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We consider a multiserver queueing system with an infinite buffer and two types of customers. The flow of customers is described
by two Markovian arrival processes (MAPs). Type 1 customers have absolute priority over type 2 customers. If the arriving type
1 customer encounters all servers busy, but some of them provide service to type 2 customers, service of one type 2 customer is
terminated and type 1 customer occupies the released server. To avoid too frequent termination of service of type 2 customers, we
suggest reservation of some number of servers for type 1 customers. Type 2 customers, who do not succeed to get a server upon
arrival or are knocked out from a server, join the buffer or leave the system forever. During a waiting period in the buffer, type 2
customers can be impatient and may leave the system forever. The ergodicity condition of the system is derived in an analytically
tractable form. The stationary distribution of the system states and the main performance measures are calculated. The Laplace-
Stieltjes transform of the waiting time distribution of an arbitrary type 2 customer is derived. Numerical examples are presented.
The problem of the optimal channel reservation is numerically solved.

1. Introduction

Queueing theory is the well recognized mathematical tool
for solving the problems of design, capacity planning, per-
formance evaluation, and optimization of many real life
objects, especially in telecommunications, manufacturing,
computer engineering, and so forth. The relevant literature
is huge.Themost part of the literature is devoted to queueing
systems with homogeneous customers while it is a quite
frequent real life situation when arriving customers have
different importance to the system and various requirements
to the quality of their service. So, an important part of
queueing literature is devoted to so called priority queues.
In such queues, customers of different types are arranged
into several classes enumerated, for example, in descending

order of their value (economical, social, etc.) for the system
and customers from different classes have different treatment
in the system. Customers from the classes having higher
priority have preferences to others in access to the servers,
if they are available or picking-up from the queue to ser-
vice.

The existing literature concerning the priority queues is
also huge. So, to essentially reduce the list of the relevant
references, here we will cite only papers devoted to priority
queues with a Markovian arrival process (MAP); see, for
example, [1, 2]. Such an arrival process is the significant
generalization of the stationary Poisson process and is very
popular descriptor of the flows of customers in modern
real life systems now. In contrast to the stationary Poisson
process, which allows fitting of only the average value of
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interarrival times, theMAP allows fitting of also the variance
and high order moments of the distribution of interarrival
times and correlation of successive interarrival times. The
single-server priority queues with the MAPs or a bit more
generalmarkedMarkovian arrival process (MMAP) (see, e.g.,
[3]) were considered, for examples, in [4–8].

There are different kinds of priorities provided to impor-
tant customers. The most well known are preemptive and
nonpreemptive priorities. Nonpreemptive priority suggests
that an arriving high priority customer cannot interrupt
service currently provided to a low priority customer. Non-
preemptive priority plays a role only when a server finishes
service and the next customers should start processing at
this server. Preemptive priority suggests that an arriving high
priority customer interrupts service currently provided to a
low priority customer. This low priority customer leaves the
server. It can leave the systemwithout service permanently or
try to get service later when a server will become available. Its
service timemaybe started from the point of the interruption,
from the last check point before the interruption, or from the
early beginning with the same or different distribution of the
service time.

The most popular variant of priority queues assumes
existence of only two types of customers. Note that the
important special cases of priority queues with a preemptive
priority are queues with server breakdowns or interruptions.
The breakdowns and interruptions can be interpreted as high
level customers whose arrival causes termination of service of
a usual (low level) customer. Short review of the recent papers
related to this subject can be found in [9] where a multiserver
queue with quite involved mechanisms of servers break-
downs and repair is analyzed with emphasis to evaluation
of survivability of the system. In [10–12], multiserver queues
with nonpreemptive priorities are investigated. Model in [12]
assumes self-generation of priorities. In [10], multiserver
queue with nonpreemptive priority and impatient customers
is investigated. Model in [11] assumes that a decision about
admission of a nonpriority customer to the first station of
a tandem queue is based on information about the current
number of customers at the second station of a tandem.

In this paper, we consider a multiserver queue with a
preemptive priority. The most close papers in literature are
[13, 14]. It is supposed in [13] that there is a finite buffer for the
nonpriority customers whose service was interrupted. In [14],
it is assumed that the nonpriority customers whose service
was interrupted go to orbit and retry for the service later on
as the priority customers.

It is evident that the preemptive priority is much better
comparing to the nonpreemptive priority from the point of
view of high priority customers. However, the preemptive
priority is much worse comparing to the nonpreemptive one
from the point of view of low priority customers and from
the point of view of the system resources utilization. Some
work already done by a server is wasted when the service
interruption occurs. As a trade-off, the discipline with the
nonpreemptive priority can be used in combination with
reservation of some servers exclusively for the service of
priority customers. Queueing systems with nonpreemptive
priority and reservation of some servers were considered,

for example, in [15–17]. In [15], such a system was used for
analysis and optimization of the work of the cell of a mobile
communication network. The models considered in [16, 17]
are the dual tandem queues.

The obvious aim of the proposed combination of the
reservation with the non-preemptive priority in [15–17] was
the desire to give more advantage to high priority customers
comparing to an usual nonpreemptive priority discipline. In
our present paper, we propose the combination of a reserva-
tion with a preemptive priority. Because the preemptive prior-
ity itself gives toomuch advantage to high priority customers,
they do not need an additional reservation of the servers.
So, motivation of the discipline considered in this paper is
to improve quality of low priority customers by means of
decreasing the frequency of service interruptions. This is
important because interruptions may be quite offensive for
lowpriority customers and also lead to thewaste of the system
resources.

Related model was analyzed in our recent paper [18].
In that paper, it is assumed that the arriving nonpriority
customers are not registered by the system manager and
the nonpriority customers who cannot enter the service
immediately upon arrival or whose service was interrupted
go to some virtual place called as an orbit and retry for the
service later on. In this paper, we consider another type of
arrival process and also assume that there exists registration
of nonpriority customers and they are placed in an infinite
buffer if they cannot enter the service immediately upon
arrival or are interrupted. This assumption allows us to
provide a detailed analysis of waiting time distribution for
nonpriority customers while such an analysis is impossible
for the system with retrials.

The results of analysis presented in our paper can be used
for enhancement of operation of many real life systems. Let
us briefly mention three of them.

(i) Cognitive radio systems; see, for example, [19–24]:
in these systems, the high priority is assigned to the
primary, licensed customers and the low priority is
assigned to the secondary, unlicensed customers.The
secondary customers may occupy the free servers
(channels or subchannels), but the service of some
secondary customers is terminated if a primary cus-
tomer arrives and does not see a free server.

(ii) Contact and call centers; see, for example, [25–34]: in
these systems, the high priority is assigned to themore
important customers or voice requests and the low
priority is assigned to the less important customers,
e-mail requests, and work relating to providing a call-
back option.

(iii) Different technical, manufacturing, service systems
where, to avoid possible starvation and increase
a profit, the servers provide the service to some
background or external customers in absence of the
primary customers.

The rest of the paper is organized as follows. In Section 2,
the mathematical model is described. Multidimensional
Markov chain defining behavior of the system is introduced
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in Section 3. The infinitesimal generator of this Markov
chain is written down there. The ergodicity condition and
the stationary distribution of the system states are analyzed
in Section 4. The expressions for the main system perfor-
mance measures are given in Section 5. The Laplace-Stieltjes
transform of the waiting time distribution of an arbitrary
type 2 customer is derived in Section 6. Section 7 contains
some numerical illustrations. Finally, Section 8 concludes the
paper.

2. Mathematical Model

We consider an 𝑁-server queueing model with an infinite
buffer and two types of customers. Type 1 customers arrive
according to the Markovian arrival flow MAP

1
. The MAP

1

is defined by the underlying process ]
𝑡
, 𝑡 ≥ 0, which is

an irreducible continuous-time Markov chain with the state
space {0, 1, . . . ,𝑊}. Arrivals occur only at the epochs of
jumps in the underlying process ]

𝑡
, 𝑡 ≥ 0. The intensities of

transitions of the process ]
𝑡
, 𝑡 ≥ 0, which are accompanied

(not accompanied) by the arrival of a customer, are defined
by the square matrix 𝐷

1
(𝐷
0
) of size𝑊 = 𝑊 + 1. The matrix

𝐷 = 𝐷
0
+ 𝐷
1
is an infinitesimal generator of the process

]
𝑡
, 𝑡 ≥ 0. The stationary distribution vector 𝜒𝜒𝜒 of this process

satisfies the system of equations 𝜒𝜒𝜒𝐷 = 0, 𝜒𝜒𝜒e = 1. Here and
throughout this paper, 0 is a zero row vector, and e denotes a
unit column vector.

Such arrival process was introduced as a versatile Marko-
vian point process (VMPP) by M. F. Neuts in the 70s. The
original development of VMPP contained extensive nota-
tions; however, these notations were simplified greatly in [2]
and ever since this process bears the nameMarkovian arrival
process. The class of MAPs includes many input flows con-
sidered previously, such as stationary Poisson (M), Erlangian
(𝐸
𝑘
),Hyper-Markovian (HM), Phase-Type (PH), andMarkov

Modulated Poisson Process (MMPP). Generally speaking,
theMAP is correlated, so it is ideal tomodel correlated and/or
bursty traffic in modern telecommunication networks. For
more information about theMAP, its properties, and special
cases, see [1, 2]. Discussion of applicability of the MAP for
description of real life information flows in modern telecom-
munication networks can be found in [35, 36]. Possibilities of
fitting the real world arrival process by means of theMAP are
discussed, for example, in [37].

