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This paper is concernedwith the estimation problem of a dynamic stochastic variable in a sensor network, where the quantization of
scalar measurement, the optimization of the bandwidth scheduling, and the characteristic of transmission channels are considered.
For the imperfect channels with missing measurements in sensor networks, two weighted measurement fusion (WMF) quantized
Kalman filters based on the quantized measurements arriving at the fusion center are presented. One is dependent on the known
message of whether a measurement is received. The other is dependent on the probability of missing measurements. They have
the reduced computational cost and same accuracy as the corresponding centralized fusion filter. The approximate solution for the
optimal bandwidth-scheduling problem is given under a limited bandwidth constraint. Furthermore, the vector measurement case
is also discussed. The simulation research shows the effectiveness.

1. Introduction

In recent years, sensor networks have been widely investi-
gated in decentralized estimation, detection, and control due
to the significant applications in environmental monitoring,
intelligent transportation, space exploration, and so forth
[1]. In wireless sensor networks (WSN), a large number of
sensors are spatially distributed to monitor the signal of
interest. Each sensor makes a measurement of the signal and
transmits it to the fusion center (data processing center).
Due to a bandwidth constraint, each sensor is only able to
transmit a finite number of bits. So the measurement must be
quantized to adapt the limited bandwidth before it is trans-
mitted. Due to the imperfection of networks, the quantized
measurement can be lost during the transmission. Then the
fusion centre will use the quantized measurements received
to obtain a fusion estimate of the signal. WSN introduce
many interesting research topics such as information fusion
[2], network lifetime maximization [3], sensor coverage or
scheduling [4], and optimization with bandwidth or energy-
efficient constraints [5].

Various algorithms have been proposed for network
estimation, detection, and control [5–18]. Decentralized

detection is investigated in a sensor network where the
communication channels between sensors and the fusion
centre are bandwidth constrained [5]. Several distributed
estimators for parameters have been designed in the presence
of additive sensor noise [6–10]. A universal decentralized
estimator taking into account local SNRand channel path loss
in sensor networks is studied [11] where the power scheduling
optimization is solved based on the Karush-Kuhn-Tucker
(KKT) condition. Quantization approach in many references
above is to quantize the sensor’s measurements directly. A
distributed estimation approach based on the sign of innova-
tions (SOI) is developed in [12] where only the transmission
of a single bit per measurement is required. However, the
cost of saving more communication is more accuracy loss.
As a generalization of [12], a multilevel quantized innovation
filter is presented [13, 14]. The estimation and control based
on the logarithm quantization approach are studied in [15,
16]. Quantized Kalman filters based on quantized scalar
measurements and innovations are presented for perfect
channels in sensor networks [17], respectively. However, the
quantized estimation for imperfect channels with missing
measurements is not taken into consideration. A centralized
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fusion quantized filter dependent on the packet dropout rate
is designed for sensor networks with packet dropouts [18].
However, it has the expensive computational burden due to
the augmented measurements.

In this paper, the quantized estimation problem for a
dynamic stochastic variable is studied in a sensor network.
Due to the limited bandwidth constraint, themeasurement of
sensors is quantized uniformly according to a given optimal
bandwidth scheduling. During the transmission of quantized
measurements, there are possible losses due to imperfect
channels. Due to the large number of data, the fusion
center compresses the received measurements to produce a
reduced dimensional fused measurement, based on which,
two weighted measurement fusion quantized filters are pre-
sented. One is dependent on the knowledge of whether a
packet is received.The other is dependent on the probabilities
of missing measurements. The front has the better accuracy
since more messages are used. They have the same accuracy
as the corresponding centralized fusion filters.

2. Problem Formulation

Consider the discrete-time system in a sensor network with
𝑁 sensors

𝑥 (𝑡 + 1) = Φ (𝑡) 𝑥 (𝑡) + Γ (𝑡) 𝑤 (𝑡) (1)

𝑦
𝑖 (𝑡) = ℎ𝑖 (𝑡) 𝑥 (𝑡) + V

𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁, (2)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state to be estimated, 𝑦

𝑖
(𝑡) ∈ 𝑅 is

the scalar measurement of the 𝑖th sensor, 𝑁 is the number of
sensors, and Φ(𝑡), Γ(𝑡), ℎ

𝑖
(𝑡) are time-varying matrices with

appropriate dimensions.

