℎ𝑋(𝑢))𝑑𝑢. (9)

Note that𝑋 is NBU which implies that

𝑒
−∫
𝑥+𝑡

0
ℎ𝑋(𝑢)𝑑𝑢 ≤ 𝑒

−∫
𝑥

0
ℎ𝑋(𝑢)𝑑𝑢 ⋅ 𝑒

−∫
𝑡

0
ℎ𝑋(𝑢)𝑑𝑢. (10)

That is,

𝑒
−∫
𝑥

0
ℎ𝑋(𝑢+𝑡)𝑑𝑢 ≤ 𝑒

−∫
𝑥

0
ℎ𝑋(𝑢)𝑑𝑢. (11)

From the fact that 𝑐(𝑡) is increasing and (11), (9) holds,
and hence the desired result follows.

Example 3 is an application of the above proposition.
The following example indicates that the condition of 𝑐(𝑡) is
sufficient but not a necessary one for the NBU property of 𝑌.

Example 8. Assume that 𝑋 is a random variable having
exponential distribution with mean 1/2. It is clear that 𝑋
is NBU. Let 𝑐(𝑡) = (1 + 𝑡)/(1 + 𝑡

2
) for 𝑡 ≥ 0. By some

computations, we have

𝑎 (𝑡, 𝑥) = ∫

𝑥

0

(𝑐 (𝑡 + 𝑢) − 𝑐 (𝑢) + ℎ
𝑋
(𝑡 + 𝑢) − ℎ

𝑋
(𝑢)) 𝑑𝑢

= arctan (𝑡 + 𝑥) + 1

2
ln (1 + (𝑡 + 𝑥)2) − arctan𝑥

+
1

2
ln (1 + 𝑥2) + 2𝑥𝑡.

(12)

It can be verified that 𝑎(𝑡, 𝑥) is nonnegative for 𝑡, 𝑥 ≥ 0 (see
also Figure 1). From (9), we conclude that𝑌 is NBU.However,
it is easily obtained that 𝑐(𝑡) is increasing in [0, √2 − 1) but
decreasing in (√2 − 1, +∞).
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Figure 1: Plot of the 𝑎(𝑡, 𝑥) for (𝑥, 𝑡) ∈ [0, 100] × [0, 80].

Proposition9. If the randomvariable𝑋 is NBUFR (NWUFR)
and 𝑐(𝑡) ≥ 0 (≤ 0) for 𝑡 ≥ 0, then the random variable 𝑌 is
NBUFR (NWUFR).

Proposition 10. If the random variable 𝑋 is NBAFR
(NWAFR) and ∫

𝑡

0
𝑐(𝑢)𝑑𝑢 ≥ (≤)𝑡𝑐(0) for 𝑡 ≥ 0, then the

random variable 𝑌 is NBAFR (NWAFR).

Proof. We only give the proof for the case of NBAFR. It is
noted that 𝑌 is NBAFR which is equivalent to that, for all 𝑡 ≥
0, (∫𝑡
0
(𝑐(𝑢) + ℎ

𝑋
(𝑢))𝑑𝑢)/𝑡 = (∫

𝑡

0
ℎ
𝑌
(𝑢)𝑑𝑢)/𝑡 ≥ ℎ

𝑌
(0) = 𝑐(0) +

ℎ
𝑋
(0). Note that 𝑋 is NBAFR if and only if ∫𝑡

0
ℎ
𝑋
(𝑢)𝑑𝑢/𝑡 ≥

ℎ
𝑋
(0). Hence the desired result follows from the condition

∫
𝑡

0
𝑐(𝑢)𝑑𝑢 ≥ 𝑡𝑐(0).

Remark 11. Example 3 is an application of Propositions 9 and
10. Example 6 can be regarded as a counterexample, which
shows that the condition 𝑐(𝑡) ≥ 0 is a sufficient but not a
necessary one in Propositions 9 and 10.

3. Stochastic Comparisons of DAHR Model

Firstly let us recall the concepts of some stochastic orders
that are closely related to the main results in this section. A
random variable 𝑋 is said to be larger than another random
variable𝑌 in (a) aging intensity ordering (denoted by𝑋≥

𝑎𝑖
𝑌),

if

ℎ
𝑋
(𝑡)

∫
𝑡

0
ℎ
𝑋
(𝑢) 𝑑𝑢

≤
ℎ
𝑌
(𝑡)

∫
𝑡

0
ℎ
𝑌
(𝑢) 𝑑𝑢

, (13)

for all 𝑡 ≥ 0; (b) usual stochastic order (denoted by 𝑋≤
𝑠𝑡
𝑌) if

𝐹
𝑋
(𝑡) ≤ 𝐹

𝑌
(𝑡), for all 𝑡 ≥ 0; (c) hazard rate order (denoted by

𝑋≤
ℎ𝑟
𝑌) if ℎ

𝑋
(𝑡) ≥ ℎ

𝑌
(𝑡), for all 𝑡 ≥ 0; (d) up hazard rate order

(denoted by 𝑋≤
ℎ𝑟↑
𝑌 ) if 𝑋 − 𝑡≤

ℎ𝑟
𝑌, for all 𝑡 ≥ 0; (e) down

hazard rate order (denoted by𝑋≤
ℎ𝑟↓
𝑌) if𝑋≤

ℎ𝑟
[𝑌−𝑡 | 𝑌 > 𝑡],

for all 𝑡 ≥ 0. For more details about stochastic orders, please
refer to Shaked and Shanthikumar [21].
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Figure 2: Plot of the 𝑎(𝑡) for 𝑡 ∈ [0, 2].

