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In Optimization of VLSI Physical Design, area minimization and interconnect length minimization is an important objective in
physical design automation of very large scale integration chips. The objective of minimizing the area and interconnect length
would scale down the size of integrated chips. To meet the above objective, it is necessary to find an optimal solution for physical
design components like partitioning, floorplanning, placement, and routing. This work helps to perform the optimization of the
benchmark circuits with the above said components of physical design using hierarchical approach of evolutionary algorithms.The
goal ofminimizing the delay in partitioning,minimizing the silicon area in floorplanning,minimizing the layout area in placement,
minimizing the wirelength in routing has indefinite influence on other criteria like power, clock, speed, cost, and so forth. Hybrid
evolutionary algorithm is applied on each of its phases to achieve the objective. Because evolutionary algorithm that includes one
or many local search steps within its evolutionary cycles to obtain the minimization of area and interconnect length.This approach
combines a hierarchical design like genetic algorithm and simulated annealing to attain the objective. This hybrid approach can
quickly produce optimal solutions for the popular benchmarks.

1. Introduction

Physical design automation has been an active area of
research for atleast three decades. The main reason is that
physical design of chips has become a crucial and critical
design task today due to the enormous increase of system
complexity and the future advances of electronic circuit
design and fabrication. Most commonly used high-level
synthesis tools allow the designers to automatically generate
huge systems simply by just changing a few lines of code
in the functional specification. Nowadays, the open source
codes simulated in open source software can automatically
be converted to hardware description codes, but the automat-
ically generated codes are not optimized ones. Synthesis and
simulation tools often cannot hold with the complexity of the
entire system under development. Every time designers want
to concentrate on typical parts of a system to upgrade the
speed of the design cycle. Thus the present state-of-the-art

design technology requires a better solution for the system
with fast and effective optimization [1]. Moreover, fabrication
and packing technology makes the demand for increasing
smaller feature sizes and augmenting the die dimensions
possible to allow a circuit for accommodating severalmillions
of transistors; however, logical circuits are restricted in their
size and in the number of external pin connections.

So the technology requires partitioning of a system into
manageable components by arranging the circuit blocks
without wasting empty spaces. The direct implementation of
large circuit without going for optimization will occupy large
area. Hence the large circuit is necessary to split into small
subcircuits. This will minimize the area of the manageable
system and the complexity of the large system. When the
circuit is partitioned, the connection between two modules
or say partitions should be minimum. It is a design task by
applying a hierarchical algorithmic approach to solve typical
combinatorial optimization problems like dividing a large
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Figure 1: Design flow for the proposed approach.

circuit system into smaller pieces. Figure 1 shows the design
flow for the proposed approach.

The method of finding block positions and shapes with
minimizing the area objective is referred to as floorplanning.
The input to the floorplanning is the output of system
partitioning and design entry. Floorplanning paves theway to
predict the interconnect delay by estimating the interconnect
length. This is achieved because both interconnect delay and
gate delay decrease as feature size of the circuit chips is scaled
down—but at different rates. The goals of floorplanning are
to (a) arrange the blocks on a chip, (b) decide the location of
input and output pads, (c) decide the location and number of
the power pads (d) decide the type of power distribution, and
(e) decide the location and type of clock distribution.

Placement is much more suited to automation than
floorplanning. The goal of a placement tool is to arrange
all the logic cells with the flexible blocks on a chip. Ideally,
the objectives of placement are to (a) minimize all the
critical net delays, (b) make the chips as dense as possible,
(c) guarantee the router can complete the routing step, (d)
minimize power dissipation, and (e) minimize cross-talk
between signals. The most commonly used objectives are
(a) minimizing the total estimated interconnect length, (b)
meeting the timing requirement for critical nets, and (c)
minimizing the interconnect congestion.

Once the floorplanning of the chip and the logic cells
within the flexible blocks placement are completed, then
it is time to make the connection by routing the chip.
This is still a hard problem that is made easier by dividing
into smaller problems. Routing is usually split into global
routing followed by the detailed routing. Global routing is
not allowed to finalize the connections; instead it just plans
the connections to achieve in a better way. There are two
types of areas to global route: one inside the flexible blocks
and another between the blocks. The global routing step
determines the channels to be used for each interconnect.
Using this information the detailed router decides the exact
location and layers for each interconnect. The objectives
are to minimize the total interconnect length and area and
minimize the delay of critical paths [2]. Figure 15 shows the
overall area minimized using hybrid evolutionary algorithm.

When the physical design components like partition-
ing, floorplanning, placement, and routing are combined

and optimized in terms of area, then the cost increasing
criteria like power and clock speed of each module can
be controlled, and these subobjective criteria can also be
optimized to a further extent. In the last three decades
many interchanging methods have been used which also
resulted in local optimum solutions. And later some of
the mathematical approaches were also introduced with
some heuristics models which resulted in better result but
they have their own advantage and disadvantage. Since lots
of solutions are possible for this kind of problem, hence
stochastic optimization techniques are commonly utilized.
Till today many techniques have been proposed like global
search algorithm (GSA) which combines the local search
algorithm (LSA) to produce a better result.

Global optimization technique like genetic algorithm
(GA) which captured the context of generation from biolog-
ical system had been used for physical design problems like
circuit partitioning, floorplanning, placement, and routing.
Genetic algorithm has been applied to several problems,
which are based on graph because the genetic analogy can
be most easily applied to any kind of problems. Lots of
researchers have proposed their theories to minimize the
feature size of the circuit using GA. Theodore Manikas and
James Cain proposed that GA requires more memory but it
takes less time than simulated annealing [3]. Sipakoulis et
al. confessed that number of enhancements like crossover
operator mutation or choosing different fitness functions
can still be made to achieve optimal solutions [4]. This
means that theory of GA still provides chances for new
developments that can help in finding new optimal solutions
for physical design problems. This work proposes hybrid
evolutionary algorithm to solve the graph physical design
component problems. This method includes several genetic
algorithm features, namely, selecting population, performing
crossover of the selected chromosomes, and if necessary
mutation to get better stable solutions. This work tried to
hybrid two evolutionary algorithms like genetic algorithm
and simulated annealing to overcome the disadvantage of
one another. Such type of algorithms with general iterative
heuristic approach are called hybrid evolutionary algorithms
or memetic algorithm in common.

