
Research Article
An Approximations Based Approach to Optimal Control of
Switched Dynamic Systems

Vadim Azhmyakov,1 Ruthber Rodriguez Serrezuela,1

Angela Magnolia Rios Gallardo,2 and Winston Gerardo Vargas1

1 Faculty of Electronic and Biomedical Engineering, University of Antonio Nariño, Neiva, Colombia
2 Faculty of Health, Southcolombian University, Neiva, Colombia

Correspondence should be addressed to Vadim Azhmyakov; vadim33tech@uan.edu.co

Received 16 May 2014; Revised 7 October 2014; Accepted 12 October 2014; Published 5 November 2014

Academic Editor: Sivaguru Ravindran

Copyright © 2014 Vadim Azhmyakov et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Our paper deals with a new computational approach to optimal control design for a class of switched systems.The control strategy
we propose is based on the conventional proximal point method applied to a specific optimal control problem (OCP) with switched
dynamics. The class of OCPs under consideration is widely applicable in optimization of real-world electronic systems. We create
constructive approximations for the initially given sophisticated OCP, establish numerical stability (consistency) of the resulting
algorithm, and develop an optimal control strategy. We finally discuss some implementability issues, study an illustrative example,
and also point to possible generalizations of the elaborated control design in the context of nonlinear hybrid systems.

1. Introduction

Several classes of optimal control processes governed by
switched dynamic models have been extensively studied
during the last two decades (see, e.g., [1–12]). In particu-
lar, driven by engineering requirements there has been an
increasing interest in practical optimal design of various
switched and hybrid control systems (see, e.g., [1, 13]), due
to their great applicability in modeling and control of logic-
based electronic systems (see [14]), event-driven industrial
processes, parameter-varying abstraction, and so on. Opti-
mization approaches to the above-mentioned dynamic sys-
tems are nowadays amaturemethodology for the engineering
design of several real-world controllers (see, e.g., [1, 4, 8, 14–
19]). As a consequence, optimal control of switched systems
has emerged as a major challenge in the modern control
community (see [2, 6, 9–12, 14–18, 20–25]).

In the recent years there has been a revival of effi-
cient optimization techniques developed for various types
of nonlinear OCPs (see, e.g., [4, 10, 14, 21]). This fact is
due to the valuable progress in the area of computational
engineering and applied computer sciences. Nowadays the

most powerful numerical approaches to switched and hybrid
OCPs are based on the so-called “optimality zone” algorithms
developed in [9, 17] and on the first-order techniques (see
[6, 12, 18] and the references therein). In this paper we study
a specific class of switched systems and apply the classic
proximal point method from [26] in the corresponding
optimal control design procedure.Our contribution proposes
a computationally consistent control technique that can be
considered as a significant simplification of the celebrated
“gradient descent” method (see [6, 12, 15, 16, 18, 24]) in the
particular case of a linear switched-mode system. Recall that
the conventional gradient descent approach from [12, 24]
generates an approximating sequence that possesses the prop-
erty of a minimizing sequence. In the specific case of a linear
switched-mode system we advance the existing convergence
result related to the gradient descent method and establish
a strong convergence of the minimizing sequence generated
by the proposed optimization algorithm. The computational
approach we develop involves an auxiliary relaxation proce-
dure associated with the initially given dynamic model. After
the basic convexity property of the OCP under consideration
is established, we apply a combination of the proximal point
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regularization algorithm and the usual convex programming
techniques [27, 28].

The remainder of our contribution is organized as fol-
lows: Section 2 contains some necessary theoretical facts.
In Section 3 we formulate the initial OCP and introduce
the associated relaxation scheme. Section 4 proposes a con-
ceptual numerical approach to the OCP governed by the
specific linear switched systems. We establish convexity of
the resulting OCP and apply the proximal based algorithm
in combination with the convex optimization techniques
to the controller design for the given system. Section 5
establishes the algorithmic consistency of the control algo-
rithm we developed and discusses shortly some possible
generalizations of the proposed approach. Section 6 contains
an illustrative example. Section 7 summarizes the paper.

2. Mathematical Preliminaries

Let us start by introducing the auxiliary convexminimization
problem

minimize 𝑓 (𝑧) ,

subject to 𝑧 ∈ 𝑄,
(1)

where 𝑍 is a real Hilbert space, 𝑄 ⊂ 𝑍 is a bounded, convex,
and closed set. By 𝑓 : 𝑍 → R := R⋃{∞} we denote here an
objective functional that is assumed to be proper convex. We
also assume that 𝑓(⋅) is bounded on the set 𝑄 + 𝜖𝐵, where 𝐵
is an open unit ball in 𝑍 and 𝜖 > 0. Clearly,

𝑄 + 𝜖𝐵 ⊂ int dom𝑓 := {𝑧 ∈ 𝑍 | 𝑓 (𝑧) < ∞} . (2)

Let us make the following simple observation: the bound-
edness of 𝑓(⋅) implies continuity of this functional on the
given set 𝑄 + 𝜖𝐵. A proper convex, lower semicontinuous
functional 𝑓(⋅) attains its minimum on the bounded, convex,
closed set 𝑄 [28]. Thus the existence of an optimal solution
𝑧opt ∈ 𝑄 to problem (1) is guaranteed. Note that in general a
convex function on a convex subset of an infinite dimensional
topological vector space does not need to be continuous on
the interior of its domain. The nonempty set of all optimal
solutions to (1) is denoted by 𝐹.

