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This paper proposes a quaternion-ESPRIT algorithm for closed-form estimation of direction of arrival (DOA) and polarization,
using a cylindrical conformal array configuration. First, the array steering vector and the elevation are estimated using a quaternion
eigenvalue decomposition of the data covariance matrix. Second, the azimuth is estimated. Finally, the polarization parameters are
estimated using the relationships between the dipoles and the loops.These estimates are automatically matched. Simulation results
show that the performance of quaternion method is obviously better than that of the long-vector method.

1. Introduction

In the last decades, thanks to advances in sensor technology,
electromagnetic vector sensor (EMVS) array was widely
used in source localization. The problems of estimating
direction of arrival (DOA) and polarization parameters have
been discussed in many articles. The first direction-finding
algorithms, explicitly exploiting all six electromagnetic com-
ponents, have been developed separately by Nehorai and
Paldi [1, 2] and Li [3]. The cross-product-based DOA esti-
mation algorithm was first adapted to ESPRIT by Wong
and Zoltowski [4–7]. A uni-vector-sensor ESPRIT algorithm
was proposed in [8]. The aforementioned six-component
electromagnetic vector sensors are called complete EMVS.
The incomplete EMVS antenna configurations have been
extensively studied by numerous researchers, collocated loop
and dipole (CLD) oriented along the 𝑧-axis of Cartesian
coordinate can measure the electric-field and magnetic-field
𝑧-component [9, 10], as shown in Figure 1. It is noteworthy
that the polarization parameter estimation using a CLD
array is independent of the sources DOA and it requires
no prior information of azimuth and elevation angles [11].
This independence can not be applied to other antenna
configurations, for example two identical dipoles [12–14], two
identical loops [11, 15], dipole and/or loop triad(s) [16, 17],

and so forth [18, 19]. In the above-mentioned contributions,
the output of each EMVS in the array can be represented as
complex-valued vectors, and the data received by the EMVS
array is combined into a long vector in series, which is called
long-vectormode [20]. Consequently, the relevant estimators
destroy locally the vector type of the signal because of the
organization of the data into a large vector.

More recently, the problem of estimating the DOA and
polarization of the EMVS array within the algebraic system
theory for quaternion and its extension has been widely
researched [20–27]. Quaternion MUSIC technique was pro-
posed based on the quaternion formalism of the two-
component vector sensor array in [21].The three-component
vector sensor was expressed as a biquaternion number, then
biquaternion-based MUSIC was proposed in [22]. The six-
component electromagnetic vector sensor array was repre-
sented by a quad-quaternion model in [20]. The quaternion-
ESPRIT algorithm for a crossed-dipole uniform linear array
(ULA) was firstly proposed in [23]. The advantages of using
quaternion for EMVS are that the local-vector nature of an
EMVS array is preserved in multiple imaginary parts, and it
could result in a more compact representation and a better
estimation of signal subspace. Compared with long-vector
method, the quaternion and its extension algorithms are
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Figure 1: CCCP array element geometry.

shown to be more robust to model errors, while their com-
putation efforts for estimating the data covariance matrices
are slightly lower [20–22].

Conformal antenna array, that is, array antennas with
antenna elements arranged conformally on a curved surface,
is widely used in a variety of airborne radar and other defense
systems.The benefits include reduction of aerodynamic drag,
wide angle coverage, space savings, and potential increase in
available apertures [28–30]. Cylindrical conformal array is a
typical conformal array.

The purpose of this paper is to study the quaternion-
ESPRIT algorithm for combining DOA and polarization
estimation in cylindrical conformal CLD pair (CCCP) array.
Compared with loop and dipole pairs oriented along 𝑥-axis
and 𝑦-axis and CDD (cocentered dipole and dipole) pairs,
CLL (cocentered loop and loop) pairs oriented along 𝑥-
and 𝑦-axes, respectively, the CLD pairs along the 𝑧-axis can
decouple the DOA estimation from the polarization estima-
tion [11–15]; errors of DOA and polarization herein do not
cumulate. On the contrary, the related algorithms using the
other pairs can not decouple the DOA estimation from the
polarization estimation, and theDOAand polarization errors
in numerical computation accumulate from step to step. The
procedure of the proposed method is as follows: first, the
array steering vector and the elevation are estimated using a
quaternion eigenvalue decomposition of the data covariance
matrix. Secondly, the azimuth is estimated using the relation-
ships between direction cosine and spatial steering vector.
Thirdly, the polarization parameters are estimated using the
relationships between the dipoles and the loops. Hence,
this proposed algorithm (1) is computationally less intensive
than many open-form search methods; (2) produces closed-
form solution with no extra computation needed for signal
parameter estimates; (3) resolves the elevation quadrant
ambiguity problem; and (4) has the advantage of parameter
automaticmatching andwithout spectral peak searching.The
simulation results show that the performance of quaternion
method is better than that of long-vector method.