This work addresses the problem of circuit partitioning
with the objective of reducing delay, circuit floorplanning
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Figure 2: (a) Model circuit, (b) graphical representation of circuit.

with the objective of reducing area, placement with the
objective of minimizing the layout area, and routing with the
objective of minimizing the interconnect length. The main
objective of area optimization and interconnect length reduc-
tion can be achieved by incorporating hybrid evolutionary
algorithm (HEA) in VLSI physical design components.

2. Graphical Representation of
Physical Design Components

2.1. Partitioning. Circuit partitionwill reduce big circuits into
small subcircuits and result in a better routing area for the
layout. Circuit partitioning problem belongs to the class of
NP-hard optimization problems [5]. Tomeasure connectivity,
it is necessary to get help from the mathematics of graph
theory. Figure 2 states this problem can be considered as a
graph partitioning problem where each modules (gates, logic
cells, etc.) are taken as vertices (nodes or points) and the
connection between two logic cells represents the edges [6].

The algorithm starts with 𝑛 gates placed on the graph as
𝑛 vertex, and an initial population has to be chosen as the
different permutations of various vertices of the given graph.
Given is an unweighted connected graph 𝐺 = (𝑉, 𝐸) on set of
vertices 𝑉 and edges 𝐸. Let 𝑛 ≥ 2 be a given integer and find
a partition 𝑃

1
, 𝑃
2
, 𝑃
3
, . . . , 𝑃

𝑗
set of vertices 𝑉 such that

(i) 𝐺
𝑖

= (𝑉
𝑖
, 𝐸
𝑖
), for all values 𝑖 = 1, 2, 3, . . . , 𝑘, are

connected.

2.2. Floorplanning. A module 𝐵 is a rectangle of height
𝐻
𝐵
, width 𝑊

𝐵
, and area 𝐴

𝐵
. A super module consists of

several modules, also called a subfloorplan. A floorplan for
𝑛 modules consists of an enveloping rectangle 𝑅 subdivided
by horizontal lines and vertical lines into 𝑛 nonoverlapping
rectangles. Each rectangle must be large enough to accom-
modate the module assigned to it. In the given problem, a
set of hardmodules and outline constraints are provided.The
modules inside the given outline have freedom tomove [7, 8].
A feasible packing is in the first quadrant such that all the
modules inside the outline should not duplicate and overlap

each other.The objective is to construct a feasible floorplan 𝑅

such that the total area of the floorplan 𝑅 is minimized and
simultaneously satisfies floorplanning constraint. Given is a
set of modules to a specified number of cluster satisfying the
predescribed properties. To solve the floorplanning problem,
first construct a network graph, and then run the given
algorithm to get the solution.The graph consists of two kinds
of vertices like horizontal and vertical. The network graph
𝐺 = (𝑉, 𝐸) has to be constructed. “∗” represents vertical
slicing of blocks. “+” represents horizontal slicing of blocks.

2.3. Placement. To position the components of the circuit in
general-cell and standard-cell placement, such that the layout
area is minimized, the area used here comprises the area used
by the circuit components and the area needed for wiring the
circuit components. The placement problem can be mainly
classified into two, one dimensional packing problem and
the other connection cost optimization problem.The packing
problem is concerned about fitting a number of cells with
different sizes and shapes tightly into a rectangular chip.
Given is a set of modules 𝑀

1
,𝑀
2
, . . . ,𝑀

𝑛
and set of 𝑘

interconnects𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑘
. When meeting the objective of

the placement, it can also help to obtain the nonoverlapping
package of all themodules which achieves some optimization
objective such as minimizing the area of package and the
interconnection length as shown in Figure 5.

Horizontal constraint is as follows.

If (𝐴, 𝐵) = (. . . 𝑥 . . . 𝑦 . . . , 𝑥 . . . 𝑦 . . .) block 𝑦 is at the right
side of the block 𝑥.

Vertical constraint is as follows.

If (𝐴, 𝐵) = (. . . 𝑥 . . . 𝑦 . . . , 𝑦 . . . 𝑥 . . .) block 𝑦 is at the
below side of the block 𝑥.

(1) Consider 𝑉 = {𝑆
ℎ
} ∪ {𝑇

ℎ
} ∪ {𝑦

𝑖
| 𝑖 = 1, . . . ,𝑀}, where

𝑦
𝑖
corresponds to the block, 𝑆

ℎ
is the source node

representing the left boundary, and 𝑇
ℎ
is the target

node representing the right boundary.
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(2) Consider 𝐸 = {(𝑆
ℎ
, 𝑦
𝑖
) | 𝑖 = 1, . . . ,𝑀} ∪ {(𝑦

𝑖
, 𝑇
ℎ
) | 𝑖 =

1, . . . , 𝑁} ∪ {(𝑦
𝑖
, 𝑦
𝑗
) | . . . 𝑦

𝑖
. . . 𝑦
𝑗
}.

If existing edge (𝑦
𝑖
, 𝑦
𝑖+1

), edge (𝑦
𝑖+1

, 𝑦
𝑖+2

), and edge
(𝑦
𝑖
, 𝑦
𝑖+2

), then (𝑦
𝑖
, 𝑦
𝑖+2

) is omitted.
(3) Vertexweight equals thewidth of the block𝑦

𝑖
but zero

for 𝑆
ℎ
and𝑇
ℎ
, similarly to the vertical constraint graph

(VGH) as shown in Figure 6.

Vertical constraint graph 𝐺V(𝑉, 𝐸) is constructed for
Figure 5 using “above” constraint and the height of each
block. The corresponding constraint graphs 𝐺

ℎ
(𝑉, 𝐸) and

𝐺V(𝑉, 𝐸) are as shown in Figures 6 and 7. Both 𝐺
ℎ
(𝑉, 𝐸) and

𝐺V(𝑉, 𝐸) are vertex-weighted acyclic graphs so longest path
algorithm can be applied to find the 𝑥 and 𝑦 coordinates of
each block. The coordinates of the block coordinate of the
lower left corner of the block.

Based on “left of ” constraint of (𝐴, 𝐵), a directed and
vertex-weighted graph 𝐺

ℎ
(𝑉, 𝐸) (𝑉: vertex set, 𝐸: edge set),

called the horizontal-constraint graph (HCG), is constructed.