The average intensity 𝜆
1
(fundamental rate) of theMAP

1

is defined by 𝜆
1
= 𝜒𝜒𝜒𝐷

1
e. The coefficient of variation 𝑐var of

intervals between customer arrivals is calculated as 𝑐var =

2𝜆
1
𝜒𝜒𝜒(−𝐷

0
)
−1e − 1, and the coefficient of correlation 𝑐cor

of successive intervals between arrivals is given as 𝑐cor =

(𝜆
1
𝜒𝜒𝜒(−𝐷

0
)
−1
𝐷
1
(−𝐷
0
)
−1e − 1)/𝑐2var.

Type 2 customers arrive to the system according to the
MAP
2
. TheMAP

2
is defined by the underlying process 𝜁

𝑡
, 𝑡 ≥

0, with the finite state space {0, 1, . . . , 𝑍}, and described by the
square matrices𝐻

0
and𝐻

1
of size 𝑍 = 𝑍 + 1.

The average intensity 𝜆
2
of arrival of type 2 customers

is given by 𝜆
2
= 𝜃𝜃𝜃𝐻

1
e; there the vector 𝜃𝜃𝜃 is the stationary

distribution vector of the process 𝜁
𝑡
, 𝑡 ≥ 0 and is defined as

the unique solution to the system 𝜃𝜃𝜃(𝐻
0
+ 𝐻
1
) = 0, 𝜃𝜃𝜃e = 1.

We assume that type 1 customers have absolute priority
over type 2 customers. If there is a free server during a
type 1 customer arrival epoch, this customer receives service
immediately. If all servers are busy during a type 1 customer
arrival epoch and there are type 2 customers receiving service,
the service process of one type 2 customer is terminated
and type 1 customer occupies the released server. The type
2 customer who was knocked out from the system goes to the
buffer in the tail of the queuewith probability𝑝 and leaves the
systemwith the complimentary probability 1−𝑝. If all servers
are occupied by type 1 customers during a type 1 customer
arrival epoch, this customer leaves the system forever.

We assume that some parameter (threshold)𝑀 is fixed,
0 < 𝑀 ≤ 𝑁. Type 2 customers are admitted to the system
if the number of busy servers is less than 𝑀 during type
2 customer arrival epoch. If the number of busy servers is
greater than𝑀−1 during an arbitrary type 2 customer arrival
epoch, this customer goes to the buffer with probability 𝑞 and
with the complimentary probability leaves (balks) the system.

Additionally, we assume that type 2 customers can be
impatient and leave the buffer after an exponentially dis-
tributed time described by parameter 𝛼, 𝛼 > 0, due to lack
of service. If we assume that type 2 customers are patient, we
set 𝛼 = 0.

The service time of type 𝑟 customers has an exponential
distribution with the parameter 𝜇

𝑟
, 𝑟 = 1, 2.

3. Process of System States

Let 𝑖
𝑡
, 𝑖
𝑡
≥ 0, be the number of type 2 customers in the

buffer, let 𝑛
𝑡
, 𝑛
𝑡
= 0,𝑁, be the number of busy servers, let

𝑙
𝑡
, 𝑙
𝑡
= 0,min{𝑛

𝑡
,𝑀}, be the number of type 2 customers in

service, let ]
𝑡
, ]
𝑡
= 0,𝑊, be the state of the directing process

of theMAP
1
, and let 𝜁

𝑡
, 𝜁
𝑡
= 0, 𝑍, be the state of the directing

process of the MAP
2
at the epoch 𝑡, 𝑡 ≥ 0. Here the notation

like 𝑘 = 0,𝐾 means that the variable 𝑘 takes integer values
from the set {0, 1, 2, . . . , 𝐾}.

The behavior of the system under study can be described
in terms of the regular irreducible continuous-time Markov
chain 𝜉

𝑡
= {𝑖
𝑡
, 𝑛
𝑡
, 𝑙
𝑡
, ]
𝑡
, 𝜁
𝑡
}, 𝑡 ≥ 0.

Let us introduce the following notation:
(i) 𝐼 is the identity matrix, and 𝑂 is a zero matrix of

appropriate dimension. If the dimension of a matrix
or a vector is not clear from context, it is indicated as
the suffix;

(ii) ⊕ and ⊗ indicate the Kronecker sum and product of
matrices, respectively; see, for example, [38];

(iii) diag{𝐴
1
, . . . , 𝐴

𝑙
} is the diagonal matrix with the

diagonal entries or blocks 𝐴
1
, . . . , 𝐴

𝑙
;

(iv) 𝐶
𝑙
= diag{0, 1, . . . , 𝑙}, 𝐶

𝑙
= diag{𝑙, 𝑙 − 1, . . . , 0}, 𝑙 =

0,𝑀;
(v) 𝐶
𝑙
= diag{𝑙, 𝑙 − 1, . . . , 𝑙 − 𝑀 + 1, 𝑙 − 𝑀}, 𝑙 = 𝑀,𝑁;

(vi) 𝐸+
𝑛
, 𝐸
+

𝑛
, 𝑛 = 0,𝑀 − 1, are the matrices of size (𝑛 +

1) × (𝑛 + 2) with all zero entries except the entries
(𝐸
+

𝑛
)
𝑙,𝑙+1
, 𝑙 = 0, 𝑛 + 1, and (𝐸+

𝑛
)
𝑙,𝑙
, 𝑙 = 0, 𝑛 + 1, which

are equal to 1;
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(vii) 𝐸−
𝑛
, 𝐸
−

𝑛
, 𝑛 = 1,𝑀, are the matrices of size (𝑛 + 1) × 𝑛

with all zero entries except the entries (𝐸−
𝑛
)
𝑙,𝑙
, 𝑙 = 0, 𝑛,

and (𝐸−
𝑛
)
𝑙,𝑙−1
, 𝑙 = 1, 𝑛 + 1, which are equal to 1;

(viii) 𝐸− is the square matrix of size 𝑀 + 1 with all zero
entries except the entries (𝐸−)

𝑙,𝑙−1
, 𝑙 = 1,𝑀, which are

equal to 1;

(ix) 𝐼
𝑙
, 𝑙 = 𝑀 + 1,𝑁 −𝑀 + 1, are the square matrices of

size 𝑙with all zero entries except the entry (𝐼
𝑙
)
0,0

which
is equal to 1.

Let us enumerate the states of the Markov chain 𝜉
𝑡
in the

direct lexicographic order of the components (𝑖, 𝑛, 𝑙, ], 𝜁) and
refer to the pair (𝑖, 𝑛) as a macrostate.

Let 𝑄 be the generator of the Markov chain 𝜉
𝑡
, 𝑡 ≥ 0,

consisting of the blocks 𝑄
𝑖,𝑗
, which, in turn, consist of the

matrices (𝑄
𝑖,𝑗
)
𝑛,𝑛
 of the transition rates of the Markov chain

𝜉
𝑡
from the macrostate (𝑖, 𝑛) to the macrostate (𝑗, 𝑛), 𝑛, 𝑛 =

0,𝑁. The diagonal entries of the matrices 𝑄
𝑖,𝑖
are negative,

and the moduli of the diagonal entries of these matrices
define the total intensities of leaving the corresponding state
of the Markov chain 𝜉

𝑡
, 𝑡 ≥ 0.

Lemma 1. The infinitesimal generator 𝑄 of the Markov chain
𝜉
𝑡
, 𝑡 ≥ 0, has the block-three-diagonal structure

𝑄 = (

𝑄
0,0

𝑄
0,1

𝑂 𝑂 . . .

𝑄
1,0

𝑄
1,1

𝑄
1,2

𝑂 . . .

𝑂 𝑄
2,1

𝑄
2,2

𝑄
2,3

. . .

.

.

.

.

.

.

.

.

.

.

.

. d

). (1)

The nonzero blocks 𝑄
𝑖,𝑗
, 𝑖, 𝑗 ≥ 0, have the following form:

𝑄
0,0
= (

(

𝐴
(0)

0
𝐵
(0)

𝑂 . . . 𝑂 𝑂

𝐹
(1)

𝐴
(1)

0
𝐵
(1)

. . . 𝑂 𝑂

.

.

.

.

.

. d d
.
.
.

.

.

.

𝑂 𝑂 𝑂 d 𝐴
(𝑁−1)

0
𝐵
(𝑁−1)

𝑂 𝑂 𝑂 . . . 𝐹
(𝑁)

𝐴
(𝑁)

0

)

)

+𝐼
(𝑀+1)(𝑁−𝑀/2+1)

⊗ (𝐷
0
⊕ 𝐻
0
) ,

𝑄
𝑖,𝑖
= (

(

𝐴
(𝑀)

𝑖
𝐵
(𝑀)

𝑂 . . . 𝑂 𝑂

𝐹
(𝑀+1)

𝐴
(𝑀+1)

𝑖
𝐵
(𝑀+1)

. . . 𝑂 𝑂

.

.

.

.

.

. d d
.
.
.

.

.

.

