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The problem of delay-dependent robust stabilization for continuously singular time-varying delay systems with norm-bounded
uncertainties is investigated in this paper. First, based on some mathematical transform, the uncertain singular system is described
in a form which involves the time-delay integral items. Then, in terms of the delay-range-dependent Lyapunov functional and
the LMI technique, the improved delay-dependent LMIs-based conditions are established for the uncertain singular systems with
time-varying delay to be regular, causal, and stable. Furthermore, by solving these LMIs, an explicit expression for the desired state
feedback control law can be obtained; thus, the regularity, causality, and stability of the closed-loop system are guaranteed. In the
end, numerical examples are given to illustrate the effectiveness of the proposed methods.

1. Introduction

During the past several decades, singular systems, which
are known as descriptor systems, implicit systems, and
differential-algebraic systems, received a considerable atten-
tion because of their applications inmany areas, such as engi-
neering systems, social systems, economic systems, network
analysis, biological systems, and time-series analysis [1, 2].
As we all know, it is required to consider not only stability
but also regularity and absence of impulses (for continuous
singular systems) or causality (for discrete singular systems)
simultaneously for singular systems; thus, the study on singu-
lar systems ismuchmore complicated than that on the regular
ones [3, 4]. Recently, many scholars have applied themselves
to the research of singular system and many stability and
stabilization conditions have been established for singular
systems; see, for example, [5–11] and the references therein.

On the other hand, much attention has been paid to the
study of time-delay systems in recent years, because time
delays inevitably exist in a variety of practical systems, such as
chemical processes, nuclear reactors, and biological systems,
and lead to the instability and poor performance of systems

[12–15]. Generally speaking, the existing results can be clas-
sified into two types: delay-independent results (see, e.g., [16,
17] and the references therein) and delay-dependent results
(see, e.g., [18, 19] and the references therein). Furthermore,
the delay-independent case is regarded as more conservative
than the delay-dependent case, especiallywhen the time delay
is comparatively small. Thus, the delay-dependent stability
and stabilization conditions for singular time-delay systems
have received increasing attention during the past years. For
example, by utilizing model transformation and bounding
technique for cross-terms, Zhu et al. [20, 21] investigated
the delay-dependent robust stabilization problem for uncer-
tain singular time-delay systems. References [22, 23] also
discussed the problem, and neither model transformation
nor bounding technique for cross-terms is needed in the
development of the results. Based on an improved Lyapunov
functional, which includes some nonpositive items, Weng
and Mao [24] discussed the delay-dependent robust stability
and stabilization for uncertain singular time-delay systems,
and some LMIs-based results were obtained. However, in
the practical systems, most of those delays are time-varying
because the external perturbances and uncertainties are
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always existing [25]. Thus, proposing some time-varying
delay-tolerant results for the singular system is obviously
more meaningful. In terms of Lyapunov stability theory
and LMI technique, some results about the admissibility
and dissipativity for discrete-time singular systems with
mixed time-varying delays were proposed in [26]. Based on
the probability idea, Weng and Mao [27] presented some
delay-range-dependent and delay-distribution-independent
stability criteria for discrete-time singular systems with time-
varying delay, and several sufficient results were obtained.
However, to the best of our knowledge, the stabilization
conditions for singular time-varying delay systems still have
not been fully investigated, and there is still much room for
improvement.

This paper is concerned with the problem of robust
stabilization for continuously singular time-varying delay
systems with norm-bounded and time-varying parametric
uncertainties. The focus of this paper is to design a state
feedback controller such that the closed-loop system is
regular, causal, and stable for all admissible uncertainties.
The proposed sufficient robust stabilization conditions of the
considered system are described in terms of strict LMIs,
which are formulated in terms of all the coefficientmatrices of
the original system. Finally, numerical examples are provided
to demonstrate the effectiveness of the proposed methods.

Notation 1. Throughout this paper, for real matrices𝑋 and𝑌,
the notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌) means that the matrix
𝑋−𝑌 is semipositive definite (resp., positive definite). 𝐼 is the
identity matrix with appropriate dimensions; a superscript
“𝑇” represents transpose. ‖𝑥‖ refers to the Euclidean norm
of the vector 𝑥. For a symmetric matrix, ∗ denotes the
symmetric terms.𝑀+𝑀

𝑇 is denoted as {𝑀}
𝐻 for simplicity.

2. Problem Formulation and Dynamic Models

Consider an uncertain singular system with time-varying
delay described by Wu and Zhou [28]:

𝐸�̇�
(𝑡)

= (𝐴 + Δ𝐴) 𝑥(𝑡) + (𝐴
𝑑
+ Δ𝐴
𝑑
) 𝑥
(𝑡−𝑑(𝑡))

+ 𝐵𝑢 (𝑡) ,

𝑥
(𝑡)

= Φ
(𝑡)
, 𝑡 ∈ [−𝑑

2
, 0] ,

(1)

where 𝑥
(𝑡)

∈ 𝑅
𝑛 is the state variable and 𝑑

(𝑡)
is a time-varying

delay satisfying 0 < 𝑑
1

≤ 𝑑
(𝑡)

≤ 𝑑
2
and ̇𝑑

(𝑡)
≤ 𝜇. Φ

(𝑡)
is

a compatible initial value at 𝑡. The matrix 𝐸 ∈ 𝑅
𝑛×𝑛 may be

singular and rank𝐸 ≤ 𝑛 is assumed. 𝐴, 𝐴
𝑑
, and 𝐵 are real

constantmatrices with appropriate dimensions.Δ𝐴 and Δ𝐴
𝑑

are norm-bounded parametric matrices and are assumed to
be of the following form:

[Δ𝐴 Δ𝐴
𝑑
] = 𝑀𝐹

(𝑡)
[𝑁
1

𝑁
2
] , (2)

where 𝐹
(𝑡)

∈ 𝑅
𝑘×𝑠 is an unknown parameter matrix satisfying

𝐹
𝑇

(𝑡)
𝐹
(𝑡)

≤ 𝐼.𝑀,𝑁
1
, and𝑁

2
are known constant matrices with

appropriate dimensions.

