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We investigate a slow diffusion equation with nonlocal source and inner absorption subject to homogeneous Dirichlet boundary
condition or homogeneous Neumann boundary condition. Based on an auxiliary function method and a differential inequality
technique, lower bounds for the blow-up time are given if the blow-up occurs in finite time.

1. Introduction

Ourmain interest lies in the following slowdiffusion equation
with nonlocal source term and inner absorption term:

𝑢
𝑡

= Δ𝑢
𝑚

+ 𝑢
𝑝

∫

Ω

𝑢
𝑞
𝑑𝑥 − 𝑘𝑢

𝑠
, (𝑥, 𝑡) ∈ Ω × (0, 𝑡

∗
) , (1)

𝑢 (𝑥, 0) = 𝑢
0

(𝑥) ≥ 0, 𝑥 ∈ Ω, (2)

subject to homogeneous Dirichlet boundary condition

𝑢 = 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑡
∗
) , (3a)

or homogeneous Neumann boundary condition

𝜕𝑢

𝜕V
= 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑡

∗
) , (3b)

where Ω ⊂ R3 is a bounded domain with smooth boundary
𝜕Ω, Ω is the closure of Ω, 𝑚 > 1, 𝑝 ≥ 0, 𝑞 > 0, 𝑠 > 1, 𝑝 + 𝑞 >

max {𝑚, 𝑠}, 𝑘 > 0, V is the unit outer normal vector on 𝜕Ω, and
𝑡
∗ is the possible blow-up time. By the maximum principle,
it follows that 𝑢(𝑥, 𝑡) ≥ 0 in the time interval of existence.
In the present investigation we derive a lower bound for the
blow-up time 𝑡

∗ when Ω ⊂ R3 for the solutions that blow up.
Equation (1) describes the slow diffusion of concentration

of some Newtonian fluids through porous medium or the
density of some biological species in many physical phenom-
ena and biological species theories. It has been known that

the nonlocal source term presents a more realistic model for
population dynamics; see [1–3]. In the nonlinear diffusion
theory, there exist obvious differences among the situations
of slow (𝑚 > 1), fast (0 < 𝑚 < 1), and linear (𝑚 = 1)

diffusions. For example, there is a finite speed propagation
in the slow and linear diffusion situation, whereas an infinite
speed propagation exists in the fast diffusion situation.

The bounds for the blow-up time of the blow-up solutions
to nonlinear diffusion equations have been widely studied in
recent years. Indeed, most of the works have dealt with the
upper bounds for the blow-up time when blow-up occurs.
For example, Levine [4] introduced the concavity method,
Gao et al. [5] employed the way of combining an auxiliary
function method and comparison method with upper-lower
solutions method, andWang et al. [6] used the regularization
method and an auxiliary function method. However, the
lower bounds for the blow-up time are more difficult in
general. Recently, Payne and Schaefer in [7, 8] used a differ-
ential inequality technique and an auxiliary functionmethod
to obtain a lower bound on blow-up time for solution of
the heat equation with local source term under boundary
condition (3a) or (3b). Specially, Song [9] considered the
lower bounds for the blow-up time of the blow-up solution to
the nonlocal problem (1)-(2) when 𝑚 = 1 and 𝑝 = 0, subject
to homogeneous boundary condition (3a) or (3b); for the case
𝑘 = 0, we refer to [10].

Motivated by the works above, we investigate the lower
bounds for the blow-up time of the blow-up solutions to
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the nonlocal problem (1)-(2) with homogeneous boundary
condition (3a) or (3b). Actually, it is well known that if 𝑝 +

𝑞 > max{𝑚, 𝑠} and the initial value is large enough, then the
solutions of our problem blow up in a finite time; one can see
[11]. Unfortunately, our results are restricted inR3 because of
the best constant of a Sobolev type inequality (see [12]).

This paper is organized as follows. In Section 2, we estab-
lish problem (1)-(2) with homogeneous Dirichlet boundary
condition (3a). Problem (1)-(2) with homogeneousNeumann
boundary condition (3b) is considered in Section 3.