2. Definition of Quaternion and
Relevant Arithmetic

2.1. Definition of Quaternion. Quaternion, which extended
imaginary numbers into a four-dimensional space, began
to be developed by William Hamilton in 1843. A complex
number has two components: the real and imaginary parts.
The quaternion, however, has four components, that is, one
real part and three imaginary parts and can be represented in
Cartesian form as

𝑞 = 𝑎 + 𝑖𝑏 + 𝑗𝑐 + 𝑘𝑑, 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅, (1)

where 𝑎, 𝑏, 𝑐, and 𝑑 are real numbers and 𝑖, 𝑗, and 𝑘 are
complex operators which obey the following rules:

𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑖,

𝑘𝑖 = −𝑖𝑘 = 𝑗, 𝑖
2
= 𝑗
2
= 𝑘
2
= −1.

(2)

From formulas (1) and (2), quaternion can also be expressed
in the following form:

𝑞 = 𝑎 + 𝑖𝑏 + (𝑐 + 𝑖𝑑) 𝑗 = 𝛼 + 𝛽𝑗. (3)

The quaternion expressed in (3) is also known as the “Cayley-
Dickson representation.”

2.2. The Relevant Arithmetic of Quaternion. The quaternion
conjugate and the quaternionmodulus are, respectively, given
by

𝑞
∗
= 𝑎 − 𝑖𝑏 − 𝑗𝑐 − 𝑘𝑑, (4)





𝑞




= √𝑎
2
+ 𝑏
2
+ 𝑐
2
+ 𝑑
2
. (5)

Let 𝑞
𝑖
be 𝑞
𝑖
= 𝑎
𝑖
+ 𝑖𝑏
𝑖
+ 𝑗𝑐
𝑖
+ 𝑘𝑑
𝑖
, where 𝑎

𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, and 𝑑

𝑖
∈ 𝑅,

𝑖 = 1, 2; then the addition of two quaternions expressed in
terms of their real and imaginary parts is given by

𝑞
1
+ 𝑞
2
= (𝑎
1
+ 𝑎
2
) + 𝑖 (𝑏

1
+ 𝑏
2
)

+ 𝑗 (𝑐
1
+ 𝑐
2
) + 𝑘 (𝑑

1
+ 𝑑
2
) .

(6)

From the rules in (2), it is clear that multiplication is not
commutative; namely, 𝑞

1
⋅ 𝑞
2

̸= 𝑞
2
⋅ 𝑞
1
. The inner product of

quaternion can be represented as

⟨𝑝, 𝑞⟩
𝐻
= 𝑝
∗
𝑞. (7)

If the inner product of quaternionmeets ⟨𝑝, 𝑞⟩
𝐻
= 0, it is said

that the quaternions 𝑝 and 𝑞 are orthogonal.
From the point of view of algebra, quaternion is an

extension of the complex field. A quaternion contains more
than two components than that of a complex number, so
that it can contain more information in one operation. More
details about quaternion can be found in [27].

3. Signal and Array Models

𝐾 narrowband completely polarized electromagnetic plane
wave source signals impinge upon a CCCP array, which is



Mathematical Problems in Engineering 3

Z

2N

N+ 1

N + 2 · · ·

· · ·

N + n

N

1

X 2

𝜃k

𝜙n
𝜙k

n

Y

Figure 2: CCCP array geometry.

composed of 2𝑁 (𝑁 > 𝐾) identical CLD pairs arranged
uniformly on the upper and lower circle rings of the cylinder.
The distance of the two circle rings is 𝑑, which satisfies
𝑑 ≤ 0.5𝜆min, where 𝜆min refers to the minimal signals
wavelength of the incident signals.The origin of the Cartesian
coordinates is located in the center of the lower circle. Two
reference CLD pairs are, respectively, placed at their own
center of upper and lower circles. The radii of the upper
and lower circles are both 𝑅 which satisfies 𝑅 ≤ 0.5𝜆min.
The first CLD pair located on the cross point of lower circle
and the positive 𝑥-axis, along the anticlockwise direction
is, respectively, the first, second, . . ., and 𝑁th CLD pair.
Similarly, the (𝑁 + 1)th CLD pair located on the cross point
of upper circle and the positive 𝑥-axis along the anticlockwise
direction is, respectively, the (𝑁+ 1)th and (2𝑁)th CLD pair,
as shown in Figure 2.