The nominal unforced singular time-delay system of (1)
can be described as

𝐸�̇�
(𝑡)

= 𝐴𝑥
(𝑡)

+ 𝐴
𝑑
𝑥
(𝑡−𝑑(𝑡))

,

𝑥
(𝑡)

= Φ
(𝑡)
, 𝑡 ∈ [−𝑑

2
, 0] .

(3)

The following definitions and lemmas will be used in the
proof of the main results.

Definition 1 (see [29]). (i) The pair (𝐸, 𝐴) is regular if
det(𝑆𝐸 − 𝐴) is not identically zero; (ii) the pair (𝐸, 𝐴) is said
to be impulse free if it is regular and deg{det(𝑆𝐸 − 𝐴)} =

rank𝐸.

Definition 2 (see [29]). (i)The system (3) is said to be regular
and impulse free if 𝑑

(𝑡)
satisfies 0 < 𝑑

1
≤ 𝑑
(𝑡)

≤ 𝑑
2
; the pair

(𝐸, 𝐴) is regular and impulse free. (ii) The system (3) is said
to be stable if, for any 𝜀 > 0, there exists a scalar 𝜇(𝜀), such
that, for any compatible initial conditions sup

−𝑑2≤𝑡≤0
‖Φ
(𝑡)
‖
2
<

𝜇(𝜀), when 𝑡 > 0, the solution 𝑥(𝑡) of the system (3) satisfies
‖𝑥(𝑡)‖ ≤ 𝜀. Furthermore, lim

𝑡→0
𝑥(𝑡) = 0. (iii) The system (3)

is said to be admissible if it is regular, impulse free, and stable.

Definition 3. (i) The uncertain singular time-varying delay
system (1) is said to be robustly admissible if the system (1)
with 𝑢(𝑡) = 0 is regular, impulse free, and stable for all
admissible uncertainties satisfying (2) and any time-delay 𝑑

(𝑡)

satisfying 0 < 𝑑
1

≤ 𝑑
(𝑡)

≤ 𝑑
2
. (ii) The singular time-

varying delay system (1) is said to be stabilizable if there exists
state feedback controller 𝑢(𝑡) = 𝐾𝑥(𝑡) such that the closed-
loop system is admissible for any time delay 𝑑

(𝑡)
satisfying

0 < 𝑑
1
≤ 𝑑
(𝑡)

≤ 𝑑
2
. (iii) The uncertain singular time-varying

delay system (1) is said to be robustly stabilizable if there
exists state feedback controller 𝑢(𝑡) = 𝐾𝑥(𝑡) such that the
closed-loop system is robustly admissible for all admissible
uncertainties satisfying (2) and any time-delay 𝑑

(𝑡)
satisfying

0 < 𝑑
1
≤ 𝑑
(𝑡)

≤ 𝑑
2
.

After some mathematical transform, the systems (1) and
(3) can be described in the following forms:

𝐸�̇�
(𝑡)

= (𝐴 + Δ𝐴 + 𝐴
𝑑
+ Δ𝐴
𝑑
) 𝑥
(𝑡)

− (𝐴
𝑑
+ Δ𝐴
𝑑
)

𝑚−1

∑

𝑖=0

∫

𝑡−(𝑖/𝑚)𝑑1

𝑡−((𝑖+1)/𝑚)𝑑1

�̇�
(𝑠)
𝑑𝑠

− (𝐴
𝑑
+ Δ𝐴
𝑑
) ∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
(𝑠)
𝑑𝑠,

𝑥
(𝑡)

= Φ
(𝑡)
, 𝑡 ∈ [−𝑑

2
, 0] ,

(4)

𝐸�̇�
(𝑡)

= (𝐴 + 𝐴
𝑑
) 𝑥
(𝑡)

− 𝐴
𝑑

𝑚−1

∑

𝑖=0

∫

𝑡−(𝑖/𝑚)𝑑1

𝑡−((𝑖+1)/𝑚)𝑑1

�̇�
(𝑠)
𝑑𝑠
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− 𝐴
𝑑
∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
(𝑠)
𝑑𝑠,

𝑥
(𝑡)

= Φ
(𝑡)
, 𝑡 ∈ [−𝑑

2
, 0] .

(5)

For description in brevity, we define 𝛾 = 𝑑
1
/𝑚 and𝑑

12
= 𝑑
2
−

𝑑
1
. This section is concluded by presenting a lemma, which

will be used in the proof of our main results.

Lemma 4 (see [30, 31]). Given matrices 𝜒, 𝜇, and ] with
appropriate dimensions and with 𝜒 symmetrical, then 𝜒 +

𝜇𝐹
(𝑡)
] + ]𝑇𝐹𝑇

(𝑡)
𝜇
𝑇

< 0 holds for any 𝐹
(𝑡)

∈ 𝑅
𝑘×𝑠 satisfying

𝐹
𝑇

(𝑡)
𝐹
(𝑡)

≤ 𝐼, if and only if there exists a scalar 𝜎 > 0 such that
𝜒 + 𝜎𝜇𝜇

𝑇
+ 𝜎
−1]𝑇] < 0.