2. Blow-Up Time for Dirichlet Boundary
Condition

In this section, we derive a lower bound for 𝑡
∗ if the solution

𝑢(𝑥, 𝑡) ≥ 0 of (1)–(3a) blows up in finite time 𝑡
∗.

Theorem 1. Let 𝑢(𝑥, 𝑡) be a classical solution of (1)–(3a) with
𝑝 + 𝑞 > max{𝑚, 𝑠}; then a lower bound of the blow-up time for
any solutionwhich blows up in 𝐿

𝑛(𝑝+𝑞−1) norm (𝑛 > max {2, (1/

(𝑝+𝑞−1))}) is 𝑡
∗

≥ 1/(2𝐴[𝜂(0)]
2
), where𝐴 is a suitable positive

constant given later and 𝜂(0) = ∫
Ω

𝑢
𝑛(𝑝+𝑞−1)

0
𝑑𝑥.

Proof. Define an auxiliary function of the form

𝜂 (𝑡) = ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)

𝑑𝑥, (4)

with

𝑛 > max{2,

1

𝑝 + 𝑞 − 1

} . (5)

Taking the derivative of 𝜂(𝑡) with respect to 𝑡 gives

𝜂
󸀠
(𝑡) = 𝑛 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)−1

𝑢
𝑡
𝑑𝑥

= 𝑛 (𝑝 + 𝑞 − 1)

× ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)−1

× (Δ𝑢
𝑚

+ 𝑢
𝑝

∫

Ω

𝑢
𝑞
𝑑𝑥 − 𝑘𝑢

𝑠
) 𝑑𝑥

= 𝑛 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)−1

Δ𝑢
𝑚

𝑑𝑥

+ 𝑛 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑝−1

𝑑𝑥 ∫

Ω

𝑢
𝑞
𝑑𝑥

− 𝑛𝑘 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑠−1

𝑑𝑥

= −𝑚𝑛 (𝑝 + 𝑞 − 1) [𝑛 (𝑝 + 𝑞 − 1) − 1]

× ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑚−3

|∇𝑢|
2
𝑑𝑥

+ 𝑛 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑝−1

𝑑𝑥 ∫

Ω

𝑢
𝑞
𝑑𝑥

− 𝑛𝑘 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑠−1

𝑑𝑥

= −

4𝑚𝑛 (𝑝 + 𝑞 − 1) [𝑛 (𝑝 + 𝑞 − 1) − 1]

[𝑛 (𝑝 + 𝑞 − 1) + 𝑚 − 1]
2

× ∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢
(𝑛(𝑝+𝑞−1)+𝑚−1)/2󵄨󵄨

󵄨
󵄨
󵄨

2

𝑑𝑥

+ 𝑛 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑝−1

𝑑𝑥 ∫

Ω

𝑢
𝑞
𝑑𝑥

− 𝑛𝑘 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑠−1

𝑑𝑥,

(6)

where ∇ is the gradient operator.
The application of Hölder inequality to the second term

on the right hand side of (6) yields

∫

Ω

𝑢
𝑞
𝑑𝑥

≤ |Ω|
1−(𝑞/(𝑛+1)(𝑝+𝑞−1))

× (∫

Ω

𝑢
(𝑛+1)(𝑝+𝑞−1)

𝑑𝑥)

𝑞/(𝑛+1)(𝑝+𝑞−1)

,

∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑝−1

𝑑𝑥

≤ |Ω|
𝑞/(𝑛+1)(𝑝+𝑞−1)

× (∫

Ω

𝑢
(𝑛+1)(𝑝+𝑞−1)

𝑑𝑥)

(𝑛(𝑝+𝑞−1)+𝑝−1)/((𝑛+1)(𝑝+𝑞−1))

,

(7)

where |Ω| denotes the volume of Ω.
By (7), it follows from (6) that

𝜂
󸀠
(𝑡) ≤ −

4𝑚𝑛 (𝑝 + 𝑞 − 1) [𝑛 (𝑝 + 𝑞 − 1) − 1]

[𝑛 (𝑝 + 𝑞 − 1) + 𝑚 − 1]
2

× ∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢
(𝑛(𝑝+𝑞−1)+𝑚−1)/2󵄨󵄨

󵄨
󵄨
󵄨

2

𝑑𝑥

+ 𝑛 (𝑝 + 𝑞 − 1) |Ω| ∫

Ω

𝑢
(𝑛+1)(𝑝+𝑞−1)

𝑑𝑥

− 𝑛𝑘 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑠−1

𝑑𝑥.