𝑂 𝑂 𝑂 d 𝐴
(𝑁−1)

𝑖
𝐵
(𝑁−1)

𝑂 𝑂 𝑂 . . . 𝐹
(𝑁)

𝐴
(𝑁)

𝑖

)

)

+𝐼
(𝑁−M+1)(𝑀+1) ⊗ (𝐷0 ⊕ 𝐻0) , 𝑖 ≥ 1,

𝑄
0,1
= (

𝑂
(𝑀(𝑀+1)/2)𝑊𝑍×(𝑁−𝑀+1)(𝑀+1)𝑊𝑍

𝑄
+ ) ,

𝑄
+
= diag

{

{

{

𝑞𝐼
(𝑀+1)𝑊

⊗ 𝐻
1
, . . . , 𝑞𝐼

(𝑀+1)𝑊
⊗ 𝐻
1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁−𝑀

,

𝑝𝐸
−
⊗ 𝐷
1
⊗ 𝐼
𝑍
+ 𝑞𝐼
(𝑀+1)𝑊

⊗ 𝐻
1

}

}

}

,

𝑄
𝑖,𝑖+1

= 𝑄
+
, 𝑖 ≥ 1,

𝑄
1,0
= (𝑂
(𝑁−𝑀+1)(𝑀+1)𝑊𝑍×(𝑀(𝑀+1)/2)𝑊𝑍

𝑄
−
) ,

𝑄
−
= diag {𝛼𝐼

𝑀+1
+ 𝜇
1
𝐶
𝑀
𝐸
+

+𝜇
2
𝐶
𝑀
, 𝛼𝐼
𝑀+1

, . . . , 𝛼𝐼
𝑀+1

} ⊗ 𝐼
𝑊𝑍
,

𝑄
𝑖,𝑖−1

= diag {𝑖𝛼𝐼
𝑀+1

+ 𝜇
1
𝐶
𝑀
𝐸
+

+𝜇
2
𝐶
𝑀
, 𝑖𝛼𝐼
𝑀+1

, . . . , 𝑖𝛼𝐼
𝑀+1

} ⊗ 𝐼
𝑊𝑍
,

𝑖 > 1,

(2)

where

𝐴
(𝑛)

𝑖
=

{{{{{{{{{

{{{{{{{{{

{

−(𝜇
1
𝐶
𝑛
+ 𝜇
2
𝐶
𝑀
) ⊗ 𝐼
𝑊𝑍
, 0 ≤ 𝑛 < 𝑀,

− (𝜇
1
𝐶
𝑛
+ 𝜇
2
𝐶
𝑀
+ 𝑖𝛼𝐼
𝑀+1

) ⊗ 𝐼
𝑊𝑍

+ (1 − 𝑞) 𝐼
(𝑀+1)𝑊

⊗ 𝐻
1
, 𝑀 ≤ 𝑛 < 𝑁,

− (𝜇
1
𝐶
𝑛
+ 𝜇
2
𝐶
𝑀
+ 𝑖𝛼𝐼
𝑀+1

) ⊗ 𝐼
𝑊𝑍

+ (𝐼
𝑀+1

+ (1 − 𝑝) 𝐸
−
) ⊗ 𝐷
1
⊗ 𝐼
𝑍

+ (1 − 𝑞) 𝐼
(𝑀+1)𝑊

⊗ 𝐻
1
, 𝑛 = 𝑁, 𝑖 ≥ 0;

𝐵
(𝑛)
=

{{

{{

{

𝐸
+

𝑛
⊗ 𝐼
𝑊
⊗ 𝐻
1

+𝐸
+

𝑛
⊗ 𝐷
1
⊗ 𝐼
𝑍
, 0 ≤ 𝑛 < 𝑀,

𝐼
𝑀+1

⊗ 𝐷
1
⊗ 𝐼
𝑍
, 𝑀 ≤ 𝑛 < 𝑁;

𝐹
(𝑛)
= {

(𝜇
1
𝐶
𝑛
𝐸
−

𝑛
+ 𝜇
2
𝐶
𝑛
𝐸
−

𝑛
) ⊗ 𝐼
𝑊𝑍
, 0 < 𝑛 ≤ 𝑀,

(𝜇
1
𝐶
𝑛
+ 𝜇
2
𝐶
𝑀
𝐸
−
) ⊗ 𝐼
𝑊𝑍
, 𝑀 < 𝑛 ≤ 𝑁.

(3)
Proof of the lemma is implemented by the analysis

of the Markov chain 𝜉
𝑡
, 𝑡 ≥ 0, transitions during the

interval of infinitesimal length, and further combining the
corresponding transition intensities in block matrix form.

4. Ergodicity Condition and Computation of
the Stationary Probabilities

Further, we will separately consider the following two cases.
(1) Let us assume that 𝛼 ̸= 0; that is, customers in the

buffer are impatient. In this case, it is possible to verify that
the following limits exist:

𝑌
0
= lim
𝑖→∞

𝑅
−1

𝑖
𝑄
𝑖,𝑖−1
,

𝑌
1
= lim
𝑖→∞

𝑅
−1

𝑖
𝑄
𝑖,𝑖
+ 𝐼,

𝑌
2
= lim
𝑖→∞

𝑅
−1

𝑖
𝑄
𝑖,𝑖+1
,

(4)

where 𝑅
𝑖
is a diagonal matrix with diagonal entries defined

as the moduli of the corresponding diagonal entries of the
matrix 𝑄

𝑖,𝑖
, 𝑖 ≥ 0.
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The matrix 𝑅
𝑖
is the block-diagonal matrix with the

diagonal blocks 𝑇(𝑛)
𝑖
, 𝑛 = 𝑀,𝑁, 𝑖 ≥ 0, defined as follows:

𝑇
(𝑛)

𝑖
=

{{{{{{{{{{{

{{{{{{{{{{{

{

(𝜇
1
𝐶
𝑛
+ 𝜇
2
𝐶
𝑀
+ 𝑖𝛼𝐼
𝑀+1

) ⊗ 𝐼
𝑊𝑍

+𝐼
𝑀+1

⊗ (Λ
0
⊕ Σ
0
)

− (1 − 𝑞) 𝐼
(𝑀+1)𝑊

⊗ Σ
1
, 𝑛 = 𝑀,𝑁 − 1;

(𝜇
1
𝐶
𝑁
+ 𝜇
2
𝐶
𝑀
+ 𝑖𝛼𝐼
𝑀+1

) ⊗ 𝐼
𝑊

−𝐼
𝑀+1

⊗ Σ
1
⊗ 𝐼
𝑍

+𝐼
𝑀+1

⊗ (Λ
0
⊕ Σ
0
)

− (1 − 𝑞) 𝐼
(𝑀+1)𝑊

⊗ Σ
1
, 𝑛 = 𝑁,

(5)

whereΛ
0
, Λ
1
, Σ
0
, and Σ

1
are diagonal matrices with diagonal

entries defined by the diagonal entries of the matrices
−𝐷
0
, 𝐷
1
, −𝐻
0
, and𝐻

1
, respectively.

The matrices 𝑌
0
, 𝑌
1
, and 𝑌

2
have the following form:

𝑌
0
= 𝐼, 𝑌

1
= 𝑂, 𝑌

2
= 𝑂; (6)

so, their sum is the stochastic matrix.
According to the definition given in [39], the Markov

chain 𝜉
𝑡
, 𝑡 ≥ 0, belongs to the class of so called continuous-

time asymptotically quasi-ToeplitzMarkov chains (AQTMC).
As follows from [39], the sufficient condition for the

ergodicity of the AQTMC is the following condition:

y𝑌
0
e > y𝑌

2
e, (7)

where the row-vector y is the unique solution to the following
system of linear algebraic equations:

y (𝑌
0
+ 𝑌
1
+ 𝑌
2
) = y, ye = 1. (8)

Taking into account explicit values (6) of the matrices
𝑌
0
, 𝑌
1
, and 𝑌

2
, inequality (7) can be rewritten as y𝑌

0
e > 0,

and system (8) is rewritten in the form y𝑌
0
= y, ye = 1.

Hence, y𝑌
0
e = ye = 1 > 0; so, inequality (7) holds true for

each set of the systemparameters. So, theMarkov chain under
consideration is ergodic and the queueing systemunder study
is stable for any set of the system parameters.

(2) Let us assume now that 𝛼 = 0. In this case, the blocks
of the generator have the following form:

𝑄
𝑖,𝑖
= 𝑄
1

= (

(

𝐴
(𝑀)

0
𝐵
(𝑀)

𝑂 . . . 𝑂 𝑂

𝐹
(𝑀+1)

𝐴
(𝑀+1)

0
𝐵
(𝑀+1)

. . . 𝑂 𝑂

.

.

.

.

.

. d d
.
.
.

.

.

.

𝑂 𝑂 𝑂 d 𝐴
(𝑁−1)

0
𝐵
(𝑁−1)

𝑂 𝑂 𝑂 . . . 𝐹
(𝑁)

𝐴
(𝑁)

0

)

)

+ 𝐼
(𝑁−𝑀+1)(𝑀+1)

⊗ (𝐷
0
⊕ 𝐻
0
) , 𝑖 > 0,

𝑄
𝑖,𝑖+1

= 𝑄
2
= 𝑄
+
, 𝑖 ≥ 1,

𝑄
𝑖,𝑖−1

= 𝑄
0

= diag {𝜇
1
𝐶
𝑀
𝐸
+
+ 𝜇
2
𝐶
𝑀
, 𝑂
𝑀+1

, . . . , 𝑂
𝑀+1

} ⊗ 𝐼
𝑊𝑍
,

𝑖 > 1.