3. Main Results

In this section, the delay-dependent conditions for system (1)
to be stabilizable and robustly stabilizable are presented. As
a basis, we first study system (5) and obtain the following
Theorem 5.

Theorem 5. For the prescribed scalars satisfying 0 < 𝑑
1
≤ 𝑑
2
,

the singular time-delay system (5) is admissible for any time-
delay 𝑑

(𝑡)
satisfying 0 < 𝑑

1
≤ 𝑑
(𝑡)

≤ 𝑑
2
if there exist positive

symmetric matrices 𝑃, 𝑈
𝑖
(𝑖 = 1, 2, 3, 4), 𝑄

1
, 𝑄
2
, matrices

𝐻
𝑖
(𝑖 = 1, 2), 𝑆

𝑖
(𝑖 = 1, 2, 3, 4, 5, 6, 7), 𝐺

𝑖
(𝑖 = 1, 2, 3, 4,

5, 6, 7, 8), and 𝐿
𝑖
(𝑖 = 1, 2, 3, 4, 5) satisfying the following

LMIs:

Ψ
𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[

[

Ψ
111

Ψ
112

𝐺
1

−𝐺
1

Ψ
115

Ψ
116

−𝐿
1
+ 𝐿
𝑇

2
𝐿
𝑇

5

∗ Ψ
𝑖22

𝐺
7

−𝐺
7

Ψ
125

Ψ
126

−𝐿
𝑇

2
− 𝐿
4

−𝐿
𝑇

5

∗ ∗ Ψ
133

Ψ
134

Ψ
135

Ψ
136

𝐺
𝑇

2
𝐺
𝑇

8

∗ ∗ ∗ Ψ
44

Ψ
145

Ψ
146

−𝐺
𝑇

2
−𝐺
𝑇

8

∗ ∗ ∗ ∗ Ψ
155

Ψ
156

𝐿𝑆
𝑇

2
− 𝐿
3

𝐿𝑆
𝑇

7

∗ ∗ ∗ ∗ ∗ Ψ
166

−𝐺
𝑇

2
− 𝐿
𝑇

2
Ψ
168

∗ ∗ ∗ ∗ ∗ ∗ Ψ
𝑖77

Ψ
𝑖78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ
𝑖88

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, 𝑖 = 1, 2, (6)

where 𝐿 ∈ 𝑅
𝑛×(𝑛−𝑟) is anymatrix with full columns and satisfies

𝐸
𝑇
𝐿 = 0 and

Ψ
111

= 𝑈
1
+ 𝑈
2
+ 𝑈
3
+ 𝑈
4
+ {𝐿
1
+ 𝐻
1
(𝐴 + 𝐴

𝑑
)}
𝐻
,

Ψ
112

= −𝐻
1
𝐴
𝑑
− 𝐿
1
+ 𝐿
𝑇

4
,

Ψ
116

= −𝑚𝐻
1
𝐴
𝑑
− 𝐺
1
− 𝐿
1
,

Ψ
115

= 𝐸
𝑇
𝑃 − 𝐻

1
+ (𝐻
2
(𝐴 + 𝐴

𝑑
))
𝑇
+ 𝑆
1
𝐿
𝑇
+ 𝐿
𝑇

3
,

Ψ
122

= −3𝐸
𝑇
𝑄
2
𝐸 − 𝐿

4
− 𝐿
𝑇

4
,

Ψ
126

= −𝐺
7
− 𝐿
4
,

Ψ
125

= −(𝐻
2
𝐴
𝑑
)
𝑇
+ 𝑆
6
𝐿
𝑇
− 𝐿
𝑇

3
,

Ψ
133

= −𝑈
1
+ {𝐺
3
}
𝐻
, Ψ

134
= −𝐺
3
+ 𝐺
𝑇

4
,

Ψ
135

= 𝑆
3
𝐿
𝑇
+ 𝐺
𝑇

5
, Ψ

136
= −𝐺
3
+ 𝐺
𝑇

6
,

Ψ
144

= −𝑈
2
− {𝐺
4
}
𝐻
, Ψ

145
= 𝑆
4
𝐿
𝑇
− 𝐺
𝑇

5
,

Ψ
146

= −𝐺
4
− 𝐺
𝑇

6
, Ψ

155
= 𝛾
2
𝑄
1
+ 𝑑
2

12
𝑄
2
− {𝐻
2
}
𝐻
,

Ψ
156

= −𝑚𝐻
2
𝐴
𝑑
+ 𝐿𝑆
𝑇

5
− 𝐺
5
− 𝐿
3
,

Ψ
166

= −𝐸
𝑇
𝑄
1
𝐸 − {𝐺

6
}
𝐻
,

Ψ
168

= −𝐺
𝑇

8
− 𝐿
𝑇

5
,

Ψ
178

= −𝐿
𝑇

5
+ 𝐸
𝑇
𝑄
2
𝐸,

Ψ
177

= − (1 − 𝜇)𝑈
3
− {𝐿
2
}
𝐻

− 𝐸
𝑇
𝑄
2
𝐸,

Ψ
188

= −𝑈
4
− 𝐸
𝑇
𝑄
2
𝐸,

Ψ
222

= −𝐸
𝑇
𝑄
2
𝐸 − {𝐿

4
}
𝐻
,

Ψ
277

= − (1 − 𝜇)𝑈
3
− {𝐿
2
}
𝐻

− 3𝐸
𝑇
𝑄
2
𝐸,

Ψ
278

= −𝐿
𝑇

5
+ 3𝐸
𝑇
𝑄
2
𝐸,

Ψ
288

= −𝑈
4
− 3𝐸
𝑇
𝑄
2
𝐸.