We next introduce the classical proximal mapping

P𝑓,𝑄,𝜒 : 𝛼 → Argmin
𝑧∈𝑄

[𝑓 (𝑧) +
𝜒

2
‖𝑧 − 𝛼‖

2] , (3)

where 𝜒 > 0, 𝛼 ∈ 𝑍, and consider the proximal point
iterations (see [23])

𝑧𝑙+1𝑐𝑙 ≈ P𝑓,𝑄,𝜒𝑙 (𝑧
𝑙
𝑐𝑙) , 𝑧0𝑐𝑙 ∈ 𝑄, 𝑙 = 0, 1, . . . , (4)

where {𝜒𝑙}, 0 < 𝜒𝑙 ≤ 𝐶 < ∞ is a given sequence. The original
problem (1) is now replaced by the sequence of the following
auxiliary minimization problems:

𝑓 (𝑧) +
𝜒𝑙
2

𝑧 − 𝑧𝑙𝑐𝑙

2
→ min, 𝑧 ∈ 𝑄, 𝑙 = 0, 1, . . . (5)

with the augmented strong convex objective functionals. We
now suppose that elements of {𝑧𝑙𝑐𝑙}, 𝑙 = 0, 1, . . . satisfy the
additional condition

𝑧
𝑙+1
𝑐𝑙 −P𝑓,𝑄,𝜒𝑙 (𝑧

𝑙
𝑐𝑙)
 ≤ 𝜖𝑙,

∞

∑
𝑙=0

𝜖𝑙
𝜒𝑙

< ∞, (6)

for all 𝑙 = 0, 1, . . .. In that case {𝑧𝑙𝑐𝑙} constitutes a numer-
ically stable minimizing sequence, namely, a sequence that
converges in the weak topology to an optimal point 𝑧opt ∈
𝐹 (see [26]). Note that the strong convergence property of
some modifications of the classical proximal point sequence
generated by (5) can also be proved. We refer to [21] for the
corresponding analytic results.

Let us now recall the following fact from the classic
convex analysis.

Proposition 1. Let 𝑔1 : R𝑛 → R be a monotonically
nondecreasing, convex functional. Assume that all functionals
𝑔𝑘2 : R

𝑚 → R, 𝑘 = 1, . . . , 𝑛 are convex. Then, 𝑔 : R𝑚 → R,
where 𝑔 (⋅) := 𝑔1(𝑔2(⋅)) and 𝑔2(𝜉) := (𝑔12(𝜉), . . . , 𝑔

𝑛
2(𝜉)), is also

convex.

The proof of Proposition 1 can be found in [28].

3. Problem Formulation and Relaxation

We now consider a specific variant of the general concept of
switched-mode control systems from [6, 15, 16, 18].

Definition 2. A switched system with controllable location
transitions (SSC) is a collection: {Q,F, 𝜏,S}, where

(i) Q is a finite set of indexes called (locations);
(ii) F = {𝑓𝑞}𝑞∈Q is a family of vector fields𝑓𝑞 : R

𝑛 → R𝑛;
(iii) 𝜏 = {𝑡𝑖}, 𝑖 = 1, . . . , 𝑟 is an admissible sequence of

switching times such that 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑟−1 <
𝑡𝑟 = 𝑡𝑓;

(iv) S ⊂ Ξ := {(𝑞, 𝑞) : 𝑞, 𝑞 ∈ Q} is a reset set.

We also assume that all functions 𝑓𝑞, 𝑞 ∈ Q, are
continuously differentiable and the corresponding derivatives
are bounded. Elements ofF do not contain any conventional
control parameter. An input of a SSC under consideration is
given as a sequence 𝜏 of switchings such that the length of this
sequence is equal to 𝑟 ∈ N. In fact an admissible sequence
of switchings 𝜏 determines a partitioning of the given time
interval [0, 𝑡𝑓] by the adjoint subintervals [𝑡𝑖−1, 𝑡𝑖) associated
with every locations 𝑞𝑖 ∈ Q, 𝑖 = 1, . . . , 𝑟. A switched control
system from Definition 2 remains in a location 𝑞𝑖 ∈ Q for
all 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖). The dynamic behaviour of the SCC in every
location is given by the following differential equation:

�̇�𝑖 (𝑡) = 𝑓𝑞𝑖 (𝑥𝑖 (𝑡)) (7)

for almost all times 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖], where 𝑥𝑖(⋅) = 𝑥(⋅)|(𝑡𝑖−1,𝑡𝑖)
is an absolutely continuous function on (𝑡𝑖−1, 𝑡𝑖) that is
continuously prolongable to [𝑡𝑖−1, 𝑡𝑖], 𝑖 = 1, . . . , 𝑟. By 𝑥(⋅)
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we denote here an admissible trajectory of a SSC from
Definition 2 such that 𝑥(0) = 𝑥0 ∈ R𝑛. This trajectory is
determined by a selection of an admissible sequence 𝜏 and
constitutes an absolutely continuous solution of the basic
initial value problem