(9)
Thus, the blocks of the generator do not depend on the

variable 𝑖 when 𝑖 > 1 and the Markov chain 𝜉
𝑡
, 𝑡 ≥ 0, belongs

to the class of continuous-time quasi-Toeplitz Markov chains
(QTMC) or𝑀/𝐺/1-type Markov chains; see [40].

As follows from [40], the necessary and sufficient condi-
tion for the ergodicity of the QTMC is the fulfillment of the
following inequality:

x𝑄
0
e > x𝑄

2
e, (10)

where the vector x is the unique solution to the system

x (𝑄
0
+ 𝑄
1
+ 𝑄
2
) = 0, xe = 1. (11)

It is easy to verify that system (11) can be rewritten in the
form

0 = x (𝑄
0
+ 𝑄
1
+ 𝑄
2
)

= x

[
[
[
[
[
[
[

[

(

𝐼
𝑀+1

⊗ 𝐷
0
𝐼
𝑀+1

⊗ 𝐷
1
. . . 𝑂 𝑂

𝑂 𝐼
𝑀+1

⊗ 𝐷
0
. . . 𝑂 𝑂

.

.

.

.

.

. d
.
.
.

.

.

.

𝑂 𝑂 . . . 𝐼
𝑀+1

⊗ 𝐷
0

𝐼
𝑀+1

⊗ 𝐷
1

𝑂 𝑂 . . . 𝑂 (𝐸
−
+ 𝐼) ⊗ 𝐷

1
+ 𝐼
𝑀+1

⊗ 𝐷
0

)⊗ 𝐼
𝑍

+ 𝐼
(𝑁−𝑀+1)(𝑀+1)𝑊

⊗ 𝐻 (1)

+(

(

−𝜇
1
𝐶
𝑀
(𝐼 − 𝐸

+
) 𝑂 𝑂 . . . 𝑂 𝑂

𝜇
1
𝐶
𝑀+1

+ 𝜇
2
𝐶
𝑀
𝐸
−
− (𝜇
1
𝐶
𝑀+1

+ 𝜇
2
𝐶
𝑀
) 𝑂 . . . 𝑂 𝑂

.

.

.

.

.

.

.

.

. d
.
.
.

.

.

.

𝑂 𝑂 𝑂 . . . − (𝜇
1
𝐶
𝑁−1

+ 𝜇
2
𝐶
𝑀
) 𝑂

𝑂 𝑂 𝑂 . . . 𝜇
1
𝐶
𝑁
+ 𝜇
2
𝐶
𝑀
𝐸
−

− (𝜇
1
𝐶
𝑁
+ 𝜇
2
𝐶
𝑀
)

)

)

⊗ 𝐼
𝑊 𝑍

]
]
]
]
]
]
]

]

,

xe = 1.
(12)
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By postmultiplying the left and right hand side of (12) by
e
(𝑁−𝑀+1)(𝑀+1)𝑊

⊗ 𝐼
𝑍
we obtain that

x (e
(𝑁−𝑀+1)(𝑀+1)𝑊

⊗ 𝐻 (1)) = 0, xe = 1. (13)

By postmultiplying the left and right hand side of (12) by
e
(𝑁−𝑀+1)(𝑀+1)

⊗ 𝐼
𝑊
⊗ e
𝑍
we obtain that

x (e
(𝑁−𝑀+1)(𝑀+1)

⊗ 𝐷 (1) ⊗ e
𝑍
) = 0, xe = 1. (14)

It follows from (13) and (14) that the vector x can be
represented in the form

x = z ⊗ 𝜒𝜒𝜒 ⊗ 𝜃𝜃𝜃, (15)

where z is a stochastic vector of size (𝑁 − 𝑀 + 1)(𝑀 + 1), 𝜒𝜒𝜒
is the invariant probability vector of the underlying Markov
chain of the MAP

1
, and 𝜃𝜃𝜃 is the invariant probability vector

of the underlying Markov chain of theMAP
2
.

Substituting the vector x form (15) into (12), postmulti-
plying this equation by 𝐼

(𝑁−𝑀+1)(𝑀+1)
⊗ e
𝑊𝑍

, and taking into
account that 𝜒𝜒𝜒𝐷

1
e = 𝜆

1
, 𝜒𝜒𝜒𝐷
0
e = −𝜒𝜒𝜒𝐷

1
e = −𝜆

1
, 𝜃𝜃𝜃𝐻(1) =

0, 𝜃𝜃𝜃e = 1, and𝜒𝜒𝜒e = 1, we obtain that the vector z is the unique
solution to the system

zΩ = 0, ze = 1, (16)

where

Ω = (

(

𝐴
(𝑀)

𝜆
1
𝐼
𝑀+1

𝑂 . . . 𝑂 𝑂 𝑂

𝜇
1
𝐶
𝑀+1

+ 𝜇
2
𝐶
𝑀
𝐸
−
𝐴
(𝑀+1)

𝜆
1
𝐼
𝑀+1

. . . 𝑂 𝑂 𝑂

.

.

.

.

.

.

.

.

. d
.
.
.

.

.

.

.

.

.

𝑂 𝑂 𝑂 . . . 𝜇
1
𝐶
𝑁−1

+ 𝜇
2
𝐶
𝑀
𝐸
−

𝐴
(𝑁−1)

𝜆
1
𝐼
𝑀+1

𝑂 𝑂 𝑂 . . . 𝑂 𝜇
1
𝐶
𝑁
+ 𝜇
2
𝐶
𝑀
𝐸
−

𝐴
(𝑁)

)

)

,

𝐴
(𝑛)
=

{{{{

{{{{

{

−𝜇
1
𝐶
𝑀
(𝐼 − 𝐸

+
) − 𝜆
1
𝐼
𝑀+1

, 𝑛 = 𝑀,𝑀 < 𝑁;

−𝜇
1
𝐶
𝑀
(𝐼 − 𝐸

+
) − 𝜆
1
(𝐼 − 𝐸

−
− 𝐼) , 𝑛 = 𝑀 = 𝑁,

−𝜇
1
𝐶
𝑛
− 𝜇
2
𝐶
𝑀
− 𝜆
1
𝐼
𝑀+1

, 𝑀 < 𝑛 < 𝑁,

−𝜇
1
𝐶
𝑁
− 𝜇
2
𝐶
𝑀
− 𝜆
1
(𝐼 − 𝐸

−
− 𝐼
𝑀+1

) , 𝑛 = 𝑁 > 𝑀.

(17)

It easy to verify that the matrix Ω is the generator of two-
dimensionalMarkov chain {𝑛

𝑡
, 𝑙
𝑡
}, 𝑡 ≥ 0, defining the number

of busy servers 𝑛
𝑡
, 𝑛
𝑡
= 𝑀,𝑁, and the number of servers

occupied by type 2 customers 𝑙
𝑡
, 𝑙
𝑡
= 0,𝑀, at the moment

𝑡 in the case when the system is overloaded. It is evident that
when the system is overloaded the number of busy servers
𝑛
𝑡
can vary in the interval [𝑀,𝑁]. It follows from (16) that

the vector z = (z
𝑀
, . . . , z

𝑁
), z
𝑛
= (z(𝑛, 0), . . . , z(𝑛,𝑀)), 𝑛 =

𝑀,𝑁, defines the joint stationary distribution of the number
of busy servers and the number of servers occupied by type 2
customers when the system is overloaded.

Taking this into account, substituting the vector x form
(15) into inequality (10) and performing some algebra, we
obtain the following inequality:

z
𝑀
(𝜇
1
𝐶
𝑀
+ 𝜇
2
𝐶
𝑀
) e > 𝑞𝜆

2
+ 𝑝𝜆
1
z
𝑁
ê, (18)

where ê is the vector of size𝑀+1 with all unit entries except
the entry (ê)

0
which is equal to zero.

Thus, we have proved the following assertion.

Theorem 2. If 𝛼 ̸= 0, the Markov chain 𝜉
𝑡
, 𝑡 ≥ 0, is ergodic for

any set of the system parameters. If 𝛼 = 0, the Markov chain
𝜉
𝑡
, 𝑡 ≥ 0, is ergodic, if and only if inequality (18) holds true

where the vector z is defined as the solution to system (16).

Remark 3. Condition (18) is intuitively clear and can be
interpreted as follows. If the system is overloaded and type
2 customers are patient (𝛼 = 0), then type 2 customer can

leave the buffer only if the number of busy servers becomes
less than𝑀. The components z(𝑀, 𝑙), 𝑙 = 0,𝑀, of the vector
z
𝑀

define the probability that during an arbitrary epoch the
number of busy servers is𝑀 and there are 𝑙 type 2 customers
who receive service. So, the left hand side of (18) defines the
intensity of the service completions when𝑀 servers are busy
(the intensity of customers leaving the buffer).The right hand
side of (18) defines the total intensity of type 2 customers
arrival into the buffer. When the system is overloaded, all
admitted type 2 customers (the intensity of this flow is 𝑞𝜆

2
)

and type 2 customers whose service was terminated by arrival
of type 1 customers (the intensity of this flow is 𝑝𝜆

1
z
𝑁
ê)

arrive into the buffer.Thus, ergodicity condition (18) requires
that, in the situation when the system is overloaded, the
intensity of type 2 customers arriving to the buffer is less than
the intensity of type 2 customers leaving the buffer.