(7)

Proof. Under the conditions of Theorem 5, it is first shown
that the system (5) is regular and impulse free for any time-
delay 𝑑

(𝑡)
satisfying 0 < 𝑑

1
≤ 𝑑
(𝑡)

≤ 𝑑
2
. Define 𝐻 =

[𝐼
𝑛

𝐼
𝑛

0 0 𝐴
𝑇

0 0 0]. Then, by pre- and postmultiplying
(6) by 𝐻 and𝐻

𝑇, respectively, it is possible to obtain

− 𝐸
𝑇
𝑄
2
𝐸 + 𝐴

𝑇
𝑃𝐸 + 𝐸

𝑇
𝑃𝐴 + 𝐴

𝑇
𝐿(𝑆
1
+ 𝑆
6
)
𝑇

+ (𝑆
1
+ 𝑆
6
) 𝐿
𝑇
𝐴 < 0.

(8)

Since rank𝐸 = 𝑟 ≤ 𝑛, there exist two nonsingular matrices
�̃� and �̃� such that �̃�𝐸�̃� = [

𝐼𝑟 0

0 0
]. Accordingly, denote

�̃�𝐴�̃� = [
𝐴1 𝐴2

𝐴3 𝐴4
], �̃�𝑇(𝑆

1
+ 𝑆
6
) = [
𝑆11

𝑆12
], �̃�−𝑇𝐿 = [

0

𝐿1
], where
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𝐿
1

∈ 𝑅
(𝑛−𝑟)×(𝑛−𝑟) is any nonsingular matrix and 𝐼

𝑟
∈ 𝑅
𝑟×𝑟

is an identity matrix. Then, by pre- and postmultiplying
inequalities (8) by �̃�

𝑇and �̃�, respectively, it is possible to
obtain

[
⬦ ⬦

∗ 𝑆
12
𝐿
𝑇

1
𝐴
4
+ 𝐴
𝑇

4
𝐿
1
𝑆
𝑇

12

] < 0. (9)

Here, “⬦” representing the matrix blocks are irrelevant to
the following discussion; the real expression of these two
variables is omitted here. From (9), it is possible to obtain that

𝑆
12
𝐿
𝑇

1
𝐴
4
+ 𝐴
𝑇

4
𝐿
1
𝑆
𝑇

12
< 0. (10)

It can be shown that 𝐴
4
is nonsingular. Thus, the pair (𝐸, 𝐴)

is regular and impulse free [29]; that is to say, system (5) is
regular and impulse free.

Then, we are in a position to show that system (5) is stable
under the conditions of Theorem 5. Choose a Lyapunov-
Krasovskii functional candidate as

𝑉 (𝑡) = 𝑉
1 (𝑡) + 𝑉

2 (𝑡) + 𝑉
3 (𝑡) , (11)

where

𝑉
1 (𝑡) = 𝑥

𝑇

(𝑡)
𝐸
𝑇
𝑃𝐸𝑥
(𝑡)

+

𝑚−1

∑

𝑖=0

∫

𝑡

𝑡−𝑖𝛾

𝑥
𝑇

(𝑠)
𝑈
1
𝑥
(𝑠)
𝑑𝑠

+

𝑚−1

∑

𝑖=0

∫

𝑡

𝑡−(𝑖+1)𝛾

𝑥
𝑇

(𝑠)
𝑈
2
𝑥
(𝑠)
𝑑𝑠 + ∫

𝑡

𝑡−𝑑𝑡

𝑥
𝑇

(𝑠)
𝑈
3
𝑥
(𝑠)
𝑑𝑠

+ ∫

𝑡

𝑡−𝑑2

𝑥
𝑇

(𝑠)
𝑈
4
𝑥
(𝑠)
𝑑𝑠,

𝑉
2 (𝑡) = 𝛾

𝑚−1

∑

𝑖=0

∫

0

−𝛾

∫

𝑡−𝑖𝛾

𝑡−𝑖𝛾+𝜀

𝑥
𝑇

(𝑠)
𝑄
1
𝑥
(𝑠)
𝑑𝑠𝑑𝜀,

𝑉
3 (𝑡) = 𝑑

12
∫

−𝑑1

−𝑑2

∫

𝑡

𝑡+𝜀

�̇�
𝑇

(𝑠)
𝐸
𝑇
𝑄
2
𝐸�̇�
(𝑠)
𝑑𝑠𝑑𝜀.

(12)

The derivative of 𝑉(𝑡) along the trajectories of (5) satisfies

�̇� (𝑡) = �̇�
1 (𝑡) + �̇�

2 (𝑡) + �̇�
3 (𝑡) , (13)

where

�̇�
1 (𝑡) = �̇�

𝑇

(𝑡)
𝐸
𝑇
𝑃𝐸𝑥
(𝑡)

+ 𝑚𝑥
𝑇

(𝑡)
𝑈
1
𝑥
(𝑡)

−

𝑚−1

∑

𝑖=0

𝑥
𝑇

(𝑡−𝑖𝛾)
𝑈
1
𝑥
(𝑡−𝑖𝛾)

+ 𝑚𝑥
𝑇

(𝑡)
𝑈
2
𝑥
(𝑡)

−

𝑚−1

∑

𝑖=0

𝑥
𝑇

(𝑡−(𝑖+1)𝛾)
𝑈
2
𝑥
(𝑡−(𝑖+1)𝛾)

+ 𝑥
𝑇

(𝑡)
𝑈
3
𝑥
(𝑡)