�̇� (𝑡) =
𝑟

∑
𝑖=1

𝛽[𝑡𝑖−1 ,𝑡𝑖) (𝑡) 𝑓𝑞𝑖 (𝑥 (𝑡)) , a.e. on [0, 𝑡𝑓] ,

𝑥 (0) = 𝑥0,

(8)

where 𝛽[𝑡𝑖−1 ,𝑡𝑖)(⋅) is a characteristic function of the time
interval [𝑡𝑖−1, 𝑡𝑖) for 𝑖 = 1, . . . , 𝑟. The specific input variable
(control input) in (8) can now be written as follows:

𝛽 (⋅) := (𝛽[𝑡0 ,𝑡1) (⋅) , . . . , 𝛽[𝑡𝑟−1 ,𝑡𝑟) (⋅))
𝑇
. (9)

A set B of all admissible vectors 𝛽(⋅) is characterized by the
natural conditions

𝛽 (𝑡) ∈ {0, 1}
𝑟 ,

𝑟

∑
𝑖=1

𝛽[𝑡𝑖−1 ,𝑡𝑖) (𝑡) = 1. (10)

Note that 𝛽(⋅) from B does not depend on the trajectory
𝑥(⋅) of the given SSC. Evidently, B is in one-to-one cor-
respondence to the set of all admissible sequences 𝜏 from
Definition 2. Since trajectory 𝑥(⋅) of a SSC is a continuous
function, our concept describes a class of dynamical systems
without any impulse component. Therefore, we have 𝑥(𝑡𝑖) =
𝑥(𝑡𝑖+1) for all 𝑖 = 1, . . . , 𝑟 − 1. Let us additionally refer to
[1, 10, 12, 17] for some alternative classes of switched and
hybrid systems.

It is necessary to stress that dynamic models of the type
(8) are widely used in analysis and prototyping of many real-
world electronic systems. Let us refer to [3, 8, 9, 12] for
some concrete examples. Moreover, the switched model (8)
provides an adequate theoretic framework for control design
of various electric power converters (see, e.g., [19, 29] and the
references therein).

Given a SSC,we are now in position to introduce themain
OCP as

minimize 𝐽 (𝛽 (⋅)) := ∫
𝑡𝑓

0
𝑓0 (𝑥 (𝑡)) 𝑑𝑡,

subject to (8) , 𝛽 (⋅) ∈ B.

(11)

Here 𝑓0 : R
𝑛 → R is a continuously differentiable function.

Evidently, (11) can be interpreted as a problem of a dynamical
switchings’ optimization. Note that [14] contains a similar
optimal control problem formulation.Throughout this paper
we assume that problem (11) has an optimal solution 𝛽opt(⋅) ∈
B. The corresponding optimal trajectory is next determined
as 𝑥opt(⋅).

The initial OCP (11) represents an optimization problem
with a specific formof the admissible control setB. Evidently,
B ⊂ L2𝑟(0, 𝑡𝑓), where L2𝑟(0, 𝑡𝑓) is the standard Lebesgue
space of 𝑟-dimensional square integrable functions. In that
situation the celebrated Pontryagin maximum principle (see
[30]) cannot be applied directly to problem (11). Recall

that the necessary optimality condition in the form of the
Pontryagin maximum principle provides an adequate (also
in a numerical sense) solution procedure in the full space of
measurable control functions (the space L2𝑟(0, 𝑡𝑓)). A possible
direct application of the conventional maximum principle to
(11) does not guarantee admissibility of the obtained optimal
solution, namely, the admissibility condition 𝛽opt(⋅) ∈ B.
This fact is an immediate consequence of the following simple
observation: the set of admissible needle variations of a
characteristic function𝛽[𝑡𝑖−1,𝑡𝑖)(⋅) is very “poor.” Consequently,
in that case it is impossible to derive the adjoint equations
associated with the conventional Pontryagin maximum prin-
ciple (see also [14, 22] for theoretical details). The same
theoretic observation is also true with respect to a hybrid
version of the maximum principle (see [9–11, 22]).