2.4. Routing. The classical approach in routing is to construct
an initial solution by using constructive heuristic algorithms.
A final solution is then produced by using iterative improve-
ment techniques. A small modification is usually accepted if
that makes reduction in cost; otherwise, it will be rejected.
Constructive heuristic algorithms produce an initial solution
from scratch. It takes a very small amount of computation
time compared to iterative improvement algorithms and
provides a good starting point for them (SM91). However,
the solution generated by constructive algorithms may be far
from optimal. Thus, an iterative improvement algorithm is
performed next to improving the solution.

Although iterative improvement algorithms can produce
a good final solution, the computation time of such algo-
rithms is also large. Therefore, a hierarchical approach in
the form of multilevel clustering is utilized to reduce the
complexity of the search space. A bottom-up technique
gradually clusters cells at several levels of the hierarchy. At
the top level a genetic algorithm is appliedwhere several good
initial solutions are injected in to the population.

A local search techniquewith dynamic hill climbing capa-
bility is applied to the chromosomes to enhance their quality.
The system tackles some of the hard constraints imposed
on the problem with intermediate relaxation mechanism to
further enhance the solution quality.

This problem is a particular example of graph partitioning
problem. In general algorithms like exact and approximation
run in polynomial time but do not exist for graph partitioning
problems.Thismakes the necessity to solve the problemusing
heuristic algorithms. Genetic algorithm is a heuristic tech-
nique and the best choice that seeks to imitate the behavior
of biological reproduction and its capability to collectively
solve the given problem. GA can provide several alternative
solutions to the optimization problem, which are considered
as individuals in a population. These solutions are coded as
binary strings, called chromosomes. The initial population
is constructed randomly. These individuals are evaluated
using partitioning by specific fitness function. GA then uses

these individuals to produce a new generation of hopefully
better solutions. In each generation, two of the individuals
are selected probabilistically as parents, with the selection
probability proportional to their fitness. Crossover is per-
formed on these individuals to generate two new individuals,
called offspring, by exchanging parts of their structure. Thus
each offspring inherits a combination of features from both
parents. The next step is mutation. An incremental change
is made to each member of the population, with a small
probability. This ensures that GA can explore new features
that may not be in the population yet. It makes the entire
search space reachable, despite the finite population size.The
basic foundation of the algorithm is to represent each vertex
in the graph as a location that can represent a logic gate and
a connection is represented by an edge.

3. Global Optimization Using GA

Genetic algorithms are optimization strategies that imitate
the biological evolution process. A population of individu-
als representing different problem solutions is subjected to
genetic operators, such as selection, crossover, and mutation,
that are derived from the model of evolution. Using these
operators the individuals are steadily improved over many
generations and eventually the best individual resulting from
this process is presented as the best solution to the problem.

Consider the graph 𝐺 = (𝑉, 𝐸) with vertex |V| = 𝑢 and
in integer 1 < 𝑘 < 𝑛/4. Initialize a randomly generated
population 𝑃 of 𝑘 elements. Population 𝑃 has 1 to 𝑘 elements.
Assume each parent 𝑝

1
to 𝑝
𝑘
belong to the population 𝑃.

Perform two point crossover for 𝑝
𝑎
and 𝑝

𝑏
from population

𝑃 using the fitness function (𝑓) = 𝑘 ⋅ 𝑀(𝑝)/𝑛, where 𝑀(𝑝) is
the number of node of partition with maximum cardinality
among 𝑛 partitions. Assume 𝑃

𝑎
(𝐼) and 𝑃

𝑏
(𝐼) are the children

from 𝑝
𝑎
and 𝑝

𝑏
, respectively. If 𝑃

𝑎
(𝐼) has not satisfied the

fitness (𝑃
𝑎
(𝐼) is not in 𝐼) then choose 𝑝

𝑎
randomly from 𝑗 > 𝑖.

Swap 𝑃
𝑎
(𝑖) and 𝑃

𝑎
(𝑗). Copy the first element 𝑘 elements of 𝑝

𝑎

in 𝑞
1
, 𝑞
3
. If 𝑃
𝑏
(𝐼) has not satisfied the fitness (𝑃

𝑏
(𝐼) is not in 𝐼)

then choose 𝑝
𝑏
randomly from ℎ > 𝑘. Swap 𝑃

𝑏
(ℎ) and 𝑃

𝑏
(𝑖).

Copy the first element 𝑘 elements of 𝑝
𝑏
in 𝑞
2
, 𝑞
4
. Create two

vectors 𝐿, 𝐿󸀠 with 2(𝑛 − 𝑘) elements. If (𝑗 mod 2 = 1) then
𝐿(𝑖) = 𝑃

𝑎
[𝑘 + (𝑗 + 1)/2] and 𝐿

󸀠
(𝑖) = 𝑃

𝑏
[𝑘 + (𝑗 + 1)/2], else

𝐿(𝑗) = 𝑃
𝑎
[𝑘 + (𝑗 + 1)/2] and 𝐿

󸀠
(𝑗) = 𝑃

𝑏
[𝑘 + (𝑗 + 1)/2].

Check the fitness of 𝐿(𝑖), 𝐿󸀠(𝑖), 𝐿(𝑗), and 𝐿
󸀠
(𝑗). If 𝐿(𝑖) is not

in 𝑞
1
, then copy 𝐿

󸀠
(𝑖) in 𝑞

1
and 𝐿(𝑖) in 𝑞

2
. If 𝐿(𝑗) is not in

𝑞
3
, then copy 𝐿

󸀠
(𝑗) in 𝑞

3
and 𝐿(𝑗) in 𝑞

4
. Repeat the process

again with 𝐿(𝑖) and 𝐿(𝑗), 𝐿󸀠(𝑖) and 𝐿
󸀠
(𝑗) to get new offspring.

The new offsprings can have more fitness value or less fitness
value depending upon the parents. Less fitness offspring can
be discarded then to reduce the number of cycles. In this
work, the pure genetic algorithm is combined with simulated
annealing to produce the optimal result. The algorithm starts
with the initial random population generation. It is essential
to set the initial population, number of generation, crossover
type, and mutation rate. First step of the genetic algorithm
starts with the selection process; the selection process is based
on the fitness function throughwhich the chromosomeswere
selected from the crossover. Crossover is the reference point
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for the next generation population. The crossover technique
used in genetic algorithm is one-point crossover, two-point
crossover, cut and splice crossover, uniform crossover, half
uniform crossover, and so forth, depending upon the neces-
sity. After crossover the mutation process, to maintain the
genetic diversity from one generation to next generation. In
this mutation the genetic sequence will be changed from its
original sequence by generating a random variable for each
bit sequence. After the mutation offspring with fitness are
placed in the new population for further iteration. The next
step is to apply the local optimization algorithm in between
this genetic algorithm as told before; the local optimization is
applied in three ways which are mentioned below: (a) before
the crossover, (b) after the crossover, and (c) before and after
the crossover.