For the CLD pairs, the dipoles parallel to the 𝑧-axis are
referred to as the 𝑧-axis dipoles and the loops parallel to the

𝑥-𝑦 plane are referred to as the 𝑥-𝑦 plane loops, respectively,
measuring the 𝑧-axis electric field components and the 𝑧-axis
magnetic field components.The CLD pairs’ steering vector of
the 𝑘th (1 ≤ 𝑘 ≤ 𝐾)unit-power electromagnetic source signal
is the following 2 × 1 vector [3]:

a = [
𝑒
𝑘𝑧

ℎ
𝑘𝑧

] = [
0 − sin 𝜃

𝑘

sin 𝜃
𝑘

0
] [

cos 𝛾
𝑘

sin 𝛾
𝑘
𝑒
𝑗𝜂𝑘
] , (8)

where 𝜃
𝑘
∈ [0, 𝜋] is the signals elevation angle measured

from the positive 𝑧-axis, 𝛾
𝑘

∈ [0, 𝜋/2] represents the
auxiliary polarization angle, and 𝜂

𝑘
∈ [−𝜋, 𝜋] symbolizes

the polarization phase difference. Both the 𝑧-axis electric
field 𝑒

𝑘𝑧
and the 𝑧-axis magnetic field ℎ

𝑘𝑧
involve the same

factor sin 𝜃
𝑘
, so polarization estimation based onCLDpairs is

independent of the sources direction of arrival and it requires
no prior information of azimuth and elevation angles.

The 𝑒
𝑘𝑧

and ℎ
𝑘𝑧

can be expressed as follows with a
quaternion 𝑐

𝑘
:

𝑐
𝑘
= 𝑒
𝑘𝑧
+ 𝑖ℎ
𝑘𝑧

= − sin 𝜃
𝑘
sin 𝛾
𝑘
𝑒
𝑗𝜂𝑘

+ 𝑖 sin 𝜃
𝑘
cos 𝛾
𝑘
.

(9)

The output of array response for the 𝑘th incident signal can
be expressed as follows:

𝑥
𝑘
(𝑡) = 𝑐

𝑘
q (𝜃
𝑘
, 𝜙
𝑘
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

a(𝜃𝑘,𝜙𝑘,𝛾𝑘,𝜂𝑘)

𝑠
𝑘
(𝑡) ,

(10)

where 𝜙
𝑘
∈ [0, 2𝜋] is the azimuth of the 𝑘th incident signal

and 𝑠
𝑘
(𝑡) is the kth incident signal. q(𝜃

𝑘
, 𝜙
𝑘
) is the spatial

steering vector constituted by the phase differences between
the array elements and the origin; that is,

q (𝜃
𝑘
, 𝜙
𝑘
) = [1 q𝑇

𝐿
(𝜃
𝑘
, 𝜙
𝑘
) 𝑒
𝑗(2𝜋dcos𝜃𝑘/𝜆) q𝑇

𝑈
(𝜃
𝑘
, 𝜙
𝑘
)]

𝑇

,

(11)

with

q
𝐿
(𝜃
𝑘
, 𝜙
𝑘
) = [𝑒

𝑗(2𝜋𝑅 sin 𝜃𝑘 cos(𝜙𝑘−𝜑1)/𝜆)
⋅ ⋅ ⋅ 𝑒
𝑗(2𝜋𝑅 sin 𝜃𝑘 cos(𝜙𝑘−𝜑𝑁)/𝜆)]

𝑇 (12)

q
𝑈
(𝜃
𝑘
, 𝜙
𝑘
) = [𝑒

𝑗(2𝜋(𝑅 sin 𝜃𝑘 cos(𝜙𝑘−𝜑1)+𝑑 cos 𝜃𝑘)/𝜆)
⋅ ⋅ ⋅ 𝑒
𝑗(2𝜋(𝑅 sin 𝜃𝑘 cos(𝜙𝑘−𝜑𝑁)+𝑑 cos 𝜃𝑘)/𝜆)]

𝑇

. (13)

From (12), the phase of q
𝐿
(𝜃
𝑘
, 𝜙
𝑘
) can be expressed as

arg [q
𝐿
(𝜃
𝑘
, 𝜙
𝑘
)]

=

2𝜋𝑅

𝜆

[
[
[
[

[

𝛽
𝑘

𝛼
𝑘
sinΔ + 𝛽

𝑘
cosΔ

...
𝛼
𝑘
sin [(𝑁 − 1) Δ] + 𝛽

𝑘
cos [(𝑁 − 1) Δ]

]
]
]
]

]

,

(14)

where 𝛼
𝑘
= sin 𝜃

𝑘
sin𝜙
𝑘
, 𝛽
𝑘
= sin 𝜃

𝑘
cos𝜙
𝑘
, and Δ = 2𝜋/𝑁.