One of the possible computational approaches to (11) is
based on a suitable relaxation procedure. Let us reformulate
the initial OCP (11) in the full space, namely, as a restricted
dynamic optimization problem in L2𝑟(0, 𝑡𝑓) as

minimize 𝐽 (V (⋅)) := ∫
𝑡𝑓

0
𝑓0 (𝑦 (𝑡)) 𝑑𝑡,

subject to ̇𝑦 (𝑡) = ⟨V (𝑡) , Ψ (𝑦 (𝑡))⟩
R𝑟
, 𝑦 (0) = 𝑥0,

V (⋅) ∈ L
2
𝑟 (0, 𝑡𝑓) ,

𝑟

∑
𝑖=1

V𝑖 (𝑡) = 1,

0 ≤ V𝑖 (𝑡) (1 − V𝑖 (𝑡)) ≤ 𝜖, ∀𝑖 = 1, . . . , 𝑟,

(12)

where V(⋅) := (V1(⋅), . . . , V𝑟(⋅))
𝑇 is a new (auxiliary) square

integrable control variable, Ψ(⋅) := (𝑓𝑞1(⋅), . . . , 𝑓𝑞𝑟(⋅))
𝑇, and

𝜖 is a small positive number. Note that the system of control
restrictions

V𝑖 (𝑡) (1 − V𝑖 (𝑡)) = 0, 𝑖 = 1, . . . , 𝑟 (13)

selects the characteristic functions (by V𝑖 = 0 or V𝑖 =
1). The system of inequalities in (12) corresponds to an
approximating (also relaxed) solution procedure associated
with the original OCP (11). In that case 𝜖 > 0 can be
interpreted as a usual numerical accuracy of the selected
computational algorithm.TheOCP (12) is in fact a relaxation
of the initial problem (11). This relaxed problem provides a
main computational basis for the optimal control design of
the original switched system SSC in the sense of OCP (11).
It can be constructively solved by using some conventional
optimization techniques.

4. Optimal Linear Switched Mode Dynamics

The theoretical and numerical investigations of the relaxed
OCPs of the type (12) involve a question of general interest.
Let Vopt(⋅) ∈ L2𝑟(0, 𝑡𝑓) be an optimal solution of (12). Is it
possible to use Vopt(⋅) constructively with the aim to construct
an adequate approximation of the optimal vector 𝛽opt(⋅) ∈ B
from the initial problem (11)? In this and in the next sections
we give a positive answer to the above question and also
present a concrete approximation procedure in the special
case of linear switched-mode system (8).
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Let us make some additional technical assumptions. We
nowconsider the linear variant ofFwith𝑓𝑞(𝑥) = 𝐴𝑞𝑥, where
𝐴𝑞 ∈ R𝑛×𝑛 for all 𝑞 ∈ Q. Assume that every component of all
matrices 𝐴𝑞 is positive. Recall that such matrices are called
Metzler matrices (see e.g., [21]). The ensuing analysis is also
restricted to amonotonically nondecreasing, convex function
𝑓0(⋅). In that specific case the control system in (12) has the
following linear form:

̇𝑦 (𝑡) = ⟨V (𝑡) , Ψ (𝑦 (𝑡))⟩
R𝑟
,

𝑦 (0) = 𝑥0,
(14)

where Ψ(𝑦) := (𝐴𝑞1𝑦, . . . , 𝐴𝑞𝑟𝑦)
𝑇 is an ordered set of given

matrices. Consider now the initial and relaxed OCPs under
the technical assumptions given above and introduce the
following convexity concept from [13].

Definition 3. If the relaxed OCP (12) is equivalent to a convex
optimization problem (1), then we call (12) a convex OCP.

Definition 4. Let 𝑦V(⋅) be an absolutely continuous solution
to the relaxed control system (14) generated by an admissible
control input V(⋅). Then (14) is called a convex control system
if every functional

𝑉𝑘 (V (⋅)) := 𝑦V
𝑘 (𝑡) , 𝑘 = 1, . . . , 𝑛, 𝑡 ∈ [0, 𝑡𝑓] (15)

is convex.

Let us present the useful convexity criterion (in the sense
of Definition 4) for a general control system.

Proposition 5. Consider a classical control system

�̇� (𝑡) = ℎ (𝑡, 𝑧 (𝑡) , 𝑢 (𝑡)) 𝑎.𝑒. 𝑜𝑛 [0, 𝑡𝑓] , 𝑧 (0) = 𝑥0 (16)

and assume that function ℎ is continuous and satisfies the
Lipschitz condition

𝑓 (𝑡, 𝑧1, 𝑢) − 𝑓 (𝑡, 𝑧2, 𝑢)
 ≤ 𝐿

𝑧1 − 𝑧2
 ,

∀𝑧1, 𝑧2 ∈ R
𝑛, 𝑢 ∈ 𝑈 ⊆ R

𝑚.
(17)

Let ℎ𝑘 (𝑡, 𝜔) , 𝑘 = 1, . . . , 𝑛, be convex functionals with respect
to 𝜔 := (𝑧, 𝑢) for every 𝑡 ∈ [0, 𝑡𝑓]. Moreover, let ℎ𝑘(𝑡, ⋅, 𝑢), 𝑘 =
1, . . . , 𝑛 be monotonically nondecreasing functionals for every
𝑡 ∈ [0, 𝑡𝑓], 𝑢 ∈ 𝑈. Then the above control system is convex in
the sense of Definition 4.

The proof of this result can be found in [13, Theorem 1,
Page 994]. We also refer to [21] for some related facts. We
now show that under the above additional assumptions the
corresponding variant of the relaxed OCP (12) is equivalent
to a specific convex OCP (see Definition 3).