Exhaustive Hybridization. Few solutions are selected from the
final generation and improved using local search. Figure 16
shows simulated results for final generation.

Intermediate Hybridization. After a predetermined number
of iterations by GA, local search is applied to few random
individuals. This is done to have a better solution than the
local maxima. This work deals with intermediate memetic
algorithm.

3.1. Creation of Initial Population. The initial population is
constructed from randomly created routing structures, that
is, individuals. First, each of these individuals is assigned a
random initial row number 𝑦ind. Let 𝑆 = {𝑠

1
, . . . , 𝑠

𝑖
, . . . , 𝑠

𝑘
} be

the set of all pins of the channel which are not connected yet
and let 𝑇 = {𝑡

1
, . . . , 𝑡

𝑗
, . . . , 𝑡

𝑙
} be the set of all pins having at

least one connection to other pin. Initially 𝑇 = 0. A pin 𝑆
𝑖
∈ 𝑆

is chosen randomly among all elements in 𝑆. If𝑇 contains pins
{𝑡
𝑢
, . . . , 𝑡

𝑗
, . . . , 𝑡V} (with 1 ≤ 𝑢 < V ≤ 𝑙) of the same net, a pin 𝑡

𝑗

is randomly selected among them.Otherwise, a second pin of
the same net is randomly chosen from 𝑆 and transferred into
𝑇. Both pins (𝑠

𝑖
, 𝑡
𝑗
) are connected with a so-called random

routing. Then 𝑠
𝑖
is transferred into 𝑇. The process continues

with the next random selection of 𝑠
𝑖

∈ 𝑆 until 𝑆 = 0. The
creation of the initial population is finishedwhen the number
of completely routed channels is equal to the population size
|𝑃
𝑐
|. As a consequence of our strategy, these initial individuals

are quite different from each other and scattered all over the
search space.

3.2. Populations and Chromosomes. In GA based optimiza-
tions a set of trial solutions are assembled as a population.The
parameter set representing each trial solution or individual is
coded to form a string or chromosome and each individual
is assigned a fitness value by evaluation of the objective
function. The objective function is to only link between the
GA optimizer and the physical problem.

3.3. Calculation of Fitness. The fitness of the individual in
partitioning is based on the delay of themodule.The fitness of
the individual is given by weighted evaluations of maximum

delay (𝐷). 𝐷
𝑎
identifies a particular subgraph, 𝐷

𝑚
is a pre-

determined maximum value, and 𝐷
𝑓
is the weighting factor.

Delay can be measured using the difference between final
time and initial time.The sum of the weighting factors equals
one.The complete fitness function for partitioning is given in
the following:

𝐷
𝑝
= {

𝐷
𝑎

𝐷
𝑚

> 1,

𝐷
𝑎

𝐷
𝑚

≤ 1,

𝐷
𝑎

𝐷
𝑚

∗ 𝐷
𝑓
} , (1)

Total Delay =

𝑀

∑

𝑃=1

𝐷𝑝. (2)

Assuming an individual is fully feasible and meets con-
straints, the value of𝐷

𝑝
≤ 1, with smaller values being better.

At the beginning, a set of Polish expressions is given for
floorplanning. It is denoted as 𝑃, randomly generated expres-
sion to compose a population. The fitness for floorplanning
of the individual is based on the area of the module. Area of
a block can be calculated by the general formula 𝐴 = 𝐿𝑊,
where 𝐿 stands for length of the module and 𝑊 stands for
width of the module:

Total Area =

𝑀

∑

𝑓=1

𝐴𝑓. (3)

The fitness of the individual is given by weighted eval-
uations of maximum area (𝐴). 𝐴

𝑎
identifies a particular

subgraph,𝐴
𝑚
is a predetermined maximum value, and𝐴

𝑓
is

the weighting factor. The sum of the weighting factors equals
one. The complete fitness function floorplanning is given in
the following:

𝐺
𝑓

= {

𝐴
𝑎

𝐴
𝑚

> 1,

𝐴
𝑎

𝐴
𝑚

≤ 1,

𝐴
𝑎

𝐴
𝑚

∗ 𝐴
𝑓
} . (4)

The fitness 𝐹(𝑝) of each individual 𝑝 ∈ 𝑃 is calculated to
assess the quality of its routing structure relative to the rest
of the population 𝑃. The selection of the mates for crossover
and the selection of individuals which are transferred into the
next generation are based on these fitness values. First, two
functions 𝐹

1
(𝑝) and 𝐹

2
(𝑝) are calculated for each individual

𝑝 ∈ 𝑃 according to

𝐹
1
(𝑝) =

1

𝑛row
, (5)

where 𝑛row = number of rows of 𝑝, and

𝐹
2
(𝑝) =

1

∑
𝑛ind
𝑖=1

(𝑙acc (𝑖) + 𝑎 ∗ 𝑙opp (𝑖)) + 𝑏 ∗ Vind
, (6)

where 𝑙acc(𝑖) = net length of net 𝑖 of net segments according
to the preferred direction of the layer, 𝑙opp(𝑖) = net length of
net 𝑖 of net segments opposite to the preferred direction of the
layer, 𝑎= cost factor for the preferred direction, 𝑛ind = number
of nets of individual 𝑝, Vind = number of vias of individual 𝑝,
and 𝑏 = cost factor for vias.

The final fitness 𝐹(𝑝) is derived from 𝐹
1
(𝑝) and 𝐹

2
(𝑝) in

such a way that the area minimization, that is, the number
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of rows, always predominates the net length and the number
of vias. After the evaluation of 𝐹(𝑝) for all individuals of the
population 𝑃 these values are scaled linearly as described in
order to control the variance of the fitness in the population.

In placement the cells present in the module are con-
nected by wire. The estimation of interconnect length
required for connection is calculated by

𝐼
𝐿
= ∑

𝐼>𝑗

𝑤
𝑖,𝑗

((𝑥
𝑖
− 𝑥
𝑗
)

2

+ (𝑦
𝑖
− 𝑦
𝑗
)

2

) , (7)

where 𝑤
𝑖,𝑗
is the weight of the connection between cell 𝑥 and

𝑦, (𝑥
𝑖
− 𝑥
𝑗
) is the distance between two cells in 𝑋 direction,

and (𝑦
𝑖
− 𝑦
𝑗
) is the distance between two cells in 𝑌 direction.