The received data collected by the CCCP array at time 𝑡
can be represented as

X (𝑡) = AS (𝑡) + N (𝑡) , (15)

where X(𝑡), S(𝑡), N(𝑡), and A are the 2𝑁 + 2 received data,
the 𝐾 uncorrelated incident signals, the zero-mean additive
complex Gaussian noise, and the steering vector matrix of 𝐾
incident signals, respectively.

The lower and upper circle subarray steering vectors A
1

and A
2
are constructed by the first 𝑁 + 1 rows and the last
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𝑁 + 1 rows of vector A. Their relationship can be expressed
as

A
2
= A
1
Φ, (16)

where

Φ = [

[

𝑒
𝑗(2𝜋𝑑/𝜆) cos 𝜃1

d
𝑒
𝑗(2𝜋𝑑/𝜆) cos 𝜃𝐾

]

]

. (17)

4. Quaternion-ESPRIT Algorithm

The covariance matrix of received data X(𝑡) is given by

Rx = 𝐸 [XX𝐻] = AR
𝑠
A𝐻 + 𝜎

2I, (18)

with 𝐸[⋅] symbolizing the statistical mean (⋅)
𝐻 denoting

the complex conjugate transpose, 𝜎2 indicating the white
noise power and R

𝑠
= 𝐸[s(𝑡)s𝐻(𝑡)] representing the source

covariance matrix. Let E
𝑠
be the (2𝑁+2)×𝐾 signal subspace

matrix composed of the 𝐾 eigenvectors corresponding to
the 𝐾 largest eigenvalues of R

𝑥
and let E

𝑛
denote the noise

subspace composed of the remaining 2𝑁+2−𝐾 eigenvectors
of R
𝑥
. According to the subspace theory, there exists 𝐾 ×

𝐾 nonsingular matrix T, and the signal subspace can be
expressed explicitly as

E
𝑠
= AT, (19)

E
1
and E

2
are constructed directly using the first 𝑁 + 1

rows and the last 𝑁 + 1 rows of matrix E
𝑠
. According to the

definition of signal subspace, the relationship of matrices E
1

and E
2
can be showed explicitly as

E
1
= A
1
T, E

2
= A
2
T = A

1
ΦT. (20)

The following expression can be obtained by crunching
matrix operation:

E#
1
E
2
T−1 = T−1Φ, (21)

where E#
1
= (E𝐻
1
E
1
)

−1E𝐻
1
.

Let Γ = E#
1E2 = (EH

1 E1)
−1EH

1 E2; then (21) can be rewritten
as

ΓT−1 = T−1Φ. (22)

Equation (22) implies that the estimation ofΦ is a matrix
whose diagonal elements are composed of the 𝐾 largest
eigenvalues of matrix Γ and the full-rank matrix T−1 is
composed of the 𝐾 eigenvectors corresponding to the 𝐾

largest eigenvalues ofmatrix Γ.The estimations ofA
1
,A
2
, and

A can be obtained:

Â
1
= E
1
T−1, Â

2
= E
2
T−1, Â = E

𝑠
T−1. (23)

4.1. The Estimations of DOA. From the expression of Φ̂, the
estimation of elevation angle can be given as

̂
𝜃
𝑘
= cos−1 [ 𝜆

2𝜋𝑑

arg (Φ̂
𝑘𝑘
)] . (24)

The elevation obtained by the cosine function in formula
(24) can eliminate quadrant ambiguity; the values of elevation
can be taken in range from 0 to 𝜋.

The estimation of signal spatial steering vector q̂
𝐷
(𝜃
𝑘
, 𝜙
𝑘
)

is obtained from A
1
:

q̂
𝐷
(𝜃
𝑘
, 𝜙
𝑘
) =

A
1
(:, 𝑘)

A
1
(:, 1)

= [
1

q̂
𝐿
(𝜃
𝑘
, 𝜙
𝑘
)
] . (25)

From formulas (14) and (25), the following expression can be
gotten as follows:

Ω = arg [q̂
𝐿
(𝜃
𝑘
, 𝜙
𝑘
)] = W ⋅ [

�̂�
𝑘

̂
𝛽
𝑘

] , (26)

where

W =

2𝜋𝑅

𝜆

[
[
[
[

[

0 1

sinΔ cosΔ
...