Theorem 6. Assume that the above additional conditions
are satisfied. Then the relaxed OCP (12) associated with

the corresponding linear switched system is equivalent to the
convex OCP of the following type:

minimize J (V (⋅)) := ∫
tf

0
f0 (y (t)) dt

subject to (14) , V (⋅) ∈ L
2
r (0, tf) ,

𝑟

∑
𝑖=1

V𝑖 (𝑡) = 1, 0 ≤ V𝑖 (𝑡) ≤ 𝛿1,

1 ≥ V𝑗 (𝑡) ≥ 𝛿2, 𝑖 ̸= 𝑗,

(18)

where 𝑖, 𝑗 = 1, . . . , 𝑟 and 𝛿1 < 𝛿2 are solutions of the simple
quadratic equation V2 − V + 𝜖 = 0 for a small enough 𝜖 > 0.

Proof. The right-hand side of the linear switched system
(14) is convex (linear) with respect to 𝜔 := (V, 𝑦). From
Proposition 5 it follows that (14) is a convex control system
in the sense of Definition 4. It means that every 𝑉𝑘(V(⋅)) is a
convex functional for every 𝑘 = 1, . . . , 𝑛. From Proposition 1
we next deduce the convexity of the function 𝑓0(𝑦

V(𝑡)) for all
𝑡 ∈ [0, 𝑡𝑓] and also the convexity property of the objective
functional 𝐽(V(⋅)). Let V1(⋅), V2(⋅) be admissible controls in the
sense of the OCP (18). Then for a convex combination

V3 (⋅) := 𝜆V1 (⋅) + (1 − 𝜆) V2, (19)

where 𝜆 ∈ (0, 1), we obtain

𝑟

∑
𝑖=1

V3𝑖 (𝑡) =
𝑟

∑
𝑖=1

(𝜆V1𝑖 (𝑡) + (1 − 𝜆) V2𝑖 (𝑡)) = 𝜆 + 1 − 𝜆 = 1.

(20)

Thus the equality constrain in (18) involves a convex subset
of the basic Hilbert space L2𝑟(0, 𝑡𝑓). The linear inequalities
constraints from (18) also determine a convex subset of
L2𝑟(0, 𝑡𝑓). Since an intersection of a finite number of convex
sets constitutes a convex set, problem (18) for 𝑖 = 1, . . . , 𝑟
is a convex OCP. Observe that the system of the original
inequality/equality constraints

0 ≤ V𝑖 (𝑡) (1 − V𝑖 (𝑡)) ≤ 𝜖, 𝑖 = 1, . . . , 𝑟,
𝑟

∑
𝑖=1

V𝑖 (𝑡) = 1 (21)

in (12) is equivalent to the system of inequalities from (18) for
all 𝑖 = 1, . . . , 𝑟. We can conclude that the relaxed OCP (12) is
equivalent to the convex OCPs of the type (18). The proof is
completed.

Problem (18) fromTheorem 6 is equivalent to the abstract
convex program (1) discussed in Section 2. Therefore, we are



Mathematical Problems in Engineering 5

now in position to apply the proximal point algorithm and
write the regularized variant of the OCPs (18)

minimize 𝐽𝑙 (V (⋅)) := 𝐽 (V (⋅))

+
𝜒𝑙
2

V (⋅) − V𝑙 (⋅)

2

L2
𝑟
(0,𝑡𝑓)

subject to (14) , V (⋅) ∈ L
2
𝑟 (0, 𝑡𝑓) ,

𝑟

∑
𝑖=1

V𝑖 (𝑡) = 1, 0 ≤ V𝑖 (𝑡) ≤ 𝛿1,

1 ≥ V𝑗 (𝑡) ≥ 𝛿2, 𝑖 ̸= 𝑗,

(22)

where 𝑖, 𝑗 = 1, . . . , 𝑟. Here V𝑙(⋅) is an admissible 𝑙-iteration
of the proximal point method and V𝑙(⋅) is an admissible
initial control. As mentioned in Section 2, a sequence {V𝑙(⋅)}
of optimal solutions to (22) is a numerically stable (weakly
convergent) minimizing sequence in the sense of problem
(12). This sequence converges in the weak L2𝑟(0, 𝑡𝑓)-topology
to an optimal solution Vopt(⋅) of (18).