(8)

Let

V = 𝑢
𝑝+𝑞−1

, 𝑚
1

=

𝑚 − 1

𝑝 + 𝑞 − 1

, 𝛿 =

𝑠 − 1

𝑝 + 𝑞 − 1

; (9)

then

𝜂 (𝑡) = ∫

Ω

V𝑛𝑑𝑥, (10)
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and (8) can be written in the from

𝜂
󸀠
(𝑡) ≤ −

4𝑚𝑛 (𝑝 + 𝑞 − 1) [𝑛 (𝑝 + 𝑞 − 1) − 1]

[𝑛 (𝑝 + 𝑞 − 1) + 𝑚 − 1]
2

× ∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇V(𝑛+𝑚1)/2

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 + 𝑛 (𝑝 + 𝑞 − 1) |Ω|

× ∫

Ω

V(𝑛+1)𝑑𝑥 − 𝑛𝑘 (𝑝 + 𝑞 − 1) ∫

Ω

V𝑛+𝛿𝑑𝑥.

(11)

Now we seek a bound for ∫
Ω
V𝑛+1𝑑𝑥 in terms of 𝜂 and the

first and third terms on the right in (11). First, the application
of Hölder inequality yields

∫

Ω

V𝑛+1𝑑𝑥

≤ (∫

Ω

V𝑛+𝛿𝑑𝑥)

(2𝑛+3𝑚
1
−4)/(2𝑛+3𝑚

1
−4𝛿)

× (∫

Ω

V(6𝑛+3𝑚1)/4𝑑𝑥)

(4−4𝛿)/(2𝑛+3𝑚
1
−4𝛿)

.

(12)

Using the following Sobolev type inequality (see [12]):

(∫

Ω

|0|
𝛽
𝑑𝑥)

1/𝛽

≤ 𝑐(∫

Ω

|∇0|
𝛾

𝑑𝑥)

1/𝛾

, (13)

with 𝛽 = 6, 𝛾 = 2, and 𝑐 = 4
1/3

3
−1/2

𝜋
−2/3, we obtain

∫

Ω

V𝑛+1𝑑𝑥

≤ (∫

Ω

V𝑛+𝛿𝑑𝑥)

(2𝑛+3𝑚
1
−4)/(2𝑛+3𝑚

1
−4𝛿)

× [𝑐
3/2

(∫

Ω

V𝑛𝑑𝑥 ∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇V(𝑛+𝑚1)/2

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥)

3/4

]

(4−4𝛿)/(2𝑛+3𝑚
1
−4𝛿)

.

(14)

Then for some positive constant 𝜇
1
to be determined it

follows that

∫

Ω

V𝑛+1𝑑𝑥

≤ 𝑐
6(1−𝛿)/(2𝑛+3𝑚

1
−4𝛿)

× (𝜇
1

4(1−𝛿)/(2𝑛+3𝑚
1
−4)

∫

Ω

V𝑛+𝛿𝑑𝑥)

(2𝑛+3𝑚
1
−4)/(2𝑛+3𝑚

1
−4𝛿)

× [𝜇
1
(∫

Ω

V𝑛𝑑𝑥 ∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇V(𝑛+𝑚1)/2

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥)

3/4

]

(4−4𝛿)/(2𝑛+3𝑚
1
−4𝛿)

.