Assumption 1. 𝑤(𝑡) ∈ 𝑅
𝑟 and V

𝑖
(𝑡) ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑁

are uncorrelated white noises with zero mean and variances
𝑄
𝑤
(𝑡) and 𝜎2V𝑖(𝑡). The initial value 𝑥(0) with mean 𝜇

0
and

variance 𝑃
0
is uncorrelated with 𝑤(𝑡) and V

𝑖
(𝑡).

Assumption 2. 𝑦
𝑖
(𝑡) ∈ [𝑈

𝑖
, 𝑈
𝑖
], where 𝑈

𝑖
and 𝑈

𝑖
, 𝑖 =

1, 2, . . . , 𝑁, are known constants.

The estimation problem considered is shown in Figure 1.
Each sensor makes a measurement 𝑦

𝑖
(𝑡). Due to the lim-

ited bandwidth, it is quantized to produce a quantized
measurement 𝑚

𝑖
(𝑡) = 𝑞(𝑦

𝑖
(𝑡)) where 𝑞(⋅) is a quantized

function.Then,𝑚
𝑖
(𝑡) is transmitted to the fusion center by an

imperfect channel where there are possible packet losses. We
introduce a Bernoulli distributed random variable 𝛾

𝑖
(𝑡) with

the probabilities Prob{𝛾
𝑖
(𝑡) = 1} = 𝛼

𝑖
and Prob{𝛾

𝑖
(𝑡) = 0} =

1 − 𝛼
𝑖
to describe the phenomena of missing measurements.

Namely, the data received by the fusion center is 𝑚󸀠
𝑖
(𝑡) =

𝛾
𝑖
(𝑡)𝑚
𝑖
(𝑡), where 𝛾

𝑖
(𝑡) = 1means the quantizedmeasurement

is received and 𝛾
𝑖
(𝑡) = 0means loss. At last, the fusion center

will combine the received data 𝑚󸀠
𝑖
(𝑡) to give a final estimate

for state 𝑥(𝑡). We assume that the fusion center knows all the
parameters of system (1). If there is a sufficient bandwidth to
be supplied and the channel is perfect, that is, in the case of
𝑚
󸀠

𝑖
(𝑡) = 𝑦

𝑖
(𝑡), the standard Kalman filter can be used [19].

If the bandwidth is limited and the channel is perfect, that

is, in the case of 𝑚󸀠
𝑖
(𝑡) = 𝑚

𝑖
(𝑡), the fusion center will make

the estimate based on the received measurements {𝑚
𝑖
(𝑡), 𝑖 =

1, 2, . . . , 𝑁}. Otherwise, the fusion center has to make the
estimate based on the received measurements {𝑚󸀠

𝑖
(𝑡), 𝑖 =

1, 2, . . . , 𝑁}.
Our aim in this paper is to find the weighted measure-

ment fusion quantizedKalman filters (WMF-QKF) under the
limited bandwidth by imperfect channels. Two kinds of filters
are designed. One is dependent on the values of 𝛾

𝑖
(𝑡), the

other is dependent on the probability of 𝛾
𝑖
(𝑡).

3. WMF-QKF

3.1. Quantization and Bandwidth Scheduling. We adopt the
uniform quantization strategy in [11]. Measurement 𝑦

𝑖
(𝑡)