We now have derived the final representation of the
approximating OCP, namely, problem (22) that provides a
necessary basis for the computational control design associ-
ated with a SSC from Section 3. This regularized OCP (22)
can be solved by a standard numerical convex optimization
technique. It is necessary to stress that (22) is a convex
optimization problem with a strictly convex functional 𝐽𝑙(⋅).
Therefore, {V𝑙(⋅)} is uniquely defined. In this case (22) can be
solved by a first-order numerical procedure, for example, by a
suitable gradient-type algorithm (see [6, 18, 27]).The gradient
∇𝐽𝑙(V(⋅)) of 𝐽𝑙(V(⋅)) in that case can be computed as follows:

∇𝐽𝑙 (V (⋅)) = ∇𝐽 (V (⋅)) + 𝜒𝑙
V (⋅) − V𝑙 (⋅)

L2
𝑟
(0,𝑡𝑓)

,

∇𝐽 (V (⋅)) (𝑡) = −
𝜕𝐻

𝜕V
(V (𝑡) , 𝑦 (𝑡) , 𝑝 (𝑡)) ,

(23)

where

𝐻(V, 𝑦, 𝑝) := ⟨𝑝, ⟨V (𝑡) , Ψ (𝑦 (𝑡))⟩
R𝑟
⟩
R𝑛

+ 𝑓0 (𝑦) (24)

is the Hamiltonian associated with (18) and 𝑝(⋅) is a solution
of the corresponding system of adjoint equation (see [30] for
details)

�̇� (𝑡) = −
𝜕𝐻

𝜕𝑦
(V (𝑡) , 𝑦 (𝑡) , 𝑝 (𝑡)) =

𝑟

∑
𝑖=1

V𝑖 (𝑡) 𝐴
𝑇
𝑞𝑖
𝑝 (𝑡) ,

𝑝 (𝑡𝑓) = 0.

(25)

Evidently, in the case of the above SSC of linear type we have

∇𝐽 (V (⋅)) (𝑡) = −⟨𝑝 (𝑡) ,
𝑟

∑
𝑖=1

𝐴𝑞𝑖𝑦 (𝑡)⟩
R𝑛

. (26)

Finally let us note that the proximal point method for solving
the regularized OCP (22) can also be combined with an

effective second-order numerical optimization procedure for
convex programming. This possible combination involves
an alternative numerical procedure for the optimal control
design of switched systems under consideration.

5. Strong Convergence Property of the
Proximal Based Algorithm

In this section we consider the proposed numerical approach
to the initialOCP (11) in the specific case thatwas indicated by
additional assumptions given in Section 4.Our aim is to study
the convergence property of the sequence {V𝑙(⋅)} generated by
the proximal regularized problems (22) and the relationship
to the original optimal solution 𝛽opt(⋅) of (11). From the
qualitative point of view, the numerically stable (proximal
based) optimal solutions to (18) with a “small enough”
parameter 𝜖 > 0 represent a well-determined approximation
of the optimal vector of characteristic functions in (11). We
now will express this qualitative statement more precisely.

First, let us note that the measurable function 𝛽(⋅) (see
Section 3) takes its values in the set ver(𝑇𝑟) of vertices of the
following 𝑟-dimensional simplex:

𝑇𝑟 := {𝛽 ∈ R
𝑟 | 𝛽𝑖 ≥ 0,

𝑟

∑
𝑖=1

𝛽𝑖 = 1} . (27)

We now give the constructive geometric characterization of
the weak convergence of a sequence {𝜒𝑠(⋅)}, 𝑠 ∈ N from 𝑇𝑟.

Theorem 7. Let {𝜒𝑠(⋅)} be a sequence of L2𝑟(0, 𝑡𝑓)-functions
such that

𝜒𝑠 (𝑡) ∈ 𝑇𝑟 (28)

for almost all 𝑡 ∈ [0, 𝑡𝑓]. Assume that {𝜒𝑠(⋅)} converges weakly
to a measurable function 𝛽(⋅) and 𝛽 (𝑡) ∈ ver (𝑇𝑟). Then this
sequence also converges strongly to function 𝛽(⋅).

We refer to [21] for the complete proof of this auxiliary
geometrical result. Theorem 7 can be interpreted as follows:
the L2𝑟(0, 𝑡𝑓)-weak convergence to a characteristic function
coincides with the strong convergence. Note that this fact is
true due to specific type of functions under consideration,
namely, for the concrete characteristic functions we study.
Using this abstract result, we are now able to formulate our
(improved) convergence result for the proposed proximal
point based algorithm.

Theorem 8. Let all the additional conditions from Section 4
be satisfied. Consider a sequence {V𝑙(⋅)} of solutions to (22).
Then this sequence converges strongly (in the norm topology of
L2𝑟(0, 𝑡𝑓)) to a solution 𝛽𝑜𝑝𝑡(⋅) of the initial OCP (18).

Proof. From the standard properties of the classical proximal
point method in a real Hilbert spaces, we deduce the weak
convergence of {V𝑙(⋅)} to an optimal solution of (18). Using
the equivalency of problems (18) and (12) established in
Theorem 6, we conclude that {V𝑙(⋅)} converges weakly to an
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optimal solution of (12), namely, to an admissible function
Vopt(⋅). Evidently,

lim
𝜖→0

V
opt(⋅) − 𝛽opt(⋅)

L2
𝑟
(0,𝑡𝑓)

= 0. (29)

Recall that 𝛽opt(⋅) is an optimal solution to the original OCP
(11). The above fact also follows from Theorem 6. It is easy
to see that for the decreasing 𝜖 the solution 𝛿1 from this
theorem also decreases. The solution 𝛿2 increases for the
decreasing 𝜖. This means that the diameters of the convex
sets that are determined by the corresponding inequalities
constraints in Theorem 6 decrease. This observation and
the equivalency relation between problems (18) and (12)
imply relation (29). Evidenlty, a combination of the weak
and strong (given by (29)) convergent sequences generates a
weakly convergent sequence.Therefore, the control sequence
{V𝑙(⋅)} converges weakly to 𝛽opt(⋅). Finally, from the abstract
Theorem 7we deduce the strong convergence of the proximal
point sequence {V𝑙(⋅)} to an optimal solution 𝛽opt(⋅) of the
initial OCP (11). The proof is finished.