Interconnect length of each net in the circuit is estimated
during Steiner tree and then total Interconnect length is
computed by adding the individual estimates:

Cost =
𝑀

∑

𝐿=1

𝐼
𝐿
, (8)

where 𝐼
𝐿
is the interconnect length estimation for net 𝑖 and

𝑀 denotes total number of nets in circuit.

3.4. Parents. Following this initialization process, pairs of
individuals are selected (with replacement) from the popu-
lation in a probabilistic manner weighted by their relative
fitness and designated as parents.

3.5. Children. A pair of offspring, or children, are then
generated from the selected pair of parents by the application
of simple stochastic operators. The principle operators are
crossover and mutation. Crossover occurs with a probability
of pcross (typ. 0.6–0.8) and involves the random selection
of a crossover site and combining the two parent’s genetic
information. The two children produced share the charac-
teristics of the parents as a result of these recombination
operators. Other recombination operators are sometimes
used, but crossover is the most important. Recombination
(e.g., crossover) and selection are the principle way that
evolution occurs in a GA optimization.

3.6. Mutation. Mutation introduces new and unexplored
points into the GA optimizer’s search domain. Mutation
randomly changes the genetic makeup of the population.
Mutation is much less important than recombination and
occurs with a probability pmutation (typ. 0.05) which ismuch
less than pcross.

3.7. New Generation. Reproduction consisting of selection,
recombination, and mutation continues until a new gener-
ation is created to replace the original generation. Highly
fit individuals, or more precisely highly fit characteristics,
produce more copies of themselves in subsequent generation
resulting in a general drift of the population as a whole
towards an optimal solution point. The process can be
terminated in several ways: threshold on the best individual
(i.e., the process stops when an individual has an error

less than some amount 𝐸), number of generations exceeds
a preselected value, or some other appropriate criteria. A
simple genetic algorithm must be able to perform five
basic tasks: encode the solution parameters in the form of
chromosomes, initialize a starting point population, evaluate
and assign fitness values to individuals in the population, per-
form reproduction through the fitness weighted selection of
individuals from the population, and perform recombination
andmutation to producemembers of the next generation [8–
14].

4. Local Optimization Using SA

After a prescribed number of iterations by evolutionary
algorithm local search algorithm is applied to few random
individuals to have better solution. But simulated annealing
algorithm is not a local search algorithm. Local search meth-
ods are iterative algorithms that tend to enhance solution
by stepwise improvement and make an attempt to reach
optimum solutions. SA is being used in this work. More
often results in suboptimal solutions by trapping themselves
in local minima/maxima. The simplest form of local search
is repetitively flipping elements in a solution resulting in a
gain in the objective function. Eventually local minima will
be reached, whereby flipping any element in the solution will
result in loss of object. Although these algorithms are simple,
there have been many complex improvements for CAD tools
which involve large dynamic memory and linked list usages.
For refining the solution obtained by GA, the local search
(LS) is applied. This can be used before crossover or after
crossover; it can also be used for parents selection and used
before or after mutation to increase the number of fitness
variables (Algorithm 1).

5. Optimization by Simulated Annealing

Simulated annealing algorithm is applied for local search pro-
cess since SA is not a local search algorithm. Here simulated
annealingmethod is performed on finally generated offspring
to improve the fitness. This method is called intermediate
MA.

Simulated annealing is a stochastic computational
method for finding global extrema to large optimization
problems. It was first proposed as an optimization technique
by Kirkpatrick et al. in 1983 [15] and Cerny in 1984 [16]. The
optimization problem can be formulated by describing a
discrete set of configurations (i.e., parameter values) and the
objective function to be optimized. The problem is then to
find a vector that is optimal. The optimization algorithm is
based on a physical annealing analogy. Physical annealing
is a process in which a solid is first heated until all particles
are randomly arranged in a liquid state, followed by a slow
cooling process. At each (cooling) temperature enough
time is spent for the solid to reach thermal equilibrium,
where energy levels follow a Boltzmann distribution. As
temperature decreases the probability tends to concentrate
on low energy states. Care must be taken to reach thermal
equilibrium prior to decreasing the temperature. At thermal
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Begin
Initialize population 𝑃;
For 𝑖 := 1 To size of (𝑃) Do

Individual := 𝑃
𝑖
;

Individual := Local Search(Individual);
Repeat Until (terminate = True) Do

For 𝑖 := 1 To #recombination Do
Select two parents 𝑖

𝑎
, 𝑖
𝑏
∈ 𝑃 randomly;

𝑖
𝑐
:= Recombination(𝑖

𝑎
, 𝑖
𝑏
);

𝑖
𝑐
:= Local Search(𝑖

𝑐
);

Add individual 𝑖
𝑐
to 𝑃;

𝑃 := Select (𝑃);
If (𝑃) convergedThen

For 𝑖 := 1 To size of (𝑃), 𝑖 != index(Best) Do
Individual := 𝑃

𝑖

Individual := Local Search(Mutate(Individual));
End

Algorithm 1

equilibrium, the probability that a system is in a macroscopic
configuration with energy is given by the Boltzmann
distribution. The behavior of a system of particles can be
simulated using a stochastic relaxation technique developed
by Metropolis et al. [17]. The candidate configuration for the
time is generated randomly. The new candidate is accepted
or rejected based on the difference between the energies
associated with states. The condition to be accepted is
determined by

𝑝 =

𝑝
𝑟

𝑝
𝑞

=

exp (−𝐸
𝑗
− 𝐸
𝑖
)

𝐾
𝑡

> 1. (9)

Given a current state 𝑖 of the solid with energy level 𝐸
𝑖
, gen-

erate a subsequent state 𝑗 randomly (by small perturbation).
Let 𝐸
𝑗
be the energy level at state 𝑗.

(i) If 𝐸
𝑗
− 𝐸
𝑖
≤ 0, then accept state 𝑗 as the current state.

(ii) If 𝐸
𝑗
− 𝐸
𝑖
> 0, then accept state 𝑗 with the probability

exp(−𝐸
𝑗
− 𝐸
𝑖
)/𝐾
𝑡
.