− (1 − 𝜇) 𝑥
𝑇

(𝑡−𝑑(𝑡))
𝑈
3
𝑥
(𝑡−𝑑(𝑡))

+ 𝑥
𝑇

(𝑡)
𝑈
4
𝑥
(𝑡)

− 𝑥
𝑇

(𝑡−𝑑2)
𝑈
4
𝑥
(𝑡−𝑑2)

,

�̇�
2 (𝑡) ≤ 𝛾

2
�̇�
𝑇

(𝑡)
𝐸
𝑇
𝑄
1
𝐸�̇�
(𝑡)

−

𝑚−1

∑

𝑖=0

∫

𝑡−𝑖𝛾

𝑡−(𝑖+1)𝛾

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
1
𝐸∫

𝑡−𝑖𝛾

𝑡−(𝑖+1)𝛾

�̇�
(𝑠)
𝑑𝑠,

�̇�
3 (𝑡) = 𝑑

2

12
�̇�
𝑇

(𝑡)
𝐸
𝑇
𝑄
2
𝐸�̇�
(𝑡)

− 𝑑
12

∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠)
𝐸
𝑇
𝑄
2
𝐸�̇�
(𝑠)
𝑑𝑠

− 𝑑
12

∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠)
𝐸
𝑇
𝑄
2
𝐸�̇�
(𝑠)
𝑑𝑠

≤ 𝑑
2

12
�̇�
𝑇

(𝑡)
𝐸
𝑇
𝑄
2
𝐸�̇�
(𝑡)

−
𝑑
12

𝑑
(𝑡)

− 𝑑
1

∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
(𝑠)
𝑑𝑠

−
𝑑
12

𝑑
2
− 𝑑
(𝑡)

∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑𝑡

𝑡−𝑑2

�̇�
(𝑠)
𝑑𝑠.

(14)

We have −𝑑
12
/(𝑑
(𝑡)

− 𝑑
1
) − 𝑑
12
/(𝑑
2
− 𝑑
(𝑡)
) ≤ 4; thus, when

𝑑
1
≤ 𝑑
(𝑡)

≤ (𝑑
1
+ 𝑑
2
)/2, it is easy to obtain

−
𝑑
12

𝑑
(𝑡)

− 𝑑
1

∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
(𝑠)
𝑑𝑠

≤ (−4 +
𝑑
12

𝑑
2
− 𝑑
(𝑡)

)∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
(𝑠)
𝑑𝑠.

(15)

By defining 𝜃
1
(𝑡) = 2 − 𝑑

12
/(𝑑
2
− 𝑑
(𝑡)
) and according to 𝑑

1
≤

𝑑
(𝑡)

≤ (𝑑
1
+ 𝑑
2
)/2, we have 0 ≤ 𝜃

1
(𝑡) ≤ 1. Thus, based on the

convex theory, it is easy to obtain that

(−4 +
𝑑
12

𝑑
2
− 𝑑
(𝑡)

)∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
(𝑠)
𝑑𝑠

−
𝑑
12

𝑑
2
− 𝑑
(𝑡)

∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
(𝑠)
𝑑𝑠

= (
1

2
+

𝜃
1 (𝑡)

2
)

× (−3∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
(𝑠)
𝑑𝑠

−∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
(𝑠)
𝑑𝑠)

+ (1 − (
1

2
+

𝜃
1 (𝑡)

2
))
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× (−∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸 ∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
(𝑠)
𝑑𝑠

−3∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
(𝑠)
𝑑𝑠) .

(16)

When (𝑑
1
+ 𝑑
2
)/2 ≤ 𝑑

(𝑡)
≤ 𝑑
2
, we have

−
𝑑
12

𝑑
2
− 𝑑
(𝑡)

∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
(𝑠)
𝑑𝑠

≤ (−4 +
𝑑
12

𝑑
(𝑡)

− 𝑑
1

)∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
(𝑠)
𝑑𝑠.

(17)

By defining 𝜃
2
(𝑡) = 2 − 𝑑

12
/(𝑑
(𝑡)

− 𝑑
1
) and according to (𝑑

1
+

𝑑
2
)/2 ≤ 𝑑

(𝑡)
≤ 𝑑
2
, we have 0 ≤ 𝜃

2
(𝑡) ≤ 1. Based on convex

theory, we achieve

−
𝑑
12

𝑑
(𝑡)

− 𝑑
1

∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
(𝑠)
𝑑𝑠

+ (−4 +
𝑑
12

𝑑
(𝑡)

− 𝑑
1

)∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
(𝑠)
𝑑𝑠

= (
1

2
+

𝜃
2 (𝑡)

2
)

× (−∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
(𝑠)
𝑑𝑠

−3∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
(𝑠)
𝑑𝑠)

+ (1 − (
1

2
+

𝜃
2 (𝑡)

2
))

× (−3∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
(𝑠)
𝑑𝑠

−∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
(𝑠)
𝑑𝑠) .

(18)

It is easy to obtain 0 ≤ (1 + 𝜃
1
(𝑡))/2 ≤ 1 and 0 ≤ (1 +

𝜃
2
(𝑡))/2 ≤ 1. Then, based on the analysis mentioned above,

we can obtain that when 𝜃(𝑡) satisfies 0 ≤ 𝜃(𝑡) ≤ 1, there exists

−
𝑑
12

𝑑
(𝑡)

− 𝑑
1

∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
(𝑠)
𝑑𝑠

−
𝑑
12

𝑑
2
− 𝑑
(𝑡)

∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
(𝑠)
𝑑𝑠

≤ 𝜃 (𝑡) (−3∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
(𝑠)
𝑑𝑠

−∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
(𝑠)
𝑑𝑠)

+ (1 − 𝜃 (𝑡))

× (−∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
(𝑠)
𝑑𝑠

−3∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠)
𝑑𝑠𝐸
𝑇
𝑄
2
𝐸∫

𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
(𝑠)
𝑑𝑠) .