...
sin [(𝑁 − 1) Δ] cos [(𝑁 − 1) Δ]

]
]
]
]

]

. (27)

According to (26), the following expression can be obtained:

[

�̂�
𝑘

̂
𝛽
𝑘

] = W#
Ω, (28)

whereW#
= (W𝐻W)

−1W𝐻.
From formulas (24) and (28), the estimates of azimuth are

given:

̂
𝜙
𝑘
= arctan(

�̂�
𝑘

̂
𝛽
𝑘

) ,
̂
𝛽
𝑘
≥ 0,

̂
𝜙
𝑘
= 𝜋 + arctan(

�̂�
𝑘

̂
𝛽
𝑘

) ,
̂
𝛽
𝑘
< 0.

(29)

4.2. The Estimations of Polarization. According to formulas
(10) and (15), the matrix A can be expressed as another form:

A = A
𝑒
+ A
ℎ
𝑗, (30)

where A
𝑒
and A

ℎ
are, respectively, the dipole and loop

subarray steering vectors, which can be reconstructed from
the real and three imaginary parts of A. From (9), (10), and
(15), it can be seen that

A
𝑒
= A
ℎ
Ψ, (31)

where

Ψ = [

[

− tan 𝛾
1
𝑒
𝑗𝜂1

d
− tan 𝛾

𝐾
𝑒
𝑗𝜂𝐾

]

]

= A#
ℎ
A
𝑒
, (32)

with A#
ℎ
= (A𝐻
ℎ
A
ℎ
)

−1A𝐻
ℎ
is pseudoinverse matrix of A

ℎ
.

According to (32), the polarization parameters estimation
are presented as

𝛾
𝑘
= tan−1 (


Ψ
𝑘𝑘





) , 𝜂

𝑘
= arg (−Ψ

𝑘𝑘
) . (33)
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Figure 3: Standard deviation of azimuth versus SNR.

0 5 10 15 20 25 30 35 40 45
SNR (dB)

St
an

da
rd

 d
ev

ia
tio

n 
of

 el
ev

at
io

n 
(d

eg
)

Long-vector method
Quaternion method

101

100

10−1

10−2

10−3

10−4

Figure 4: Standard deviation of elevation versus SNR.

5. Simulation Results

In this section, some simulations are conducted to evaluate
the performances onDOA and polarization estimation by the
proposed method. Two uncorrelated equal-powered signals
with parameters (𝜃

1
, 𝜙
1
, 𝛾
1
, 𝜂
1
) = (72

∘
, 85
∘
, 30
∘
, 120
∘
) and

(𝜃
2
, 𝜙
2
, 𝛾
2
, 𝜂
2
) = (30

∘
, 43
∘
, 67
∘
, 80
∘
) impinge upon the CCCP

array with 𝑁 = 6 CLD pairs sensors. The circle radius
of CCCP is 0.5𝜆min. The distance of the two circle rings is
0.5𝜆min. The signal-to-noise ratio (SNR) is from 0 to 45 dB;
1024 snapshots are used in each of the 500 independent
Monte Carlo simulation experiments. The results are shown
in Figures 3, 4, 5, and 6.

The solid line with star and circular data points in Figures
3–6 indicates the standard deviations of azimuth, elevation,
polarization phase difference (PPD), and auxiliary polar-
ization angle (APA), respectively. The results are estimated
by the long-vector and the proposed quaternion methods,
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at various signal-to-noise ratio (SNR) levels. The proposed
quaternion procedure is better than the long vector. The
estimation precision at 0 dB based on the quaternion model
has improved to be larger than 0.24

∘ for azimuth, 1.29∘
for elevation, 0.31∘ for PPD, and 0.17

∘ for APA, compared
with that of the long-vector method. Moreover, the standard
deviations of azimuth, elevation, PPD, and APA are reduced
evidently as the SNR increases using the quaternion method.
The enhanced performance is rooted in the special data
model of quaternion, which can provide a better signal
subspace approximation than the long-vector methods.

6. Conclusion

A quaternion-ESPRIT algorithm for estimating DOA and
polarization using CCCP array has been studied in this paper.
The novel method can decouple the DOA estimation from
the polarization estimation; the DOA and polarization errors
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herein do not cumulate. The proposed algorithm overcomes
quadrant ambiguity in elevation angle when CCCP array is
used for wide range elevation angle (more than 90 degrees)
estimation.Theperformance of the proposedmethod is supe-
rior to the long-vectormethod because the quaternionmatrix
operations can maintain the vectorial property of the vector
sensor and provide a better signal subspace approximation
than the long-vector methods.
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