𝐾
𝑡
where 𝑘 is the Boltzmann constant.
One feature of theMetropolis way of simulated annealing

algorithm is that a transition out of a localminimum is always
possible at nonzero temperature. Another evenly interesting
property of the algorithm is that it performs a kind of
adaptive divide and conquer approach. Gross features of the
system appear at higher temperatures; fine features develop
at lower temperatures. For this application, it used the
implementation by Ingber [18]. Each solution corresponds to
a state of the system. Cost corresponds to the energy level.
Neighborhood corresponds to a set of subsequent states that
the current state can reach. Control parameter corresponds
to temperature.

5.1. Partitioning Based on Simulated Annealing. The basic
procedure in simulated annealing is to start with an initial
partitioning and accept all perturbations or moves which

result in a reduction in cost. Moves that result in a cost
increase are accepted. The probability of accepting such a
move decreasing with the increase in cost and also decreasing
in later stages of the algorithm is given in (11). A parameter
𝑇, called the temperature, is used to control the acceptance
probability of the cost-increasing moves. Simulated anneal-
ing algorithm for partitioning the modules will be described
here. The cells are partitioned using simulated annealing so
as to minimize the estimated interconnect length. There are
two methods for generating new configurations from the
current configuration [19]. Either a cell is chosen randomly
and placed in a random location on the chip or two cells
are selected randomly and interchanged.The performance of
the algorithm was observed to depend upon 𝑟, the ratio of
displacements to interchanges. Experimentally, 𝑟 is chosen
between 3 and 8. A temperature-dependent range limiter is
used to limit the distance over which a cell canmove. Initially,
the span of the range limiter is twice the span of the chip. In
other words, there is no effective range limiter for the high
temperature range. The span decreases logarithmically with
the temperature. Temperature span is given in the following:

𝐿
𝑊𝑉

(𝑇) = 𝐿
𝑊𝑉

(𝑇
𝑖
) [

log𝑇

log𝑇
𝑖

] ,

𝐿
𝑊𝐻

(𝑇) = 𝐿
𝑊𝐻

(𝑇
𝑖
) [

log𝑇

log𝑇
𝑖

] ,

(10)

where 𝑇 is the current temperature, 𝑇
𝑖
is the initial temper-

ature, and 𝐿
𝑊𝑉

(𝑇
𝑖
) and 𝐿

𝑊𝐻
(𝑇
𝑖
) are the initial values of the

vertical and horizontal window spans 𝐿
𝑊𝑉

(𝑇) and 𝐿
𝑊𝐻

(𝑇),
respectively.

The wirelength cost 𝐶 is estimated using the semiperime-
ter method, with weighting of critical nets and independent
weighting of horizontal and vertical wiring spans for each net:

𝐶 = ∑

nets 𝑖
[𝑥 (𝑖)𝑊

𝐻
(𝑖) + 𝑦 (𝑖)𝑊

𝑉
(𝑖)] , (11)
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where 𝑥(𝑖) and 𝑦(𝑖) are the vertical and horizontal spans of
the net 𝑖’s bounding rectangle and 𝑊

𝐻
(𝑖) and 𝑊

𝑉
(𝑖) are the

weights of the horizontal and vertical wiring spans. When
critical nets are assigned a higher weight, the annealing
algorithm will try to place the cells interconnected by critical
nets close to each other. Independent horizontal and vertical
weights give the user the flexibility to prefer connections in
one direction over the other. The acceptance probability is
given by exp(−Δ𝐶/𝑇), where Δ𝐶 (i.e., 𝐸

𝑖
− 𝐸
𝑗
) is the cost

increase and 𝑇 is the current temperature. When the cost
increases, or when the temperature decreases, the acceptance
probability (9) gets closer to zero. Thus, the acceptance
probability exp(−Δ𝐶/𝑇) less than random (0, 1) (a random
number between 0 and 1) is high when Δ𝐶 is small and when
𝑇 is large. At each temperature, a fixed number of moves
per cell is allowed. This number is specified by the user.
The higher the maximum number of moves, the better the
results obtained. However, the computation time increases
rapidly. There is a recommended number of moves per cell
as a function of the problem size in. For example, for a 200-
cell and 3000-cell circuit, 100 and 700 moves per cell are
recommended, respectively.

The annealing process starts at a very high temperature,
for example,𝑇

𝑖
= 4,000,000, to accept most of the moves.The

cooling schedule is represented by𝑇
𝑖
+1 = 𝑎(𝑇), where 𝑎(𝑇) is

the cooling rate parameter and is determined experimentally.
In the high and low temperature ranges, the temperature is
reduced rapidly (e.g., 𝑎(𝑇) ≈ 0.8). However, in the medium
temperature range, the temperature is reduced slowly (e.g.,
𝑎(𝑇) ≈ 0.95). The algorithm is terminated when 𝑇 is very
small, for example, when 𝑇 < 0.1. Within each temperature
range the number of moves has been built experimentally.
Once the number of moves is set, fix the particular move for
the remainder of the scheduling.

5.2. Floorplanning Based on Simulated Annealing. This sec-
tion describes an optimal floorplanning on simulated anneal-
ing algorithm. Assume that a set of modules is given and
each module can be implemented in a finite number of ways,
characterized by its width and height. Some of the important
issues in the design of a simulated annealing optimization
problem are as follows:

(1) the solution space,
(2) the movement from one solution to another,
(3) the cost evaluation function.

The branch cells correspond to the operands and the
internal nodes correspond to the operators of the Polish
expression. Figure 3 shows the floorplan module. A binary
tree can also be constructed from a Polish expression by
using a stack as shown in Figure 4. The simulated annealing
algorithm moves from one Polish expression to another. A
floorplan may have different slicing tree representations. For
example, the tree in Figure 4 represents the given floorplan
in Figures 8, 9, and 10. There is a one-to-one correspondence
between a floorplan and its normalized Polish expression. But
this leads to a larger solution space and some bias towards
floorplans with multitree representations, since they have
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Figure 3: Floorplan module.
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Figure 4: Graph representation of the given floorplan module.
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Figure 5: Placement module.

more chances to be visited in the annealing process. Assume
three types of movement are defined to move from one
floorplan to another. They operate on the Polish expression
representation of the floorplan [20].

Condition 1. Exchange two operands when there are no other
operands in between (67 ∗ 1 + 34 + 2 ∗ 5 + ∗).

Condition 2. Complement a series of operators between two
operands (67 + 1 ∗ 34 ∗ 2 + 5 ∗ +).