Further, we assume thatMarkov chain 𝜉
𝑡
, 𝑡 ≥ 0, is ergodic.

Then the following limits (stationary probabilities) exist:

𝜋 (𝑖, 𝑛, 𝑙, ], 𝜁) = lim
𝑡→∞

𝑃 {𝑖
𝑡
= 𝑖, 𝑛
𝑡
= 𝑛, 𝑙
𝑡
= 𝑙, ]
𝑡
= ], 𝜁
𝑡
= 𝜁} ,

𝑖 ≥ 0, 𝑛 = (1 − 𝛿
𝑖,0
)𝑀,𝑁,

𝑙 = 0,min {𝑛,𝑀}, ] = 0,𝑊, 𝜁 = 0, 𝑍.

(19)

Here 𝛿
𝑖,0
indicates the Kronecker delta.
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Let us form the row vectors 𝜋𝜋𝜋
𝑖
of these probabilities as

follows:

𝜋𝜋𝜋 (𝑖, 𝑛, 𝑙, ])

= (𝜋 (𝑖, 𝑛, 𝑙, ], 0) , 𝜋 (𝑖, 𝑛, 𝑙, ], 1) , . . . , 𝜋 (𝑖, 𝑛, 𝑙, ], 𝑍)) ,

𝑖 ≥ 0, 𝑛 = (1 − 𝛿
𝑖,0
)𝑀,𝑁,

𝑙 = 0,min{𝑛,𝑀}, ] = 0,𝑊,

𝜋𝜋𝜋 (𝑖, 𝑛, 𝑙) = (𝜋𝜋𝜋 (𝑖, 𝑛, 𝑙, 0) ,𝜋𝜋𝜋 (𝑖, 𝑛, 𝑙, 1) , . . . ,𝜋𝜋𝜋 (𝑖, 𝑛, 𝑙,𝑊)) ,

𝑖 ≥ 0, 𝑛 = (1 − 𝛿
𝑖,0
)𝑀,𝑁,

𝑙 = 0,min{𝑛,𝑀},

𝜋𝜋𝜋 (𝑖, 𝑛) = (𝜋𝜋𝜋 (𝑖, 𝑛, 0) ,𝜋𝜋𝜋 (𝑖, 𝑛, 1) , . . . ,𝜋𝜋𝜋 (𝑖, 𝑛,min {𝑛,𝑀})) ,

𝑖 ≥ 0, 𝑛 = (1 − 𝛿
𝑖,0
)𝑀,𝑁,

𝜋𝜋𝜋
𝑖
= (𝜋𝜋𝜋 (𝑖, 0) ,𝜋𝜋𝜋 (𝑖, 1) , . . . ,𝜋𝜋𝜋 (𝑖,𝑁)) , 𝑖 ≥ 0.

(20)

It is well known that the probability vectors 𝜋𝜋𝜋
𝑖
, 𝑖 ≥ 0,

satisfy the following system of linear algebraic equations:

(𝜋𝜋𝜋
0
,𝜋𝜋𝜋
1
, . . .) 𝑄 = 0, (𝜋𝜋𝜋

0
,𝜋𝜋𝜋
1
, . . .) e = 1. (21)

System (21) is infinite, so it can not be solved on a
computer by standard methods. To compute the probability
vectors 𝜋𝜋𝜋

𝑖
, 𝑖 ≥ 0, in both the cases, 𝛼 > 0 and 𝛼 = 0, the

numerically stable algorithms presented in [39] can be used.
The idea of these algorithms is as follows. Instead of solution
of the system (21), another infinite system of linear algebraic
equations for the probability vectors 𝜋𝜋𝜋

𝑖
, 𝑖 ≥ 0, is derived

by means of sequential constructions of so called censored
Markov chains (see, e.g., [41]) for the initial Markov chain
𝜉
𝑡
, 𝑡 ≥ 0, with different levels of censoring. This leads to

numerically stable procedure for computation of the vectors
𝜋𝜋𝜋
𝑖
, 𝑖 ≥ 0.

5. Performance Measures

Having computed the vectors of the stationary probabilities
𝜋𝜋𝜋
𝑖
, 𝑖 ≥ 0, it is possible to compute a variety of the system

performance measures.
The average number of customers in the system is

𝐿 =

𝑁

∑

𝑛=1

𝑛𝜋𝜋𝜋 (0, 𝑛) e +
∞

∑

𝑖=1

𝑁

∑

𝑛=𝑀

(𝑖 + 𝑛)𝜋𝜋𝜋 (𝑖, 𝑛) e. (22)

The average number of customers in the buffer is

𝑁
buffer

=

∞

∑

𝑖=1

𝑖𝜋𝜋𝜋
𝑖
e. (23)

The average number of busy servers is

𝑁
server

=

∞

∑

𝑖=0

𝑁

∑

𝑛=1

𝑛𝜋𝜋𝜋 (𝑖, 𝑛) e. (24)

The average number of busy servers providing service to
type 1 customers is

𝑁
server−1

=

𝑁

∑

𝑛=1

min{𝑛,𝑀}
∑

𝑙=0

(𝑛 − 𝑙)𝜋𝜋𝜋 (0, 𝑛, 𝑙) e

+

∞

∑

𝑖=1

𝑁

∑

𝑛=𝑀

𝑀

∑

𝑙=0

(𝑛 − 𝑙)𝜋𝜋𝜋 (𝑖, 𝑛, 𝑙) e.

(25)

The average number of busy servers providing service to
type 2 customers is

𝑁
server−2

=

𝑁

∑

𝑛=1

min{𝑛,𝑀}
∑

𝑙=1

𝑙𝜋𝜋𝜋 (0, 𝑛, 𝑙) e

+

∞

∑

𝑖=1

𝑁

∑

𝑛=𝑀

𝑀

∑

𝑙=1

𝑙𝜋𝜋𝜋 (𝑖, 𝑛, 𝑙) e = 𝑁server
− 𝑁

server−1
.

(26)

The intensity of output flow of type 1 customers is

𝜆
(1)

out = 𝜇1𝑁
server−1

. (27)

The intensity of output flow of type 2 customers is

𝜆
out
2
= 𝜇
2
𝑁

server−2
. (28)

The intensity of output flow of customers is

𝜆out = 𝜆
out
1
+ 𝜆

out
2
. (29)

The loss probability of type 1 customers is

𝑃
loss
1

= 𝜆
−1

1

∞

∑

𝑖=0

𝜋𝜋𝜋 (𝑖,𝑁, 0) (𝐷
1
⊗ 𝐼
𝑍
) e = 1 −

𝜆
out
1

𝜆
1

. (30)

The loss probability of type 2 customers is

𝑃
loss
2

= 1 −
𝜆
out
2

𝜆
2

. (31)

The loss probability of an arbitrary customer is

𝑃
loss
= 1 −

𝜆out
𝜆
1
+ 𝜆
2

. (32)
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The probability of type 2 customer loss at the entrance to
the system is

𝑃
ent-loss

= (1 − 𝑞) 𝜆
−1

2

∞

∑

𝑖=0

𝑁

∑

𝑛=𝑀

𝜋𝜋𝜋 (𝑖, 𝑛) (𝐼
(𝑀+1)𝑊

⊗ 𝐻
1
) e. (33)

The probability that an arbitrary type 2 customer will be
forced to terminate its service and go to the buffer is

𝑃
knock-out-to-buffer

= 𝑝𝜆
−1

1

∞

∑

𝑖=0

𝑀

∑

𝑙=1

𝜋𝜋𝜋 (𝑖,𝑁, 𝑙) (𝐷
1
⊗ 𝐼
𝑍
) e. (34)

The probability that an arbitrary type 2 customer will be
forced to terminate its service and leave the system is

𝑃
knock-out-loss

= (1 − 𝑝) 𝜆
−1

1

∞

∑

𝑖=0

𝑀

∑

𝑙=1

𝜋𝜋𝜋 (𝑖,𝑁, 𝑙) (𝐷
1
⊗ 𝐼
𝑍
) e. (35)

The probability that an arbitrary type 2 customer will
leave the buffer due to impatience is

𝑃
imp-loss

= 𝑃
loss
2

− 𝑃
ent-loss

− 𝑃
knock-out-loss

. (36)

6. Distribution of the Waiting Time of
an Arbitrary Type 2 Customer

Type 1 customers having preemptive priority do not wait for
service. So, we analyze only the distribution of waiting time
of an arbitrary type 2 customer. Speaking about the arbitrary
type 2 customer, we do not distinguish type 2 customers

arriving to the system from outside and customers arriving
to the buffer due to the service force termination.

Let 𝑉(𝑥) be the distribution function of the waiting time
of an arbitrary type 2 customer in the system and let V(𝑠) =
∫
∞

0
𝑒
−𝑠𝑥
𝑑𝑉(𝑥), Re 𝑠 > 0, be its Laplace-Stieltjes transform

(LST).
To derive an expression for the LST V(𝑠), we use the

method of collective marks; see, for example, [42, 43]. Let
us tag an arbitrary type 2 customer and keep track of its
staying in the system. According to the idea of the method of
collective marks, V(𝑠) has the meaning of the probability that
no catastrophe from some virtual stationary Poisson flow of
catastrophes with the intensity 𝑠 arrives during the waiting
time of the tagged type 2 customer.