Theorem 8 gives a conceptual response to the question
formulated at the beginning of Section 4. The sequence
{V𝑙(⋅)} generated by the proximal point algorithm for (18)
and (12) converges in the strong sense (in the sence of
the usual L2𝑟(0, 𝑡𝑓)-norm) to an optimal solution of the
main OCP (11). This theoretical fact is of fundamental
importance for the corresponding computational control
design procedure. The strongly convergent algorithm
from Theorem 8 makes it possible to use the proximal
point techniques in several computational approaches
to the switched OCPs of the type (11). As mentioned in
Section 1 the numerical method we propose can also be
considered as a specific case of the conventional gradient
descent method (see [6, 12, 15, 16, 18, 24]) applied to a
linear switched-mode system. In general, the gradient
descent method generates only a minimizing sequence
for the associated switched-type OCP. We refer to [12, 24]
for the corresponding theoretical results. In that context
Theorem 8 establishes strong convergence properties of
the optimization method we developed in comparison to
the “weak” convergence of the approximating sequence
obtained by a gradient descent algorithm application
[12, 24].

Note that the additional linearity assumptions from
Section 4 are too restrictive. Otherwise, it is also possible
to use the proximal point techniques and the associated
convex programming methodology in combination with
some classical linearization procedures associated with an
initially given nonlinear SSC. Recall that several linearization
schemes have been long time recognized as a powerful tool
for solving sophisticated control design problems (see, e.g.,
[21, 27]). Note that a linearization based approach to dynamic
optimization can usually be considered only as a first-step
auxiliary solution procedure. In the case of a general non-
linear OCP (11), a possible linearized optimization problem

related to the corresponding relaxed problem (12) can be
written as follows:

minimize 𝐽 (𝑑 (⋅)) ,

subject to LSSC,

𝑑 (⋅) ∈ D − V (⋅) ,

(30)

where V(⋅) ∈ D is a fixed control function and the set D of
admissible control inputs V(⋅) is given by the usual conditions

V (⋅) ∈ L
2
𝑟 (0, 𝑡𝑓) ,

𝑟

∑
𝑖=1

V𝑖 (𝑡) = 1,

0 ≤ V𝑖 (𝑡) ≤ 𝛿1, 1 ≥ V𝑗 (𝑡) ≥ 𝛿2, 𝑖 ̸= 𝑗.

(31)

By LSSC in (30) we denote an adequate linearized dynamics
of the original control system from (12). For instance, a
suitable LSSC can be given by the following linear dynamics
(see [21]):

̇𝑦 (𝑡) =
𝑟

∑
𝑖=1

𝛽[𝑡𝑖−1 ,𝑡𝑖) (𝑡) [
𝜕𝑓𝑞𝑖 (𝑥 (𝑡))

𝜕𝑥
𝑦 (𝑡) + 𝑓𝑞𝑖 (𝑥 (𝑡))] ,

𝑦 (0) = 0,

(32)

where 𝑦(⋅) is a state of the linearized system and 𝑥(⋅) is a
“reference” trajectory (for the linearization procedure) of the
original SSC (8). The objective functional 𝐽(⋅) in (30) can be
assumed to be linear

𝐽 (𝑑 (⋅)) := 𝐽 (V (⋅) + 𝑑 (⋅)) = ∫
𝑡𝑓

0
𝑓0 (𝜉

V+𝑑
(𝑡)) 𝑑𝑡, (33)

where 𝜉V+𝑑(⋅) denotes a solution of the above-mentioned lin-
earized dynamical system generated by the control function
V(⋅) + 𝑑(⋅). The linear nature of the obtained approximating
problem (30) implies the convexity property in the sense
of Definition 4 such that the dynamic optimization problem
(30) constitutes a convex OCP. As mentioned above one
can apply the proximal based approach in combination with
appropriate techniques from the convex programming to the
corresponding sequence of the linearized OCPs of type (30).

6. A Numerical Example

Wenow apply theOCP-based control algorithmdeveloped in
previous sections to optimization of a practically motivated
engineering system, namely, to optimal control of an electric
AC/DC converter.

Example 1. Consider the simplified electric scheme of a
three-phase circuit associated with an AC/DC converter
(Figure 1).