(15)

Next, we use the fundamental inequality

𝑎
1

𝑟
1
𝑎
2

𝑟
2

≤ 𝑟
1
𝑎
1

+ 𝑟
2
𝑎
2
, 𝑎
1
, 𝑎
2

> 0, 𝑟
1
, 𝑟
2

> 0,

𝑟
1

+ 𝑟
2

= 1,

(16)

to obtain

∫

Ω

V𝑛+1𝑑𝑥

≤ 𝑐
6(1−𝛿)/(2𝑛+3𝑚

1
−4𝛿)

× [

2𝑛 + 3𝑚
1

− 4

2𝑛 + 3𝑚
1

− 4𝛿

𝜇
1

−(4(1−𝛿)/(2𝑛+3𝑚
1
−4))

× ∫

Ω

V𝑛+𝛿𝑑𝑥 +

4 (1 − 𝛿) 𝜇
1

2𝑛 + 3𝑚
1

− 4𝛿

× (∫

Ω

V𝑛𝑑𝑥 ∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇V(𝑛+𝑚1)/2

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥)

3/4

] .

(17)

Note the fact that, for some positive constant 𝜇
2
,

[(∫

Ω

V𝑛𝑑𝑥)

3

]

1/4

(∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇V(𝑛+𝑚1)/2

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥)

3/4

≤

1

4𝜇
2

3
(∫

Ω

V𝑛𝑑𝑥)

3

+

3𝜇
2

4

∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇V(𝑛+𝑚1)/2

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥.

(18)

Substituting inequality (18) into (17) gives

∫

Ω

V𝑛+1𝑑𝑥 ≤ 𝑐
6(1−𝛿)/(2𝑛+3𝑚

1
−4𝛿)

× {

2𝑛 + 3𝑚
1

− 4

2𝑛 + 3𝑚
1

− 4𝛿

𝜇
1

−(4(1−𝛿)/(2𝑛+3𝑚
1
−4𝛿))

× ∫

Ω

V𝑛+𝛿𝑑𝑥 +

4 (1 − 𝛿) 𝜇
1

2𝑛 + 3𝑚
1

− 4𝛿

× [

1

4𝜇
2

3
(∫

Ω

V𝑛𝑑𝑥)

3

+

3𝜇
2

4

∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇V(𝑛+𝑚1)/2

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥] } .

(19)

Then, by applying inequality (19), it follows from (11) that

𝜂
󸀠
(𝑡) ≤ {3𝜇

2
𝑐
6(1−𝛿)/(2𝑛+3𝑚

1
−4𝛿)

×

(1 − 𝛿) 𝜇
1
𝑛 (𝑝 + 𝑞 − 1) |Ω|

2𝑛 + 3𝑚
1

− 4𝛿

−

4𝑚𝑛 (𝑝 + 𝑞 − 1) [𝑛 (𝑝 + 𝑞 − 1) − 1]

[𝑛 (𝑝 + 𝑞 − 1) + 𝑚 − 1]
2

}

× ∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇V(𝑛+𝑚1)/2

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 + 𝑐
6(1−𝛿)/(2𝑛+3𝑚

1
−4𝛿)

×

(1 − 𝛿) 𝜇
1
𝑛 (𝑝 + 𝑞 − 1) |Ω|

(2𝑛 + 3𝑚
1

− 4𝛿) 𝜇
2

3
(∫

Ω

V𝑛𝑑𝑥)

3
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+ [𝑐
6(1−𝛿)/(2𝑛+3𝑚

1
−4𝛿)

𝜇
1

−4(1−𝛿)/(2𝑛+3𝑚
1
−4)

×

(2𝑛 + 3𝑚
1

− 4) 𝑛 (𝑝 + 𝑞 − 1) |Ω|

2𝑛 + 3𝑚
1

− 4𝛿

−𝑛𝑘 (𝑝 + 𝑞 − 1) ] ∫

Ω

V𝑛+𝛿𝑑𝑥.

(20)

We next choose 𝜇
1
to make the coefficient of ∫

Ω
V𝑛+𝛿𝑑𝑥

vanish and then choose 𝜇
2
to make the coefficient of

∫
Ω

|∇V(𝑛+𝑚1)/2|2𝑑𝑥 vanish. It follows that

𝜂
󸀠
(𝑡) ≤ 𝐴[𝜂 (𝑡)]

3

, (21)

with

𝐴 = 𝑐
6(1−𝛿)/(2𝑛+3𝑚

1
−4𝛿)

𝜇
1
𝑛 |Ω| (1 − 𝛿) (𝑝 + 𝑞 − 1)

(2𝑛 + 3𝑚
1

− 4𝛿) 𝜇
2

3
. (22)

Integrating inequality (21) from 0 to 𝑡 gives

1

[𝜂 (0)]
2

−

1

[𝜂 (𝑡)]
2

≤ 2𝐴𝑡, (23)

from which we derive a lower bound for 𝑡
∗:

𝑡
∗

≥

1

2𝐴[𝜂 (0)]
2
. (24)

This completes the proof of Theorem 1.