(19)

By considering (5), it is obvious that

(𝑥
𝑇

(𝑡)
𝐻
1
+ �̇�
𝑇

(𝑡)
𝐸
𝑇
𝐻
2
)

×

𝑚−1

∑

𝑖=0

((𝐴 + 𝐴
𝑑
) 𝑥
(𝑡)

− 𝑚𝐴
𝑑
∫

𝑡−(𝑖/𝑚)𝑑1

𝑡−((𝑖+1)/𝑚)𝑑1

�̇�
(𝑠)
𝑑𝑠

−𝐴
𝑑
∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
(𝑠)
𝑑𝑠 − 𝐸�̇�

(𝑡)
) = 0.

(20)

Noting 𝐸
𝑇
𝐿 = 0, we obtain

2

𝑚−1

∑

𝑖=0

(𝑥
𝑇

(𝑡)
𝑆
1
+ 𝑥
𝑇

𝑡−𝑑(𝑡)
𝑆
2
+ 𝑥
𝑇

𝑡−𝑖𝛾
𝑆
3

+ 𝑥
𝑇

𝑡−(𝑖+1)𝛾
𝑆
4
+ ∫

𝑡−𝑖𝛾

𝑡−(𝑖+1)𝛾

�̇�
𝑇

(𝑠)
𝑑𝑠𝑆
5

+∫

𝑡−𝑑1

𝑡−𝑑𝑡

�̇�
𝑇

(𝑠)
𝑑𝑠𝑆
6
+ 𝑥
𝑇

𝑡−𝑑2
𝑆
7
)𝐿
𝑇
𝐸�̇�
(𝑡)

= 0.

(21)

Furthermore, according to the free-weighting-matrix
method, we have

(𝑥
𝑇

(𝑡)
𝐺
1
+ 𝑥
𝑇

𝑡−𝑑(𝑡)
𝐺
2
+ 𝑥
𝑇

𝑡−𝑖𝛾
𝐺
3
+ 𝑥
𝑇

𝑡−(𝑖+1)𝛾
𝐺
4

+ �̇�
𝑇

(𝑡)
𝐸
𝑇
𝐺
5
+ ∫

𝑡−𝑖𝛾

𝑡−(𝑖+1)𝛾

�̇�
𝑇

(𝑠)
𝑑𝑠𝐺
6

+∫

𝑡−𝑑1

𝑡−𝑑𝑡

�̇�
𝑇

(𝑠)
𝑑𝑠𝐺
7
+ 𝑥
𝑇

𝑡−𝑑2
𝐺
8
)

× (𝑥
(𝑡−𝑖𝛾)

− 𝑥
(𝑡−(𝑖+1)𝛾)

− ∫

𝑡−𝑖𝛾

𝑡−(𝑖+1)𝛾

�̇�
(𝑠)
𝑑𝑠) = 0,
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(𝑥
𝑇

(𝑡)
𝐿
1
+ 𝑥
𝑇

𝑡−𝑑(𝑡)
𝐿
2
+ �̇�
𝑇

(𝑡)
𝐸
𝑇
𝐿
3
+ ∫

𝑡−𝑑1

𝑡−𝑑𝑡

�̇�
𝑇

(𝑠)
𝑑𝑠𝐿
4
+ 𝑥
𝑇

𝑡−𝑑2
𝐿
5
)

× (𝑥
(𝑡)

− 𝑥
(𝑡−𝑑𝑡)

− ∫

𝑡−𝑑1

𝑡−𝑑𝑡

�̇�
(𝑠)
𝑑𝑠 −

𝑚−1

∑

𝑖=0

∫

𝑡−𝑖𝛾

𝑡−(𝑖+1)𝛾

�̇�
(𝑠)
𝑑𝑠) = 0.

(22)

Then, combining manipulations (13)–(22) yields

�̇� (𝑡) ≤

𝑚−1

∑

𝑖=0

(𝜃 (𝑡) 𝜉
𝑇

(𝑡)
Ψ
1
𝜉
(𝑡)

+ (1 − 𝜃 (𝑡)) 𝜉
𝑇

(𝑡)
Ψ
2
𝜉
(𝑡)
) ,

(23)

where

𝜉
(𝑡)

= [𝑥
𝑇

(𝑡)
∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠)
𝑑𝑠 𝑥
𝑇

𝑡−𝑖𝛾
𝑥
𝑇

𝑡−(𝑖+1)𝛾
�̇�
𝑇

(𝑡)
𝐸
𝑇

∫

𝑡−𝑖𝛾

𝑡−(𝑖+1)𝛾

�̇�
𝑇

(𝑠)
𝑑𝑠 𝑥
𝑇

(𝑡−𝑑𝑡)
𝑥
𝑇

(𝑡−𝑑2)
]

𝑇

. (24)

Then, we can obtain �̇�(𝑡) < 0 from (6). Thus, we can deduce
that

�̇� (𝑡) ≤ −𝜆
2

𝜁(𝑡)


2
≤ −𝜆
2

𝑥(𝑡)


2
, (25)

where 𝜆
2

= −max{𝜆max(Ψ1), 𝜆max(Ψ2)} > 0. Therefore, the
system (5) is stable based on Definition (2). This completes
the proof.