Condition 3. Exchange adjacent operand and operator if the
resulting expression is a normalized Polish expression (67 +

43 ∗ +25 ∗ 1 + ∗).
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Figure 6: Vertical constraint graph (VGH) for the given block
𝐺V(𝑉, 𝐸).
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Figure 7: Horizontal constraint graph (HGH) for the given block
𝐺
ℎ
(𝑉, 𝐸).

It is obvious that the movements will generate only
normalized Polish expressions. Thus, in effect, the algorithm
moves from one floorplan to another. Starting from an
arbitrary floorplan, it is possible to visit all the floorplans
using the movement. If some floorplans cannot be reached,
there is a danger of losing some valid floorplans in the
solution. Starting from any floorplan, the modules can move
to the floorplan based on the given conditions. The cost
function is a function of the floorplan or equivalently the
Polish expression. There are two components for the cost
function, area andwirelength.The area of a sliceable floorplan
can be computed easily using the floorplan sizing algorithm
[21].Thewirelength cost can be estimated from the perimeter
of the bounding box of each net, assuming that all terminals
are located on the center of their module. In general, there
is no universally agreed upon method of cost estimation. For
simulated annealing, the cost function is best evaluated easily
because thousands of solutions need to be examined. Figures
8, 9, and 10 show a series of movements which lead to a
solution. We have implemented the exponential function for
the accept method.

6 7
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Figure 8: Condition 1 (67 ∗ 1 + 34 + 2 ∗ 5 + ∗).
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Figure 9: Condition 2 (67 + 1 ∗ 34 ∗ 2 + 5 ∗ +).
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Figure 10: Condition 3 (67 + 43 ∗ +25 ∗ 1 + ∗).

5.3. Placement Based on Simulated Annealing. Simulated
annealing algorithm mimics the annealing process used to
gradually cool molten metal to produce high quality metal
structures:

(i) initial placement improved by iterative swaps and
moves,

(ii) accept swaps if they improve the cost,
(iii) accept swaps that degrade the cost under some proba-

bility conditions to prevent the algorithm from being
trapped in a local minimum and can reach globally
optimal solution given enough time.

The advantage of using SA are open cost function,
wirelength cost, and timing cost. Along with the advantage
it also has its disadvantage of slowness. The purpose of our
algorithm is to find a placement of the standard cells such
that the total estimated interconnection cost is minimized.
The algorithm for placement if divide into four principal
components [22].

5.3.1. Initial Configuration. Initially the circuit decomposed
into individual cells and found out the input and output cells
for each cell.

Then it starts the annealing procedure by placing the cells
on the chip randomly. And finally it calculates the total area
of the circuit and places the cells accordingly so that they are
placed at equal distances from each other.
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Table 1: Partitioning optimization of GA compared with hybrid algorithm.

Circuit GA Hybrid
Delay (ps) 𝑇 (s) Best (s) Delay (ps) 𝑇 (s) Best (s)

S1196 396 375 373 301 184 134
S1238 475 397 365 408 187 160
S1494 614 1228 1040 585 616 427
S2091 302 94 32 225 616 16
S3330 571 2096 2074 533 470 994
S5378 587 2687 2686 590 1078 1100

Table 2: Floorplanning optim of GA compared with hybrid algorithm.

Circuit Number of blocks GA Hybrid
Wirelength CPU time Wirelength CPU time

xerox 10 33.56 30 32.06 26
Ami33 33 35.44 30 34.39 24
apte 9 25.48 30 24.23 22
Ami49 49 63.55 175 58.33 150
hp 11 28.46 45 27.54 60
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Figure 11: Comparison of GA delay and hybrid delay.

Since the cells are placed randomly, thus the distances
between them and the length of their interconnection will be
huge. Next the algorithm uses three different functions to get
the optimal placement for the chip.

5.3.2. Move Generation Function. To generate a new possible
cell placement, the algorithm uses two strategies:

(a) move a single cell randomly to a new location on the
chip,

xerox Ami33 apte Ami49 hp
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GA wirelength
Hybrid wirelength

Figure 12: Comparison of GA wirelength and hybrid wirelength.

(b) swap the position of two cells. This algorithm uses
both the strategies randomly. 50% of the move gener-
ation is done through random move (a) and the rest
of the generation is done through swapping (50%).

5.3.3. Cost Function. The cost function in algorithm is com-
prised of two components:

𝐶 = 𝐶
1
+ 𝐶
2
. (12)
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Table 3: Placement optim of SA compared with hybrid algorithm.

Circuit GA Hybrid
Cells Nets Final interconnect length Cells Nets Final interconnect length

apte 9 97 590.6 9 77 475.4
xerox 10 203 1038 10 171 1145
hp 11 83 365 11 68 283
Ami33 33 123 278.5 33 112 324
Ami49 49 408 2077 49 368 345
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Figure 13: Comparison of GA interconnect length and hybrid.

𝐶
1
is a measure of the total estimated wirelength. For any

cell, we find out the wire-length by calculating the horizontal
and the vertical distance between it and its out cell:

𝐶
1
=

𝑛

∑

𝑖=cell1

𝑛

∑

𝑗=out cell
(𝑑
ℎ𝑖𝑗

+ 𝑑V𝑖𝑗) , (13)

where the summation is taken over all the cells in a circuit.
When a cell is swapped it may so happen that two cells
overlap with each other. Let𝑂𝑖𝑗 indicate the overlap between
two cells. Clearly this overlap is undesirable and should be
minimized. In order to penalize the overlap severely we
square the overlap so that we get larger penalties for overlaps:

𝐶
2
= ∑

𝑖!=𝑖

(𝑂𝑖𝑗)
2

. (14)

In (14) 𝐶
2
denotes the total overlap of a chip. Thus when

we generate a new move we calculate the cost function for
the newly generated move. If we find that the new move has
a cost less than the previous best move, we accept it as the
best move. But if we find a solution that is nonoptimal, we
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Figure 14: Comparison of GA layout area and hybrid.

do not reject it completely. We define an Accept function
which is the probabilistic acceptance function. It determines
whether to accept a move or not. We have implemented
an exponential function for the accept method. We are
accepting a noncost optimal solution because we are giving
the annealing schedule a chance to move out of a local
minimum which it may have hit. For example, if a certain
annealing schedule hits point 𝐵 (local minima) and if we do
not accept a noncost optimal solution, then the annealing
cannot reach the global minima. By using the accept function
we are giving the annealing schedule a chance to get out of
the local minima. As a nature of the accept function used
by us, the probability of accepting noncost optimal solution
is higher at the beginning of the annealing schedule. As
temperature decreases, so does the probability of accepting
noncost optimal solutions, since the perturbations of a circuit
are higher at higher temperatures than lower temperatures.