3. Blow-Up Time for Neumann Boundary
Condition

In this final section, we discuss a lower bound for 𝑡
∗ if the

solution 𝑢(𝑥, 𝑡) of (1), (2), and (3b) is blow-up in finite time
𝑡
∗.

Theorem 2. Let 𝑢(𝑥, 𝑡) be a classical solution of (1), (2), and
(3b)with𝑝+𝑞 > max{𝑚, 𝑠}; then a lower bound of the blow-up
time for any solution which blows up in 𝐿

𝑛(𝑝+𝑞−1) norm is 𝑡
∗

≥

∫

∞

𝜂(0)
(𝑑𝜉/(𝐾

2
𝜉
(3(𝑛+1))/(𝑛+4−3𝑚

1
)

+ 𝐾
3
𝜉
3
)), where 𝐾

2
and 𝐾

3
are

suitable positive constants given later, respectively, and 𝜂(0) =

∫
Ω

𝑢
𝑛(𝑝+𝑞−1)

0
𝑑𝑥.

Proof. We estimate ∫
Ω
V(6𝑛+3𝑚1)/4𝑑𝑥 in inequality (14). In a

similar way to the process of the derivation of (3.3) in [10],
we have

∫

Ω

V3/2((2𝑛+𝑚1)/2)𝑑𝑥

≤

1

3
3/4

[

3

2𝜌
0

∫

Ω

V(2𝑛+𝑚1)/2𝑑𝑥

+

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

(∫

Ω

V𝑛𝑑𝑥)

1/2

× (∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇V(𝑛+𝑚1)/2

󵄨
󵄨
󵄨
󵄨
󵄨

2

)

1/2

]

3/2

,

(25)

where 𝜌
0

= min
𝜕Ω

𝑥
𝑖
V
𝑖
, 𝑑
2

= max
Ω

𝑥
𝑖
𝑥
𝑖
, 𝑖 = 1, 2, 3, and V

𝑖
is

the 𝑖th component of the unit outer normal vector V on 𝜕Ω.
By virtue of Hölder inequality, we get

∫

Ω

V
(2𝑛+𝑚

1
)/2

𝑑𝑥 ≤ (∫

Ω

V𝑛𝑑𝑥)

1/2

(∫

Ω

V𝑛+𝑚1𝑑𝑥)

1/2

≤ (|Ω|
(1−𝑚
1
)/(𝑛+1)

(∫

Ω

V𝑛+1𝑑𝑥)

(𝑛+𝑚
1
)/(𝑛+1)

)

1/2

× (∫

Ω

V𝑛𝑑𝑥)

1/2

.

(26)

Substituting inequality (26) into (25) yields

∫

Ω

V3/2((2𝑛+𝑚1)/2)𝑑𝑥

≤

1

3
3/4

[

3

2𝜌
0

(|Ω|
(1−𝑚
1
)/(𝑛+1)

(∫

Ω

V𝑛+1𝑑𝑥)

(𝑛+𝑚
1
)/(𝑛+1)

)

1/2

× (∫

Ω

V𝑛𝑑𝑥)

1/2

+

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

(∫

Ω

V𝑛𝑑𝑥)

1/2

× (∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇V(𝑛+𝑚1)/2

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥)

1/2

]

3/2

.