is quantized to 𝑚
𝑖
(𝑡) with the length of 𝑏

𝑖
(𝑡) bits, where

𝑏
𝑖
(𝑡) is to be determined later. We have 2𝑏𝑖(𝑡) quantization

points spaced uniformly within the interval [𝑈
𝑖
, 𝑈
𝑖
]. The

quantization noise 𝑛
𝑖
(𝑡) = 𝑚

𝑖
(𝑡) − 𝑦

𝑖
(𝑡) is uncorrelated white

noise with zero mean and variance 𝜎2
𝑛𝑖
(𝑡) = E(𝑛

𝑖
(𝑡))
2
=

E(𝑚
𝑖
(𝑡) − 𝑦

𝑖
(𝑡))
2
≤ 𝛿
2

𝑖
(𝑡) where 𝛿2

𝑖
(𝑡) = (𝑈

𝑖
− 𝑈
𝑖
)
2
/[4(2
𝑏𝑖(𝑡) −

1)
2
]. Furthermore, 𝑛

𝑖
(𝑡), V
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑁, and 𝑤(𝑡) are

uncorrelated with each other.
In sensor networks, the whole bandwidth of communi-

cation channels is bounded. Let 𝐵 be the bits of the whole
bandwidth and let 𝑏

𝑖
(𝑡) be the bits scheduled to the 𝑖th

sensor. To obtain the good estimation performance under the
constraint of bounded bandwidths, we adopt the following
bandwidth scheduling strategy [17]:

min
𝑁

∑

𝑖=1

ℎ
𝑖 (𝑡) ℎ
𝑇

𝑖
(𝑡)

𝜎2V𝑖
(𝑡)

𝛿
2

𝑖
(𝑡)

s.t.
𝑁

∑

𝑖=1

𝑏
𝑖 (𝑡) ≤ 𝐵, 𝑏

𝑖 (𝑡) ≥ 0, 𝑖 = 1, 2, . . . , 𝑁,

(3)

where ℎ
𝑖
(𝑡)ℎ
𝑇

𝑖
(𝑡)/𝜎
2

V𝑖
(𝑡) is the SNR (signal to noise ratio).Then

the optimal solution of 𝑏
𝑖
(𝑡) is given as

𝑏
𝑖 (𝑡) =

[
[

[

log
2
(

√ln 2ℎ
𝑖 (𝑡) ℎ
𝑇

𝑖
(𝑡) (𝑈𝑖 − 𝑈𝑖)

𝜎V𝑖 (𝑡)
√2𝜆 (𝑡)

)
]
]

]

,

𝜆 (𝑡) =

ln 2/2∏𝑁
𝑖=1
(ℎ
𝑖 (𝑡) ℎ
𝑇

𝑖
(𝑡) (𝑈𝑖 − 𝑈𝑖)

2

/𝜎
2

V𝑖
(𝑡))

1/𝑁

22𝐵/𝑁
,

(4)

where the symbol [⋅] denotes the least integer greater than ⋅.

3.2. Design of Two Kinds of WMF-QKF

3.2.1. Filter Design Dependent on Values of 𝛾
𝑖
(𝑡). When the

values of 𝛾
𝑖
(𝑡) are known, that is, we knowwhether a packet is

received or lost, which can be carried out by the information
of time stamps, letting 𝐿(𝑡) be the number of measurements
received by the fusion center at 𝑡 time, then we have the
augmented measurement equation in the fusion center:

𝑚
󸀠
(𝑡) = ℎ (𝑡) 𝑥 (𝑡) + 𝜂 (𝑡) , (5)
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Figure 1: Distributed state estimation scheme based on quantized observations.

where the augmented quantized measurement received
by the fusion center is 𝑚󸀠(𝑡) = [𝑚

󸀠

𝑘1(𝑡)
(𝑡), 𝑚
󸀠

𝑘2(𝑡)
(𝑡), . . . ,

𝑚
󸀠

𝑘𝐿(𝑡)(𝑡)
(𝑡)]
𝑇, 1 ≤ 𝑘

1
(𝑡) < ⋅ ⋅ ⋅ < 𝑘

𝐿(𝑡)
(𝑡) ≤ 𝑁 and the

integer 𝑘
𝑖
(𝑡) denotes the 𝑘

𝑖
(𝑡)th sensor that arrives at the

fusion center. The augmented measurement matrix is ℎ(𝑡) =
[ℎ
𝑇

𝑘1(𝑡)
(𝑡), ℎ
𝑇

𝑘2(𝑡)
(𝑡), . . . , ℎ

𝑇

𝑘𝐿(𝑡)(𝑡)
(𝑡)]
𝑇 and the noise is 𝜂(𝑡) =

[𝜂
𝑘1(𝑡)