Let V(𝑠, 𝑟, 𝑛, 𝑙, ]) be the probability that no catastrophe
arrive during the rest of the tagged customer waiting time
conditioned on the fact that, at the given moment, the
position of the tagged customer in the buffer is equal to
𝑟, 𝑟 ≥ 1, the number of busy servers is 𝑛, 𝑛 = 𝑀,𝑁, the
number of busy servers providing service to type 2 customers
is 𝑙, 𝑙 = 0,𝑀, and the state of the process ]

𝑡
, 𝑡 ≥ 0, is ].

Let us enumerate the probabilities V(𝑠, 𝑟, 𝑛, 𝑙, ]) in the
lexicographic order of the components 𝑛, 𝑙, and ] and form
the following column vectors:

v (𝑠, 𝑟, 𝑛, 𝑙) = (V (𝑠, 𝑟, 𝑛, 𝑙, 0) , . . . , V (𝑠, 𝑟, 𝑛, 𝑙,𝑊))𝑇, 𝑙 = 0,𝑀,

v (𝑠, 𝑟, 𝑛) = (v (𝑠, 𝑟, 𝑛, 0) , . . . , v (𝑠, 𝑟, 𝑛,𝑀))𝑇, 𝑛 = 𝑀,𝑁,

v (𝑠, 𝑟) = (v (𝑠, 𝑟,𝑀) , . . . , v (𝑠, 𝑟,𝑁))𝑇, 𝑟 ≥ 1.

(37)

Let us also introduce the following notation:

𝑉
𝑟,𝑟
=
(
(

(

𝐴
(𝑀)

𝑟
𝐼
𝑀+1

⊗ 𝐷
1

𝑂 . . . 𝑂 𝑂

𝐹
(𝑀+1)

𝐴
(𝑀+1)

𝑟
𝐼
𝑀+1

⊗ 𝐷
1
. . . 𝑂 𝑂

.

.

.

.

.

. d d
.
.
.

.

.

.

𝑂 𝑂 𝑂 d 𝐴
(𝑁−1)

𝑟
𝐼
𝑀+1

⊗ 𝐷
1

𝑂 𝑂 𝑂 . . . 𝐹
(𝑁)

𝐴
(𝑁)

𝑟

)
)

)

+𝐼
(𝑁−𝑀+1)(𝑀+1)

⊗ 𝐷
0
, 𝑟 ≥ 1,

𝑉
𝑟,𝑟−1

= 𝐼
𝑁−𝑀+1

⊗ (𝜇
1
𝐶
𝑀
𝐸
+
+ 𝜇
2
𝐶
𝑀
) ⊗ 𝐼
𝑊

+ (𝑟 − 1) 𝛼𝐼
(𝑁−𝑀+1)(𝑀+1)𝑊

, 𝑟 ≥ 1,

(38)

where

𝐴
(𝑛)

𝑟
=

{{{{{{{

{{{{{{{

{

−(𝜇
1
𝐶
𝑛
+ 𝜇
2
𝐶
𝑀
+ 𝑟𝛼𝐼
𝑀+1

) ⊗ 𝐼
𝑊
,

𝑀 ≤ 𝑛 < 𝑁, 𝑟 ≥ 0,

− (𝜇
1
𝐶
𝑛
+ 𝜇
2
𝐶
𝑀
+ 𝑟𝛼𝐼
𝑀+1

) ⊗ 𝐼
𝑊

+ (𝐸
−
+ 𝐼
𝑀+1

) ⊗ 𝐷
1
,

𝑛 = 𝑁, 𝑟 ≥ 0;

(39)

𝐹
(𝑛)

= (𝜇
1
𝐶
𝑛
+ 𝜇
2
𝐶
𝑀
𝐸
−
) ⊗ 𝐼
𝑊
, 𝑀 < 𝑛 ≤ 𝑁. (40)

Lemma 4. The vectors v(𝑠, 𝑟), 𝑟 ≥ 1, can be recursively
calculated as follows:

v (𝑠, 1) = (𝑠𝐼 − 𝑉
1,1
)
−1

× [𝛼𝐼 + 𝐼
𝑁−𝑀+1

⊗ (𝜇
1
𝐶
𝑀
+ 𝜇
2
𝐶
𝑀
) ⊗ 𝐼
𝑊
] e,

v (𝑠, 𝑟) = (𝑠𝐼 − 𝑉
𝑟,𝑟
)
−1

(𝑉
𝑟,𝑟−1

v (𝑠, 𝑟 − 1) + 𝛼e) , 𝑟 > 1.

(41)
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Proof. Based on a probabilistic sense of the LST, we obtain the
following system of equations for calculation of the vectors
v(𝑠, 𝑟, 𝑛, 𝑙):
v (𝑠, 𝑟, 𝑛, 𝑙)

= [(𝑠 + 𝑟𝛼 + (𝑛 − 𝑙) 𝜇
1
+ 𝑙𝜇
2
) 𝐼
𝑊
− 𝐷
0
]
−1

× ( (1 − 𝛿
𝑛,𝑁
)𝐷
1
v (𝑠, 𝑟, 𝑛 + 1, 𝑙)

+ (𝑟 − 1) 𝛼v (𝑠, 𝑟 − 1, 𝑛, 𝑙)
+ 𝛿
𝑛,𝑁
(𝛿
𝑙,0
𝐷
1
v (𝑠, 𝑟, 𝑛, 𝑙)

+ (1 − 𝛿
𝑙,0
)𝐷
1
v (𝑠, 𝑟, 𝑛, 𝑙 − 1))

+ (1 − 𝛿
𝑟,1
) 𝛿
𝑛,𝑀

(𝑙𝜇
2
v (𝑠, 𝑟 − 1, 𝑛, 𝑙)

+ (𝑛 − 𝑙) 𝜇
1
v (𝑠, 𝑟 − 1, 𝑛, 𝑙 + 1))

+ 𝛿
𝑟,1
𝛿
𝑛,𝑀

(𝑙𝜇
2
+ (𝑛 − 𝑙) 𝜇

1
) e + 𝛼e

+ (1 − 𝛿
𝑛,𝑀
) (𝑙𝜇
2
v (𝑠, 𝑟, 𝑛 − 1, 𝑙 − 1)

+ (𝑛 − 𝑙) 𝜇
1
v (𝑠, 𝑟, 𝑛 − 1, 𝑙))) ,

𝑙 = 0,𝑀, 𝑛 = 𝑀,𝑁, 𝑟 ≥ 1.

(42)

System (42) can be rewritten in the following matrix form:

(−𝑠𝐼 + 𝑉
𝑟,𝑟
) v (𝑠, 𝑟) + (1 − 𝛿

𝑟,1
) 𝑉
𝑟,𝑟−1

v (𝑠, 𝑟 − 1)
+ 𝛼e + 𝛿

𝑟,1
(𝐼
𝑁−𝑀+1

⊗ (𝜇
2
𝐶
𝑀
+ 𝜇
1
𝐶
𝑀
) ⊗ 𝐼
𝑊
) e = 0,
𝑟 ≥ 1,

(43)

which can be further transformed to form (41). Lemma is
proved.

Theorem5. TheLST V(𝑠) of the distribution of thewaiting time
of an arbitrary type 2 customer in the system is calculated as
follows:

V (𝑠)

= �̃�
−1
(

𝑀−1

∑

𝑛=0

𝜋𝜋𝜋 (0, 𝑛) (𝐼
(𝑛+1)𝑊

⊗ 𝐻
1
) e

+ (1 − 𝑞)

∞

∑

𝑖=0

𝑁

∑

𝑛=𝑀

𝜋𝜋𝜋 (𝑖, 𝑛) (𝐼
(𝑀+1)𝑊

⊗ 𝐻
1
) e

+ 𝑞

∞

∑

𝑖=0

𝑁

∑

𝑛=𝑀

𝑀

∑

𝑙=0

𝜋𝜋𝜋 (𝑖, 𝑛, 𝑙) (𝐼
𝑊
⊗ 𝐻
1
e
𝑍
) v (𝑠, 𝑖 + 1, 𝑛, 𝑙)

+ 𝑝

∞

∑

𝑖=0

𝑀

∑

𝑙=1

𝜋𝜋𝜋 (𝑖,𝑁, 𝑙) (𝐷
1
⊗ e
𝑍
) v (𝑠, 𝑖 + 1,𝑁, 𝑙 − 1)) ,

(44)

where

�̃� = 𝜆
2
+ 𝑝

∞

∑

𝑖=0

𝑀

∑

𝑙=1

𝜋𝜋𝜋 (𝑖,𝑁, 𝑙) (𝐷
1
⊗ 𝐼
𝑍
) e. (45)

Proof. The proof follows from the law of total probability and
a probabilistic sense of the LSTs.

The following situations are possible during the arrival
epoch of the tagged type 2 customer.

(i) The number of busy servers is less than 𝑀 and the
tagged customer immediately receives service. The
probability of this event is �̃�−1∑𝑀−1

𝑛=0
𝜋𝜋𝜋(0, 𝑛)(𝐼

(𝑛+1)𝑊
⊗

𝐻
1
)e. In this case, the probability of no catastrophe

arrival during the waiting time is equal to one.
(ii) The number of busy servers is greater than𝑀 and the

customer decides to balk the system. The probability
of this event is �̃�−1(1 − 𝑞)∑∞

𝑖=0
∑
𝑁

𝑛=𝑀
𝜋𝜋𝜋(𝑖, 𝑛)(𝐼

(𝑀+1)𝑊
⊗

𝐻
1
)e. In this case, the probability of no catastrophe

arrival during the waiting time of the tagged type 2
customer is also equal to one.