(27)

Applying the following inequality:

(𝑎
1

+ 𝑎
2
)
𝑠

≤ 2
𝑠
(𝑎
1

𝑠
+ 𝑎
2

𝑠
) , 𝑎

1
, 𝑎
2

> 0, 𝑠 > 1, (28)

we conclude that

∫

Ω

V3/2((2𝑛+𝑚1)/2)𝑑𝑥

≤

2
3/2

3
3/4

(

3

2𝜌
0

)

3/2

|Ω|
3(1−𝑚

1
)/4(𝑛+1)

× (∫

Ω

V𝑛+1𝑑𝑥)

3(𝑛+𝑚
1
)/4(𝑛+1)

× (∫

Ω

V𝑛𝑑𝑥)

3/4

+

2
3/2

3
3/4

(

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

)

3/2

× (∫

Ω

V𝑛)
3/4

(∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇V(𝑛+𝑚1)/2

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥)

3/4

.

(29)
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Applying inequality (16), we obtain

∫

Ω

V3/2((2𝑛+𝑚1)/2)𝑑𝑥 ≤

2
3/2

3
3/4

(

3

2𝜌
0

)

3/2

|Ω|
3(1−𝑚

1
)/4(𝑛+1)

×

3 (𝑛 + 𝑚
1
)

4 (𝑛 + 1)

𝜃
1

∫

Ω

V𝑛+1𝑑𝑥

+

2
3/2

3
3/4

(

3

2𝜌
0

)

3/2

|Ω|
3(1−𝑚

1
)/4(𝑛+1)

×

𝑛 + 4 − 3𝑚
1

4 (𝑛 + 1)

𝜃
−3(𝑛+𝑚

1
)/(𝑛+4−3𝑚

1
)

1

× (∫

Ω

V𝑛𝑑𝑥)

3(𝑛+1)/(𝑛+4−3𝑚
1
)

+

2
3/2

4 × 3
3/4

× (

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

)

3/2

× 𝜃
2

−3
(∫

Ω

V𝑛𝑑𝑥)

3

+

3 × 2
3/2

4 × 3
3/4

(

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

)

3/2

× 𝜃
2

∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇V(𝑛+𝑚1)/2

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥,

(30)

where 𝜃
1
and 𝜃
2
are arbitrary positive constants.

Recalling (12) and applying inequality (16) again, for a
suitable constant 𝜇

3
, we obtain

∫

Ω

V𝑛+1𝑑𝑥 ≤

2𝑛 + 3𝑚
1

− 4

2𝑛 + 3𝑚
1

− 4𝛿

𝜇
3

−(4(1−𝛿)/(2𝑛+3𝑚
1
−4))

× ∫

Ω

V𝑛+𝛿𝑑𝑥 +

4 − 4𝛿

2𝑛 + 3𝑚
1

− 4𝛿

𝜇
3

× ∫

Ω

V(6𝑛+3𝑚1)/4𝑑𝑥.

(31)

By applying (30), it follows from (31) that

∫

Ω

V𝑛+1𝑑𝑥 ≤

2𝑛 + 3𝑚
1

− 4

2𝑛 + 3𝑚
1

− 4𝛿

𝜇
3

−(4(1−𝛿)/(2𝑛+3𝑚
1
−4))

× ∫

Ω

V𝑛+𝛿𝑑𝑥 +

1 − 𝛿

2𝑛 + 3𝑚
1

− 4𝛿

2
3/2

3
3/4

(

3

2𝜌
0

)

3/2

× |Ω|
3(1−𝑚

1
)/4(𝑛+1)

3 (𝑛 + 𝑚
1
)

𝑛 + 1

𝜃
1
𝜇
3

∫

Ω

V𝑛+1𝑑𝑥

+

1 − 𝛿

2𝑛 + 3𝑚
1

− 4𝛿

2
3/2

3
3/4

(

3

2𝜌
0

)

3/2

|Ω|
3(1−𝑚

1
)/4(𝑛+1)

×

𝑛 + 4 − 3𝑚
1

𝑛 + 1

𝜃
1

−3(𝑛+𝑚
1
)/(𝑛+4−3𝑚

1
)

× 𝜇
3
(∫

Ω

V𝑛𝑑𝑥)

3(𝑛+1)/(𝑛+4−3𝑚
1
)

+

1 − 𝛿

2𝑛 + 3𝑚
1

− 4𝛿

2
3/2

3
3/4

(

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

)

3/2

× 𝜇
3
𝜃
2

−3
(∫

Ω

V𝑛𝑑𝑥)

3

+

3 (1 − 𝛿)

2𝑛 + 3𝑚
1

− 4𝛿

2
3/2

3
3/4

× (

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

)

3/2

× 𝜇
3
𝜃
2

∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇V(𝑛+𝑚1)/2

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥.