(𝑡), 𝜂
𝑘2(𝑡)

(𝑡), . . . , 𝜂
𝑘𝐿(𝑡)(𝑡)

(𝑡)]
𝑇 with zero mean and vari-

ance matrix 𝑄
𝜂
(𝑡) = diag(𝜎2

𝜂𝑘1(𝑡)
(𝑡), 𝜎
2

𝜂𝑘2(𝑡)
(𝑡), . . . , 𝜎

2

𝜂𝑘
𝐿(𝑡)
(𝑡)

(𝑡))

where 𝜂
𝑘𝑖(𝑡)
(𝑡) = V

𝑘𝑖(𝑡)
(𝑡) + 𝑛

𝑘𝑖(𝑡)
(𝑡) are uncorrelated with one

another, with zero mean and variance 𝜎2
𝜂𝑘𝑖(𝑡)

(𝑡) = 𝜎
2

V𝑘𝑖(𝑡)
(𝑡) +

𝜎
2

𝑛𝑘𝑖(𝑡)
(𝑡) ≤ 𝜎

2

V𝑘𝑖(𝑡)
(𝑡) + 𝛿

2

𝑘𝑖(𝑡)
(𝑡). We approximately consider

the measurement noise 𝜂(𝑡) to be the white noise. Then, the
Kalman filtering can be used for the augmented systems (1)
and (5) where the upper bound of variance of the quantized
noise is used. However, the expensive computational cost is
required due to the high-dimensional augmented measure-
ment when the data of a large number of sensors arrive at
the fusion center. To reduce the computational cost, we will
present the WMF filter in the following text.

When 𝐿(𝑡) ≥ 1, that is, there are measurement data
arriving at the fusion center at time 𝑡, then we can obtain the
filter according to the following three cases.

(a) If ℎ(𝑡) is full row rank, we can apply the standard
Kalman filtering algorithm to obtain the fusion filter.

(b) If ℎ(𝑡) is full column rank, we have that
ℎ
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)ℎ(𝑡) is nonsingular.Then theWMFmeasurement

equation is given as follows:

𝑚(𝑡) = 𝑥 (𝑡) + 𝜂 (𝑡) , (6)

where 𝑚(𝑡) = [ℎ
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)ℎ(𝑡)]

−1

ℎ
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)𝑚
󸀠
(𝑡), 𝜂(𝑡) =

[ℎ
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)ℎ(𝑡)]

−1

ℎ
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)𝜂(𝑡), 𝑄−1

𝜂
(𝑡) = [ℎ

𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)

ℎ(𝑡)]
−1.
Then based on systems (1) and (6), we can apply the

standard Kalman filtering algorithm to obtain the fusion
filter.

(c) If ℎ(𝑡) is not full rank, that is, ℎ𝑇(𝑡)𝑄−1
𝜂
(𝑡)ℎ(𝑡) is

singular, letting rank{ℎ(𝑡)} = 𝑝(𝑡), 𝑝(𝑡) ≤ min{𝑛, 𝐿(𝑡)}, then
there is full-rank decomposition [20]; that is,

ℎ (𝑡) = 𝑓 (𝑡) ℎ (𝑡) , (7)

where 𝑓(𝑡) ∈ 𝑅𝐿(𝑡)×𝑝(𝑡) is full column rank and ℎ(𝑡) ∈ 𝑅𝑝(𝑡)×𝑛

is full row rank. 𝑓𝑇(𝑡)𝑄−1
𝜂
(𝑡)𝑓(𝑡) is a nonsingular matrix. So,

we have the WMF measurement equation as

𝑚(𝑡) = ℎ (𝑡) 𝑥 (𝑡) + 𝜂 (𝑡) , (8)

where 𝑚(𝑡) = [𝑓
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)𝑓(𝑡)]

−1

𝑓
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)𝑚
󸀠
(𝑡), 𝜂(𝑡) =

[𝑓
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)𝑓(𝑡)]

−1

𝑓
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)𝜂(𝑡), 𝑄

𝜂
(𝑡) = [𝑓

𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)

𝑓(𝑡)]
−1.