Theorem 6. For the prescribed scalars satisfying 0 < 𝑑
1

≤

𝑑
2
, the singular system (1) is stabilizable for any time-delay

𝑑
(𝑡)

satisfying 0 < 𝑑
1

≤ 𝑑
(𝑡)

≤ 𝑑
2
if there exist positive

symmetric matrices 𝑃, 𝑈
𝑖
(𝑖 = 1, 2, 3, 4), 𝑄

1
, 𝑄
2
matri-

ces 𝐻
1

= 𝑍
−1

[
𝐻111 0

𝐻121 𝐻22

]𝑍, 𝐻
2

= 𝛽𝑍
−1

[
𝛽
−1
𝐻211 0

𝛽
−1
𝐻221 𝐻22

]𝑍,
𝑆
𝑖
(𝑖 = 1, 2, 3, 4, 5, 6, 7), 𝐺

𝑖
(𝑖 = 1, 2, 3, 4, 5, 6, 7, 8), 𝐿

𝑖
(𝑖 =

1, 2, 3, 4, 5), 𝑇 ∈ 𝑅
𝑝×𝑛, and scalar 𝛽 satisfying the following

LMIs:

Ψ̃
𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[

[

Ψ̃
111

Ψ
112

𝐺
1

−𝐺
1

Ψ̃
115

Ψ
116

−𝐿
1
+ 𝐿
𝑇

2
𝐿
𝑇

5

∗ Ψ
𝑖22

𝐺
7

−𝐺
7

Ψ
125

Ψ
126

−𝐿
𝑇

2
− 𝐿
4

−𝐿
𝑇

5

∗ ∗ Ψ
133

Ψ
134

Ψ
135

Ψ
136

𝐺
𝑇

2
Ψ
138

∗ ∗ ∗ Ψ
44

Ψ
145

Ψ
146

−𝐺
𝑇

2
−𝐺
𝑇

8

∗ ∗ ∗ ∗ Ψ
155

Ψ
156

𝐿𝑆
𝑇

2
− 𝐿
3

𝐿𝑆
𝑇

7

∗ ∗ ∗ ∗ ∗ Ψ
166

−𝐺
𝑇

2
− 𝐿
𝑇

2
Ψ
168

∗ ∗ ∗ ∗ ∗ ∗ Ψ
𝑖77

Ψ
𝑖78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ
𝑖88

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, 𝑖 = 1, 2, (26)

where 𝐿 ∈ 𝑅
𝑛×(𝑛−𝑟) is anymatrix with full columns and satisfies

𝐸
𝑇
𝐿 = 0, 𝐻

22
∈ 𝑅
𝑝×𝑝 is any nonsingular matrix, 𝑍 ∈ 𝑅

𝑛×𝑛 is
any nonsingular constant matrix satisfying 𝑍𝐵 = [0 𝐵

𝑇

1
]
𝑇

,
where𝐵

1
∈ 𝑅
𝑝×𝑝 is nonsingular, and Ψ̃

111
= 𝑈
1
+𝑈
2
+𝑈
3
+𝑈
4
+

{𝐿
1
+ 𝐻
1
(𝐴 + 𝐴

𝑑
) + 𝐵𝑇}

𝐻, Ψ̃
115

= (𝐻
2
(𝐴 + 𝐴

𝑑
) + 𝛽𝐵𝑇)

𝑇
+

𝐸
𝑇
𝑃−𝐻
1
+𝑆
1
𝐿
𝑇
+𝐿
𝑇

3
.Then, a suitable state feedback controller

is described as 𝐾 = (𝐻
22
𝐵
1
)
−1

𝐵
1
𝑇.

Proof. By replacing 𝐴 with 𝐴 + 𝐵𝐾 and choosing 𝐾 =

(𝐻
22
𝐵
1
)
−1

𝐵
1
𝑇, 𝐻

1
= 𝑍

−1
[
𝐻111 0

𝐻121 𝐻22

]𝑍, and 𝐻
2

=

𝛽𝑍
−1

[
𝛽
−1
𝐻211 0

𝛽
−1
𝐻221 𝐻22

]𝑍, it is easy to obtain 𝐻
1
𝐵𝐾 = 𝐵𝑇 and

𝐻
2
𝐵𝐾 = 𝛽𝐵𝑇. Thus, we can obtain (6) from LMIs (26). This

completes the proof.

Theorem 7. For the prescribed scalars satisfying 0 < 𝑑
1
≤ 𝑑
2
,

the singular system (1) is robustly stabilizable for any time-
delay 𝑑

(𝑡)
satisfying 0 < 𝑑

1
≤ 𝑑
(𝑡)

≤ 𝑑
2
if there exist

positive symmetric matrices 𝑃, 𝑈
𝑖
(𝑖 = 1, 2, 3, 4), 𝑄

1
, 𝑄
2
,

matrices 𝐻
1
= 𝑍
−1

[
𝐻111 0

𝐻121 𝐻22

]𝑍, 𝐻
2
= 𝛽𝑍

−1
[
𝛽
−1
𝐻211 0

𝛽
−1
𝐻221 𝐻22

]𝑍,

𝑆
𝑖
(𝑖 = 1, 2, 3, 4, 5, 6, 7), 𝐺

𝑖
(𝑖 = 1, 2, 3, 4, 5, 6, 7, 8), 𝐿

𝑖
(𝑖 =

1, 2, 3, 4, 5), 𝑇 ∈ 𝑅
𝑝×𝑛, and scalars 𝛽, 𝜆 > 0 satisfying the

following LMIs:

[

[

Ψ̃
𝑖

Π̃
𝑇

2
𝜆Λ̃
𝑇

2

∗ −𝜆𝐼 0

∗ ∗ −𝜆𝐼

]