(32)

Taking

𝐾
0

= 1 −

1 − 𝛿

2𝑛 + 3𝑚
1

− 4𝛿

2
3/2

3
3/4

(

3

2𝜌
0

)

3/2

× |Ω|
3(1−𝑚

1
)/4(𝑛+1)

3 (𝑛 + 𝑚
1
)

𝑛 + 1

𝜃
1
𝜇
3

> 0,

(33)

then combining (32) with (11) gives

𝜂
󸀠
(𝑡) ≤ 𝐾

1
∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇V(𝑛+𝑚1)/2

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥

+ 𝐾
2
(∫

Ω

V𝑛𝑑𝑥)

3(𝑛+1)/(𝑛+4−3𝑚
1
)

+ 𝐾
3
(∫

Ω

V𝑛𝑑𝑥)

3

+ 𝐾
4

∫

Ω

V𝑛+𝛿𝑑𝑥,

(34)

where

𝐾
1

=

1

𝐾
0

3 (1 − 𝛿)

2𝑛 + 3𝑚
1

− 4𝛿

2
3/2

3
3/4

× (

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

)

3/2

× 𝜇
3
𝜃
2
𝑛 (𝑝 + 𝑞 − 1) |Ω|

−

4𝑚𝑛 (𝑝 + 𝑞 − 1) [𝑛 (𝑝 + 𝑞 − 1) − 1]

[𝑛 (𝑝 + 𝑞 − 1) + 𝑚 − 1]
2

,

𝐾
2

=

1

𝐾
0

3 (1 − 𝛿)

2𝑛 + 3𝑚
1

− 4𝛿

2
3/2

3
3/4

(

3

2𝜌
0

)

3/2

× |Ω|
1+(3(1−𝑚

1
)/4(𝑛+1)) 𝑛 + 4 − 3𝑚

1

𝑛 + 1

× 𝜃
1

−3(𝑛+𝑚
1
)/(𝑛+4−3𝑚

1
)
𝜇
3
𝑛 (𝑝 + 𝑞 − 1) ,
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𝐾
3

=

1

𝐾
0

1 − 𝛿

2𝑛 + 3𝑚
1

− 4𝛿

2
3/2

3
3/4

(

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

)

3/2

× 𝜇
3
𝜃
2

−3
𝑛 (𝑝 + 𝑞 − 1) |Ω| ,

𝐾
4

=

1

𝐾
0

2𝑛 + 3𝑚
1

− 4

2𝑛 + 3𝑚
1

− 4𝛿

𝜇
−(4(1−𝛿)/(2𝑛+3𝑚

1
−4))

3

× 𝑛 (𝑝 + 𝑞 − 1) |Ω| − 𝑛𝑘 (𝑝 + 𝑞 − 1) .

(35)

We can make 𝐾
1
and 𝐾

4
vanish by taking suitable 𝜇

3
, 𝜃
1
, and

𝜃
2
; then we have

𝜂
󸀠
(𝑡) ≤ 𝐾

2
𝜂
3(𝑛+1)/(𝑛+4−3𝑚

1
)
+ 𝐾
3
𝜂
3
. (36)

Integrating inequality above from 0 to 𝑡 gives

𝑡 ≥ ∫

𝜂(𝑡)

𝜂(0)

𝑑𝜉

𝐾
2
𝜉
3(𝑛+1)/(𝑛+4−3𝑚

1
)
+ 𝐾
3
𝜉
3
, (37)

from which we derive a lower bound for 𝑡 < 𝑡
∗; namely,

𝑡
∗

≥ ∫

∞

𝜂(0)

𝑑𝜉

𝑘
2
𝜉
3(𝑛+1)/(𝑛+4−3𝑚

1
)
+ 𝐾
3
𝜉
3
. (38)

This completes the proof of Theorem 2.
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