5.4. Routing Based on Simulated Annealing. Let 𝑝
𝛼
and 𝑝

𝛽
be

copies of the mates and 𝑝
𝛾
be their descendant.
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Table 4: Routing optim of SA compared with hybrid algorithm.

Circuit GA Hybrid
Cells Nets Final layout area Cells Nets Final layout area

apte 9 97 61.8 9 77 48.012
xerox 10 203 32.6 10 171 106.054
hp 11 83 42.9 11 68 95.862
Ami33 33 123 1.23 33 112 157.690
Ami49 49 408 — 49 368 155.24
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Figure 15: Overall area minimized using hybrid evolutionary algorithm.

First, a cut column 𝑥
𝑐
is randomly selected with 1 ≤

𝑥
𝑐

< 𝑥ind, where 𝑥ind represents the number of columns of
the individuals. The individual 𝑝

𝛼
(𝑝
𝛽
) transfers the routing

structure to 𝑝
𝛾
which is located to the left (right) of the cut

column 𝑥
𝑐
and not touched by 𝑥

𝑐
. Assume that the part of 𝑝

𝛼

(or 𝑝
𝛽
) which has to be transferred into 𝑝

𝛾
contains rows not

occupied by any horizontal segments. Then the row number
of 𝑝
𝛼
(or 𝑝
𝛽
) is decremented by deleting this row until no

empty row is left.The initial rownumber𝑦ind𝛾 of𝑝𝛾 is equal to
the maximum of (𝑦ind𝛼, 𝑦ind𝛽). The mate which now contains
fewer rows than 𝑝

𝛾
is extended with additional row(s) at

random position(s) before transferring its routing structure
to 𝑝
𝛾
.

The routing of the remaining open connections in 𝑝
𝛾
is

done in a randomorder by our random routing strategy. If the
random routing of two points does not lead to a connection
within a certain number of extension lines, the extension lines
are deleted and the channel is extended at a random position
𝑦add with 1 ≤ 𝑦add ≤ 𝑦ind𝛾. If the repeated extension of
the channel also does not enable a connection, 𝑝

𝛾
is deleted

entirely and the crossover process starts again with a new
random cut column 𝑥

𝑐
applied to 𝑝

𝛼
and 𝑝

𝛽
. This process of

creating 𝑝
𝛾
is finished with deleting all rows in 𝑝

𝛾
that are not

used for any horizontal routing segment [23, 24].
Reduction strategy simply chooses the 𝑃

𝑐
fittest individ-

uals of (𝑃
𝑐
𝜐𝑃
𝑛
) to survive as 𝑃

𝑐
into the next generation.
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Figure 16: Simulated results for final generation.

The selection strategy is responsible for choosing the mates
among the individuals of the population 𝑃

𝑐
.

According to the terminology of our selection strategy is
actually stochastic sampling with replacement. That means
any individual 𝑝

𝑖
∈ 𝑝
𝑐
is selected with a probability

𝐹 (𝑝
𝑖
) =

1

∑
𝑝∈𝑝𝑐

𝐹 (𝑝)

. (15)

The two mates needed for one crossover are chosen of each
other. An individual may be independently selected any
number of times in the same generation.

6. Experimental Results

This work compares the performance of combined physical
design automation tool for different benchmarks of phys-
ical design components. This iterative heuristic technique
involves the combination of GA and SA.This work measures

the speed of execution time of all levels on an average of 45%
when compared to simple genetic algorithm. The objective
of individual physical design components is discussed below
as results. The results in this section were obtained by the
simulation of each individual element of physical design
components using general iterative heuristic approach. The
experiments were executed on the Intel Core i3 processor
with the clock speed of 3.3 Ghz machine which runs in
Windows XP.

6.1. Partitioning. Delay (ps) is the delay of the most critical
path. 𝑇 (s) is the total run time, and best (s) is the execution
time in seconds for reaching the best solution. Thus the
objective of area minimization can be achieved by reducing
the delay in circuit partitioning (see Table 1 and Figure 11).

6.2. Floorplanning. In floorplanning, wirelength and CPU
time are compared. This heuristic approach can reduce
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the wirelength on an average of 0.5mmwhen compared with
fast simulated annealing. When the wirelength gets reduced,
obviously the area for floorplan will also get reduced (see
Table 2 and Figure 12).

6.3. Placement. The initial population is generated to evaluate
the fitness function. Based on that fitness parents were
selected for the crossover; after this process the normal
mutation and inversion operation take place. In addition to
this process for each subpopulation local search is applied
to refine the fitness of each individual to get the optimal
solution. The cells describe the number of elements in the
circuits, nets describe the interconnection (see Table 3 and
Figure 13).

6.4. Routing. Themethod is also surprisingly fast, even when
compared to tools that perform pattern routing. Improving
routing congestion is significant concern for large and dense
designs. If routing fails, the design team must modify the
placement or possibly increase the chip size to introduce
additional routing resources. In fixed-die design, if there is
additional space available, the impact of increased routing
area will generally be limited to increased wirelength and
power consumption. If additional space is not available,
routing failure may increase the cost of a design substantially.
The results obtained for the popular benchmarks reduce the
final interconnect length (see Table 4 and Figure 14).

7. Conclusion

By reducing the wirelength, cost of very large scale integrated
chip manufacturing can be reduced. This paper explores the
advantage of memetic algorithm which can be proven to
be 45% faster than the simple software genetic algorithm
by reducing the delay and area in partitioning and floor-
planning, respectively, that would indefinitely reduce the
wirelength. In hybrid approaches, local search techniques
explore the solution space close to the sample points by
applying specialized heuristics. When including problem
specific knowledge during creation of individual, like in our
approach, it is possible to identify unfavourable or redundant
partial solutions and consider only the most promising ones.
Therefore, each individual in our hybrid genetic algorithms
encodes a set of high quality solutions, the best of which is a
local optimum. The implementation of multiobjective in the
algorithm enables getting the near optimal solution. After a
predetermined number of iterations by GA, local search is
applied to few random individuals to get the optimal solution
by simulated annealing. In the future the performance of the
algorithm has to be tested on different benchmarks.
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