(iii) The number of busy servers is greater than𝑀 and the
customer decides to join the buffer.The probability of
this event is �̃�−1𝑞∑∞

𝑖=0
∑
𝑁

𝑛=𝑀
∑
𝑀

𝑙=0
𝜋𝜋𝜋(𝑖, 𝑛, 𝑙)(𝐼

𝑊
⊗𝐻
1
e
𝑍
).

In this case, the probability of no catastrophe arrival
during the waiting time of the tagged type 2 customer
under the fixed values of the components 𝑖, 𝑛, and 𝑙 is
equal to v(𝑠, 𝑖 + 1, 𝑛, 𝑙).

(iv) The tagged customer arrives to the buffer after
the termination of its service by arriving type
1 customer. The probability of this event is
�̃�
−1
𝑝∑
∞

𝑖=0
∑
𝑀

𝑙=1
𝜋𝜋𝜋(𝑖,𝑁, 𝑙)(𝐷

1
⊗ e
𝑍
). In this case,

the probability of no one catastrophe arrival during
the waiting time of the tagged type 2 customer under
the fixed values of the components 𝑖, 𝑛, 𝑙 is equal to
v(𝑠, 𝑖 + 1,𝑁, 𝑙 − 1).

Using the law of total probability, now it is possible to
easily verify the validity of the statement of the theorem.

Corollary 6. The average waiting time 𝑉𝑤𝑎𝑖𝑡 of an arbitrary
type 2

𝑉
𝑤𝑎𝑖𝑡

= −�̃�
−1
(𝑝

∞

∑

𝑖=0

𝑀

∑

𝑙=1

𝜋𝜋𝜋 (𝑖,𝑁, 𝑙) (𝐷
1
⊗ e
𝑍
)

× v (𝑠, 𝑖 + 1,𝑁, 𝑙 − 1)|𝑠=0

+ 𝑞

∞

∑

𝑖=0

𝑁

∑

𝑛=𝑀

𝑀

∑

𝑙=0

𝜋𝜋𝜋 (𝑖, 𝑛, 𝑙) (𝐼
𝑊
⊗ 𝐻
1
e
𝑍
)

×v (𝑠, 𝑖 + 1, 𝑛, 𝑙)|𝑠=0) .

(46)

Here, the column vectors v(𝑠, 𝑟, 𝑛, 𝑙)|
𝑠=0

are defined as
blocks of the vectors v(𝑠, 𝑟)|

𝑠=0
, 𝑟 ≥ 1, which can be calculated

as

v (𝑠, 1)𝑠=0

= −(𝑉
1,1
)
−2

[𝛼𝐼 + 𝐼
𝑁−𝑀+1

⊗ (𝜇
2
𝐶
𝑀
+ 𝜇
1
𝐶
𝑀
) ⊗ 𝐼W] e,

v(𝑠, 𝑟)𝑠=0

= (𝑉
𝑟,𝑟
)
−1

(e − 𝑉
𝑟,𝑟−1

v (𝑠, 𝑟 − 1)) , 𝑟 > 1.

(47)
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Figure 1: Dependence of 𝐿 and𝑁buffer on𝑀 and 𝜆
2
.
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Figure 2: Dependence of 𝑃ent-loss and 𝑃imp-loss on𝑀 and 𝜆
2
.

7. Numerical Examples and
Optimization Problem

The purposes of this section are to demonstrate the feasibility
of the proposed algorithms for computation of the key
performance measures of the system, to give an example of
numerical solution of optimization problem and to bring out
some qualitative aspects of the considered queue.

Let the arrival process of type 1 customers be defined by
the matrices

𝐷
0
= (

−3.64163 0.10758

0.04921 −0.31828
) ,

𝐷
1
= (

3.45660 0.07745

0.06276 0.20631
) .

(48)

The fundamental rate of this arrival process is 𝜆
1
= 1.5, the

coefficient of correlation of successive interarrival times is
𝑐cor = 0.25, the coefficient of variation of interarrival times
is 𝑐var = 5.4.

Basically, the arrival process of type 2 customers is defined
by the matrices

𝐻
0
= (

−0.6759 0

0 −0.02193
) ,

𝐻
1
= (

0.67141 0.00449

0.01222 0.00971
) .

(49)

The fundamental rate of this arrival process is 𝜆
2
= 0.5, the

coefficient of correlation of successive interarrival times is
𝑐cor = 0.2, and the coefficient of variation of interarrival times
is 𝑐var = 12.34.

The rest of the system parameters are given by

𝑁 = 24, 𝛼 = 0.15, 𝑞 = 0.8, 𝑝 = 0.1,

𝜇
1
= 0.22, 𝜇

2
= 0.3.

(50)

To illustrate behavior of the key performance measures
of the system, we will vary the threshold 𝑀 of admission
strategy (recall that a type 2 customer is admitted to service
only if the number of busy servers at its arrival instant is less
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than𝑀) in the range𝑀 ∈ [1; 24] and the intensity 𝜆
2
of the

arrival process of type 2 customers in the range 𝜆
2
∈ [0.5; 6].

Variation of the intensity 𝜆
2
is easily implemented by means

of multiplying the matrices𝐻
0
and𝐻

1
by the corresponding

factor.
Three-dimensional Figure 1 illustrates the dependence of

the average number of customers in the system 𝐿 and the
average number of customers in the buffer𝑁buffer on𝑀 and
𝜆
2
.
It is quite natural that both 𝐿 and 𝑁buffer increase when

the intensity 𝜆
2
grows: the grow of the arrival rate under

the fixed services rates causes presence of more customers
in the system and in the buffer. But the increase of 𝑀
oppositely affects the values 𝐿 and 𝑁buffer. When 𝑀 grows,
the value of 𝐿 increases because the growth of 𝑀 decreases
the probability of type 2 customers balking (increases the
rate of the flow of admitted customers). The value of 𝑁buffer

decreases when𝑀 grows because the growth of𝑀 increases
the percentage of type 2 customers that succeed to get access
to service immediately upon arrival, without visiting the
buffer. However, when𝑀 becomes too close to𝑁, many type
2 customers are compelled to terminate service due to type 1
customer arrival and the value of𝑁buffer stops decreasing.

Figure 2 illustrates the dependence of the probability
𝑃
ent-loss of the type 2 customer loss at the entrance to the

system and the probability 𝑃imp-loss that an arbitrary type 2
customer leaves the buffer due to impatience on𝑀 and 𝜆

2
.

It can be seen that the value of 𝑃ent-loss sharply grows
when𝑀 decreases and 𝜆

2
increases. It is obvious because the

decrease of𝑀 and the growth of 𝜆
2
imply congestion in the

system for type 2 customers. When𝑀 is small or 𝜆
2
is large,

type 2 customers practically have the chance to start service
immediately upon arrival. In this situation, they balk with
probability 1 − 𝑞 = 0.2 what explains the presence of almost
plate part on the surface in Figure 2 at level 0.2. Behavior
of 𝑃imp-loss correlates with behavior of 𝑁buffer in Figure 1
what is easily understandable because the rate of customers
departure from the system due to impatience positively
correlates with the number of customers in the buffer.

Figure 3 illustrates the dependence of the probability
𝑃
knock-out-loss that an arbitrary type 2 customer will be forced

to terminate service and will leave the system and the
probability 𝑃loss

2
that an arbitrary type 2 customer is lost on

𝑀 and 𝜆
2
.

The plot illustrating behavior of the probability
𝑃
knock-out-loss well illustrates the reasonability of reservation

of some part of servers exclusively for service of priority cus-
tomers. When the parameter𝑀 approaches the value𝑁, that
is, the number of reserved servers decreases, the probability
𝑃
knock-out-loss drastically increases, especially when the arrival

rate 𝜆
2
is not very small. The plot illustrating behavior of the

probability 𝑃loss
2

is quite clear taking in mind that this prob-
ability is the sum of the probabilities 𝑃ent-loss, 𝑃knock-out-loss,
and 𝑃

imp-loss illustrated in the previous figures.
Figure 4 illustrates the dependence of the intensity of

output flow of type 2 customers 𝜆out
2

and the average waiting

time 𝑉wait of an arbitrary type 2 customer on 𝑀 and
𝜆
2
.
Behavior of 𝜆out

2
is quite clear taking into account the

illustrated above behavior of 𝑃loss
2

and formula 𝑃loss
2

= 1 −

(𝜆
out
2
/𝜆
2
). Behavior of 𝑉wait is similar to behavior of 𝑁buffer

in Figure 1. However,𝑉wait does not grow so quickly for small
𝑀 and large 𝜆

2
as the value𝑁buffer grows.This is explained by

the fact that it is accounted for in calculation of the average
waiting time 𝑉wait of an arbitrary type 2 customer that, by
definition, some such customers do not visit the buffer at all
(they are lost at the entrance to the system or are lucky to
receive service without visiting the buffer) and, so, have zero
waiting time.