]

< 0, 𝑖 = 1, 2, (27)

where Ψ̃
1
,Ψ̃
2
, and 𝐿 follow the same definitions as inTheorem 6

and 𝐻
22

∈ 𝑅
𝑝×𝑝 is any nonsingular matrix, 𝑍 ∈ 𝑅

𝑛×𝑛

is any nonsingular constant matrix satisfying 𝑍𝐵 =

[0 𝐵
𝑇

1
]
𝑇

, where 𝐵
1

∈ 𝑅
𝑝×𝑝 is nonsingular, and

Π̃
2

= [𝑀
𝑇

𝐻
𝑇

1
0 0 0 𝑀

𝑇
𝐻
𝑇

2
0 0 0], Λ̃

2
=

[𝑁1 + 𝑁
2

−𝑁
2

0 0 0 − 𝑚𝑁
2

0 0]. Then, a suitable
state feedback control law is described as 𝐾 = (𝐻

22
𝐵
1
)
−1

𝐵
1
𝑇.

Proof. Replacing 𝐴 and 𝐴
𝑑
with 𝐴 + Δ𝐴 and 𝐴

𝑑
+ Δ𝐴

𝑑
,

respectively, (26) can be expressed as

Ψ̃
𝑖
+ Λ̃
𝑇

2
𝐹
(𝑡)
Π̃
2
+ Π̃
𝑇

2
𝐹
𝑇

(𝑡)
Λ̃
2
< 0, 𝑖 = 1, 2. (28)
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Table 1: Comparisons of the upper bounds of 𝑑
2
with different 𝑑

1

of the system without uncertainties.

𝑑
1

0.5 1 1.5 2
[32] 2.9056 2.9073 2.9103 2.9163
[33] 3.0401 3.0416 3.0441 3.0490
[34] 3.0401 3.0416 3.0441 3.0490
Theorem 5 3.0501 3.0540 3.0604 3.0724

By Lemma 4, LMIs (28) hold for any𝐹
(𝑡)
satisfying𝐹

𝑇

(𝑡)
𝐹
(𝑡)

≤ 𝐼

if and only if there exists scalar 𝜆 > 0 such that

Ψ̃
𝑖
+ 𝜆Λ̃
𝑇

2
Λ̃
2
+ 𝜆
−1
Π̃
𝑇

2
Π̃
2
< 0, 𝑖 = 1, 2. (29)

Applying the Schur complement, (27) is equivalent to (29).
This completes the proof.

4. Illustrative Examples

Example 1. Consider that the continuous singular time-
varying delay system (5) has the systemmatrices of𝐸 = [

9 3

6 2
],

𝐴 = [
−13.1 −13.7

−15.4 −23.8
], and𝐴

𝑑
= [
−18.6 −10.4

−25.2 −16.8
]. Set𝜇 = 0.2 and select

𝐿 = [2 − 3]
𝑇. For the deferent lower bounds 𝑑

1
, the upper

bounds of 𝑑
2
for the system to be admissible are shown in

Table 1. It is obvious that the delay-dependent stability results
obtained in this paper are better than those in [32–34].

Example 2. Consider that the continuous singular time-
varying delay system has the following system matrices [25]:

𝐸 = [

[

1 1 0

1 −1 1

2 0 1

]

]

, 𝐴 = [

[

2 1 1

−1 0 1

0.5 0 1

]

]

,

𝐴
𝑑
= [

[

−1.5 0.5 −0.8

1 1 0.5

0.7 0.5 1

]

]

, 𝐵 = [

[

1 2

1.5 0

0 1

]

]

.

(30)

Set 𝜇 = 0 and select 𝐿 = [−1 1 2]
𝑇; Theorem 5 yields

that the system is stable for any constant delay 𝑑 satisfying
0 ≤ 𝑑 ≤ 5, which has less conservatism than 0 ≤ 𝑑 ≤ 3.1

which was obtained in [28]. Then, set 𝜇 = 0.2 and select
𝐿 = [−1 1 2]

𝑇. For any time-varying delay 𝑑
(𝑡)

satisfying
0.5 ≤ 𝑑

(𝑡)
≤ 2, the LMIs (26) are feasible, and a controller

gain law can be obtained as follows:

𝐾 = [
−0.6466 −0.1275 −0.2681

0.2072 0.5078 −0.1450
] . (31)

Now, we consider the system uncertainties, and the
uncertain system matrices have the following forms of
𝑀 = [0.4 0.3 0.1]

𝑇, 𝑁
1

= [0.2 0.4 0.5], and 𝑁
2

=

[0.3 0.7 0.5]. Set 𝜇 = 0.2 and choose 𝐿 = [−1 1 2]
𝑇. For

any time-varying delay 𝑑
(𝑡)
satisfying 0.5 ≤ 𝑑

(𝑡)
≤ 2, the LMIs

(27) are feasible, and a robust controller can be obtained as

𝐾 = [
−2.2790 −0.4928 −0.9442

0.7654 1.6355 −0.4224
] . (32)

5. Conclusion

In this research, the robustly delay-dependent stabilization
for continuously singular time-varying delay systems with
norm-bounded uncertainties is investigated. Based on Lya-
punov stability theory and LMI technique, the new delay-
dependent LMIs-based conditions are established for the sin-
gular time-varying delay system to be regular, impulse free,
and stable. By solving these LMIs, the desired state feedback
control law can be obtained, and the regularity, causality, and
stability of the closed-loop system are guaranteed. Finally,
simulation results are given to show the effectiveness of the
proposed method.
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