In the following we give some sufficient (and necessary)
conditions of stochastic ordering between random variables
𝑋 and 𝑌. Some results are obvious and hence their proofs are
omitted.

Proposition 12. Suppose 𝑋 and 𝑌 are two nonnegative ran-
dom variables satisfying (2). Then, 𝑋≥

𝑎𝑖
(≤
𝑎𝑖
)𝑌 if 𝑐(𝑡)/ℎ

𝑋
(𝑡) is

increasing (decreasing ) in 𝑡 ≥ 0.

Proof. Note that𝑋≥
𝑎𝑖
𝑌 if and only if, for all 𝑡 ≥ 0,

ℎ
𝑋
(𝑡)

∫
𝑡

0
ℎ
𝑋
(𝑢) 𝑑𝑢

≤
𝑐 (𝑡) + ℎ

𝑋
(𝑡)

∫
𝑡

0
(𝑐 (𝑢) + ℎ

𝑋
(𝑢)) 𝑑𝑢

. (14)

It is equivalent to that ∫𝑡
0
(𝑐(𝑡)ℎ

𝑋
(𝑢) − 𝑐(𝑢)ℎ

𝑋
(𝑡))𝑑𝑢 ≥ 0. It

holds if 𝑐(𝑡)/ℎ
𝑋
(𝑡) is increasing in 𝑡 ≥ 0. The proof of the

parenthetical statement is similar.

The following example indicates that the condition of the
monotone property of the 𝑐(𝑡)/ℎ

𝑋
(𝑡) is sufficient but not a

necessary one for the aging intensity ordering between𝑋 and
𝑌.

Example 13. Assume that 𝑋 is a random variable having
exponential distributionwithmean 1/2. Let 𝑐(𝑡) = (1+𝑡2)/(1+
𝑡) for 𝑡 ≥ 0. By some computations, we have

𝑎 (𝑡) = ∫

𝑡

0

(𝑐 (𝑡) ℎ
𝑋
(𝑢) − 𝑐 (𝑢) ℎ

𝑋
(𝑡)) 𝑑𝑢

=
2𝑡 (1 + 𝑡

2
)

1 + 𝑡
− 𝑡
2
+ 2𝑡 + 4 ln (1 + 𝑡) .

(15)

It can be verified that 𝑎(𝑡) ≥ 0 for 𝑡 ≥ 0, and hence 𝑎(𝑡) is
increasing in 𝑡 ≥ 0 (see also Figure 2). Note that 𝑎(0) = 0.
Thus 𝑎(𝑡) ≥ 0, for all 𝑡 ≥ 0, and hence 𝑋≥

𝑎𝑖
𝑌. However, it is

easily obtained that 𝑐(𝑡)/ℎ
𝑋
(𝑡) is decreasing in [0, √2−1) but

increasing in (√2 − 1, +∞).

Proposition 14. Suppose 𝑋 and 𝑌 are two nonnegative ran-
dom variables satisfying (2). Then, 𝑋≥

𝑠𝑡
(≤
𝑠𝑡
)𝑌 if and only if

∫
𝑡

0
𝑐(𝑢)𝑑𝑢 ≥ (≤)0, for all 𝑡 ≥ 0.

The following corollary follows immediately from the
proposition above.

Corollary 15. If 𝑐(𝑡) ≥ (≤)0, for all 𝑡 ≥ 0, then𝑋≥
𝑠𝑡
(≤
𝑠𝑡
)𝑌.

Proposition 16. Suppose 𝑋 and 𝑌 are two nonnegative ran-
dom variables satisfying (2). Then, 𝑋≥

ℎ𝑟
(≤
ℎ𝑟
)𝑌 if and only if

𝑐(𝑡) ≥ (≤)0, for all 𝑡 ≥ 0.

Proposition 17. Suppose that 𝑋 and 𝑌 are two nonnegative
random variables satisfying (2). Then, 𝑋≤

ℎ𝑟↑
(≥
ℎ𝑟↑
)𝑌 if and

only if ℎ
𝑋
(𝑦 + 𝑡) − ℎ

𝑋
(𝑡) − 𝑐(𝑡) ≥ (≤)0, for all 𝑦 ≥ 0 and

𝑡 ≥ 0.

Proof. Note that𝑋≤
ℎ𝑟↑
𝑌 if and only if

exp [− ∫𝑥
0
ℎ
𝑌
(𝑢) 𝑑𝑢]

exp [− ∫𝑥+𝑡
0

ℎ
𝑋
(𝑢) 𝑑𝑢]

(16)

is increasing in 𝑥, for all 𝑡 ≥ 0. It is equivalent to the fact that

exp [∫
𝑥+𝑡

0

ℎ
𝑋
(𝑢) − ∫

𝑥

0

ℎ
𝑌
(𝑢) 𝑑𝑢] (17)

is increasing in 𝑥, which is equivalent to the fact that its
derivative is nonnegative; that is, ℎ

𝑋
(𝑦 + 𝑡) − ℎ

𝑋
(𝑡) − 𝑐(𝑡) ≥ 0,

for all 𝑦 ≥ 0 and 𝑡 ≥ 0. It follows from the condition. The
proof of the parenthetical statement is similar.

Proposition 18. Suppose that 𝑋 and 𝑌 are two non-
negative continuous random variables satisfying (2). Then,
𝑋≤
ℎ𝑟↓
(≥
ℎ𝑟↓
)𝑌 if and only if ℎ

𝑋
(𝑦)−ℎ

𝑋
(𝑡+𝑦)−𝑐(𝑡+𝑦) ≥ (≤)0,

for all 𝑦 ≥ 0 and 𝑡 ≥ 0.

Its proof is similar to that of Proposition 17 and hence is
omitted.
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