Let us consider optimization problem. First of all, we
have to formulate a cost criterion in terms of which the
quality of system operation will be evaluated. Because type
1 customers have preemptive priority, the quality of their
service is completely defined by the value of 𝑃loss

1
which

does not depend on the arrival and service processes of
type 2 customers. 𝑃loss

1
is constant for any values of the

control parameter𝑀. So, cost criterion should include only
characteristics of service of type 2 customers. Because the
goal of the operation of almost any queueing system is to
provide maximal profit to the system owner and this profit
is proportional to the number of customers, who got service
in the system, it is reasonable to include the output rate 𝜆out

2

as the main component of the cost criterion. But if the cost
criterion will include only the output rate 𝜆out

2
, solution of

optimization problem seems be trivial 𝑀 = 𝑁; that is, no
server reservation should be assumed. Any arriving customer
should be admitted to the system if ergodicity condition for
the system is fulfilled. But, as we see from the presented
numerical results, the absence of servers reservation implies
high values of the probabilities of losses of type 2 customers,
in particular, the probability of force termination of service
provided to type 2 customers. Such a termination can be
quite offensive and frustrating for type 2 customers. Also the
absence of servers reservation causes long average waiting
time, especially waiting time of customers who really wait for
beginning of service.

As the result of these considerations, we conclude that the
reasonable form of the cost criterion (profit obtained during
a unit of time) is the following one:

𝐸 (𝑀, 𝜆
2
) = 𝑎𝜆

out
2

− 𝜆
2
(𝑐
1
𝑃
ent-loss

+ 𝑐
2
𝑃
imp-loss

+ 𝑐
3
𝑃
knock-out-loss

)

− 𝑐
4
𝑉

wait
,

(51)

where the performance indices 𝜆
out
2
, 𝑃

ent-loss
, 𝑃

imp-loss,
𝑃
knock-out-loss, and 𝑉

wait were introduced above, 𝑎 is the
average profit earned by service of one type 2 customer, and
𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, are the corresponding charged for customer loss

and waiting. Our aim is to find the optimal value𝑀∗ of the
parameter 𝑀 that provides the maximal value of the cost
criterion 𝐸(𝑀, 𝜆

2
). It should be noted that maximization of

𝐸(𝑀, 𝜆
2
) has to be done with respect to𝑀 for a fixed value
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Figure 3: Dependence of 𝑃knock-out-loss and 𝑃loss
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Figure 4: Dependence 𝜆out
2

and 𝑉wait on𝑀 and 𝜆
2
.

of 𝜆
2
. We included 𝜆

2
to notation 𝐸(𝑀, 𝜆

2
) just to stress that

the optimal value𝑀∗ may be different for various values of
𝜆
2
.
Let us fix the same values of parameters of the system as

above and the values of cost coefficients are fixed as follows:
𝑎 = 10, 𝑐

1
= 5, 𝑐

2
= 3, 𝑐

3
= 20, 𝑐

4
= 3.

(52)

Figure 5 illustrates the dependence of the cost criterion
𝐸(𝑀, 𝜆

2
) on𝑀 and 𝜆

2
.

Presented table gives a bit more information about the
behavior of the cost criterion 𝐸(𝑀, 𝜆

2
) on𝑀. For various 𝜆

2
,

the table gives the optimal value𝑀∗ of the parameter𝑀, opti-
mal value 𝐸(𝑀∗, 𝜆

2
) of the cost criterion, value 𝐸(𝑁, 𝜆

2
) of

the cost criterion for the system without servers reservation,
the difference 𝐸(𝑀∗, 𝜆

2
) − 𝐸(𝑁, 𝜆

2
) (the profit provided by

means of the optimal reservation), and the ratio ((𝐸(𝑀∗, 𝜆
2
)−

𝐸(𝑁, 𝜆
2
))/𝐸(𝑁, 𝜆

2
)) ×100% of the relative profit provided by

means of the optimal reservation comparing to a strategy of
customers access without servers reservation.

It is seen from Figure 5 and Table 1 that the profit and the
relative profit provided by means of the optimal reservation
comparing to a strategy of customers access without servers
reservation can be significant.
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Figure 5

8. Conclusion

We considered a multiserver queuing system with an infinite
buffer and two types of customers one of which has preemp-
tive priority over another. To reduce the frequency of forced
termination of service of type 2 customers, we offered the
threshold strategy of access of type 2 customers. Access of
such customers is denied if the number of busy servers at
the customer arrival moment is not less than the preassigned
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Table 1: Information about the optimal values of the threshold, cost criterion, and profit in comparison to the system without admission
control for various intensities 𝜆

2
.

𝜆
2

𝑀
∗

𝐸(𝑀
∗
, 𝜆
2
) 𝐸(𝑁, 𝜆

2
) 𝐸(𝑀

∗
, 𝜆
2
) − 𝐸(𝑁, 𝜆

2
)

𝐸(𝑀
∗
, 𝜆
2
) − 𝐸(𝑁, 𝜆

2
)

𝐸(𝑁, 𝜆
2
)

× 100%

0.5 23 4.76106 4.74152 0.01954 0.4121%
1 22 9.24359 9.1041 0.13949 1.5321%
1.5 22 13.3147 12.9048 0.4099 3.1763%
2 22 16.8746 16.0199 0.8547 5.3352%
2.5 22 19.8463 18.3934 1.4529 7.899%
3 22 22.1576 20.013 2.1446 10.716%
3.5 22 23.752 20.8855 2.8665 13.7248%
4 22 24.6281 21.0436 3.5845 17.0336%
4.5 22 24.8576 20.5675 4.2901 20.8586%
5 22 24.562 19.5818 4.9802 25.4327%
5.5 22 23.8748 18.2299 5.6449 30.9650%
6 22 22.9148 16.6467 6.2681 37.6537%

threshold value. For the fixed value of the threshold, we
described behavior of the system by the multidimensional
Markov chain. For this chain, the ergodicity condition is
derived; the stationary distribution of the system states and
the main performance measures are calculated. The Laplace-
Stieltjes transform of the waiting time distribution of an
arbitrary type 2 customer is derived. Numerical examples
confirming the advantage of the proposed access strategy
under properly chosen value of the threshold are presented.

Presented analysis may be extended to the cases of the
MMAP (marked Markovian arrival process) of customers
arrival (what allows to take into account possible correlation
within arrivals of priority and nonpriority customers) and
the BMAP (batch Markovian arrival process) of nonpriority
customers, possibility to have an additional finite buffer for
priority customers, and so forth.

In this paper we assume that the service time distribution
for both types of customers is exponential. This is rather
restrictive assumption. It is worth to note that in many
practical situations available information about the service
time is only the mean service time. In this case, there is no
chance to estimate parameters of the service time distribution
and assumption about exponential service time distribution
is quite natural because it greatly simplifies the mathematical
analysis. If the detailed statistics about the service time is
available, more general distribution of service time can be
suggested. The presented analysis could be more or less
easily extended to the case of much more general phase type
distribution (see [40]), which can be used to approximate
many other distributions. However, in this case we meet the
following difficulty. If service time distribution is exponential,
it does not matter (from the point of view of the distribution
of the number of customers in the system) in which busy
server the service of nonpriority customer is interrupted. In
case of phase type distribution, in situation when the service
in some server should be terminated it is necessary to fix the
rule of a choice of the concrete busy server in which service
will be terminated; for example, the phase of the service at
this server should belong to some fixed group of phases. The

question of justification of a fixed rule is quite complicated. If
this question will be answered, the problem of analysis of the
corresponding queueingmodel can be solved by analogywith
presented above analysis, but the dimension of the blocks
of generator of the Markov chain, which describes behavior
of the system, catastrophically increases with increase of the
number of phases and (or) servers due to necessity of taking
into account the current phase of service in each busy server
or the number of servers providing currently the service at
each phase. Solution of this problem may be simplified by
means of a proper use of methodology by D. Lucantoni and
V. Ramaswami by analogy with, for example, [44] or more
involved methodology from [45].

In this paper we assumed that the service time distri-
bution for both types of customers is exponential. This is
rather restrictive assumption. But it is worth to note that
in many practical situations available information about the
service time is only the mean service time. In this case, there
is no chance to estimate the parameters of the service time
distribution and the assumption about an exponential service
time distribution is quite natural because it greatly simplifies
the mathematical analysis. If the detailed statistics about the
service time is available, more general distributions of service
time can be suggested. The presented analysis could be more
or less easily extended to the case ofmuchmore general phase
type distribution (see [40]) which can be used to approximate
many other distributions. However, in this case we meet
the following difficulty. If the service time distribution is
exponential, it does not matter in which busy server service
of nonpriority customer is interrupted. In the case of phase
type distribution, in the situationwhen service in some server
should be terminated it is necessary to fix the rule of a
choice of the concrete busy server in which service will be
terminated; for example, the phase of service at this server
should belong to some fixed group of phases. The question
of justification of the fixed rule is quite complicated. If this
question will be answered, the problem of analysis of the
corresponding queueingmodel can be solved by analogywith
presented above analysis, but the dimension of the blocks of



14 Mathematical Problems in Engineering

generator of the Markov chain, which describes the behavior
of the system, catastrophically increases with increase of
the number of phases and (or) servers due to necessity of
taking into account the current phase of service in each busy
server or the number of servers providing currently service
at each phase. Solution of this problem may be simplified by
means of a proper use of methodology by D. Lucantoni and
V. Ramaswami by analogy with, for example, [44] or more
involved methodology from [45].
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