The control system is characterized by the switched
dynamics of the admissible control inputs 𝜎𝑗(𝑡) ∈ {−1, 0, 1},
where 𝑗 = 𝑎, 𝑏, 𝑐. The corresponding state variables represent
the initially given AC currents 𝑖𝑗(𝑡), 𝑗 = 𝑎, 𝑏, 𝑐

𝑑𝑖𝑗 (𝑡)

𝑑𝑡
=

1

𝐿
[−𝑢𝑗 (𝑡) − 𝑅𝑖𝑗 (𝑡) + 𝑢𝑑 (𝑡)

1 + 𝜎𝑗

2
] , (34)
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Figure 1: Three-phase AD/DC converter.

where 𝑗 = 𝑎, 𝑏, 𝑐. By𝑢𝑗(𝑡)wedenote here the voltage of the 𝑗th
source. The resulting DC voltage of the converter is given by
the expected quasiconstant voltage𝑢𝑑(𝑡) > 0.We next put𝐿 =

10−3𝐻 and 𝑅 = 10Ω for the given inductance and resistance,
respectively. Moreover, we put

𝑢𝑎 (𝑡) = 220 × cos (120𝜋𝑡) ,

𝑢𝑏 (𝑡) = 220 × cos(120𝜋𝑡 + 2𝜋

3
) ,

𝑢𝑐 (𝑡) = 220 × cos(120𝜋𝑡 + 4𝜋

3
) .

(35)

Note that we have assumed that the frequency of the electrical
network under consideration is equal to 60Hz. Moreover,
the minimal length (switching period) of the time interval
[𝑡𝑖−1, 𝑡𝑖), 𝑖 = 1, . . . , 𝑟, where 𝑡𝑖 ∈ 𝜏, is assumed to be equal
to 10−3 sec. Next we recall that the resulting DC voltage 𝑢𝑑(𝑡)
constitutes a positive linear functional of the given switching
period min(𝑡𝑖 − 𝑡𝑖−1).

The OCP associated with the switched dynamic model
(34) considered on the time interval [0, 1] can be formulated
as a simple tracking control problem

minimize ∫
1

0
(𝑢𝑑 (𝑡) − 220)

2
𝑑𝑡

subject to (34) .

(36)

Evidently, (36) can be easily interpreted as a best converting
performance requirement under all possible switching strate-
gies. Applying the proximal regularization and the gradient
based algorithm fromSection 4, we now compute the optimal
switching control inputs 𝜎opt

𝑗 (⋅) for 𝑗 = 𝑎, 𝑏, 𝑐 as solutions of
(36). The computed optimal switching strategy is presented
in Figure 2.

The corresponding optimal trajectory (the resulting out-
put DC currents) is shown in Figure 3.

Note that the “output” currents (after converting) pre-
sented in Figure 3 are, as expected, the DC-type currents.The
obtained optimal switching strategy 𝜎opt

𝑎 (𝑡) constitutes a high
frequency function (see Figure 2). Moreover, the optimal
currents satisfy the natural algebraic condition, namely, the
fundamental junction rule for the given AC/DC circuit

𝑖𝑎 (𝑡) + 𝑖𝑏 (𝑡) + 𝑖𝑐 (𝑡) = 0. (37)
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Figure 2: Optimal switched control of three-phase AD/DC con-
verter.
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Figure 3: The resulting DC currents as outputs of the optimized
AD/DC converter.

The last one implies the following additional relation for the
corresponding derivatives

𝑑

𝑑𝑡
𝑖𝑎 (𝑡) +

𝑑

𝑑𝑡
𝑖𝑏 (𝑡) +

𝑑

𝑑𝑡
𝑖𝑐 (𝑡) = 0. (38)

Using (37) and (38) in combination with (34), we next
calculate the associated optimal switchings 𝜎

opt
𝑏

(𝑡), 𝜎opt
𝑐 (𝑡),

and the resulting optimal states (see Figure 2). Finally note
that the numerical results presented above are obtained using
the authors program and the standard MATLAB packages.
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7. Concluding Remarks

In this paper, we have shown that the proximal point
approach can be used for numerically tractable approxima-
tions of some OCPs associated with switched-mode dynam-
ics. An abstract proximal regularization scheme in combina-
tion with a specific relaxation approach and extended by an
effective convex programming algorithms makes it possible
to establish stable convergence properties of the resulting
algorithm.The iterative updates of the approximation level we
proposed are based on an increasing sequence of “embedded”
consistent approximations of the relaxed problem.The stable
regularization properties of the proximal point method and
a specific analytical formalization of the switching structure
guarantee the strong convergence of the obtained numerical
scheme that contains the changeover from one specific
infinite-dimensional control space to another.

The above-mentioned numerically stable specification
of the proposed approximations constitutes a new analyt-
ical approach to practical optimization of switched-mode
dynamical systems with controllable location transitions.
Note that the proximal point regularization can be com-
bined with diverse numerical procedures for a concrete
computational treatment of the auxiliary relaxed problem, for
example, with an adequate modification of the conventional
gradient based method and also with some second-order
optimization procedures.

Finally note that the proposed numerical approach and
the corresponding theoretical results can be applied to some
alternative classes of optimal control processes governed by
switched or by some specific hybrid dynamic systems.
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