Then based on systems (1) and (8), we can apply the
standard Kalman filtering algorithm to obtain the fusion
filter.

When 𝐿(𝑡) = 0, that is, there are no measurement data
arriving at the fusion center at time 𝑡, then, the Kalman
predictor is used based on the last estimator.

Remark 3. From (6) and (8), we can know that the dimension
of the compressed measurement 𝑚(𝑡) or 𝑚(𝑡) is not greater
thanmin{𝑛, 𝐿(𝑡)}.When the number of sensors arriving at the
fusion center is large, that is, 𝐿(𝑡) ≫ 𝑛, the proposed WMF-
QKF with the computational order of magnitude 𝑂(𝑝3(𝑡))
can obviously reduce the computational cost compared to
the centralized fusion filter with the computational order of
magnitude 𝑂(𝐿3(𝑡)). However, they have the same accuracy;
that is, WMF-QKF has the global optimality [20].

3.2.2. Filter Design Dependent on Probabilities of 𝛾
𝑖
(𝑡). In

this section, we will design the filter dependent on the
probabilities of 𝛾

𝑖
(𝑡). At each time, the measurement of each

sensor arriving at the fusion center can be expressed as
follows:

𝑚
󸀠

𝑖
(𝑡) = 𝛾𝑖 (𝑡)𝑚𝑖 (𝑡)

= 𝛾
𝑖 (𝑡) ℎ𝑖 (𝑡) 𝑥 (𝑡) + 𝛾𝑖 (𝑡) V𝑖 (𝑡)

+ 𝛾
𝑖 (𝑡) 𝑛𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁

(9)

which can be rewritten as

𝑚
󸀠

𝑖
(𝑡) = 𝛼𝑖ℎ𝑖 (𝑡) 𝑥 (𝑡) + 𝜁𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁, (10)

where 𝜁
𝑖
(𝑡) = (𝛾

𝑖
(𝑡) − 𝛼

𝑖
)ℎ
𝑖
(𝑡)𝑥(𝑡) + 𝛾

𝑖
(𝑡)V
𝑖
(𝑡) + 𝛾

𝑖
(𝑡)𝑛
𝑖
(𝑡), 𝑖 =

1, 2, . . . , 𝑁 are uncorrelated white noises with zero mean and



4 Mathematical Problems in Engineering

variances 𝜎2
𝜁𝑖
(𝑡) = 𝛼

𝑖
(1 − 𝛼

𝑖
)ℎ
𝑖
(𝑡)𝑞(𝑡)ℎ

𝑇

𝑖
(𝑡) + 𝛼

𝑖
𝜎
2

V𝑖
(𝑡) + 𝛼

𝑖
𝜎
2

𝑛𝑖
(𝑡);

𝑞(𝑡) = E[𝑥(𝑡)𝑥𝑇(𝑡)] is the state second-order moment which
can be computed by 𝑞(𝑡+1) = Φ(𝑡)𝑞(𝑡)Φ𝑇(𝑡)+Γ(𝑡)𝑄

𝑤
(𝑡)Γ
𝑇
(𝑡)

from (1).
Then the augmented measurements can be expressed as

𝑀
󸀠
(𝑡) = ℎ̃ (𝑡) 𝑥 (𝑡) + 𝜁 (𝑡) , (11)

where 𝑀
󸀠
(𝑡) = [𝑚

󸀠

1
(𝑡) 𝑚

󸀠

2
(𝑡) ⋅ ⋅ ⋅ 𝑚

󸀠

𝑁
(𝑡)]
𝑇,

ℎ̃(𝑡) = [𝛼1ℎ1(𝑡) 𝛼2ℎ2(𝑡) ⋅ ⋅ ⋅ 𝛼𝑁ℎ𝑁(𝑡)]
𝑇, 𝜁(𝑡) =

[𝜁1(𝑡) 𝜁2(𝑡) ⋅ ⋅ ⋅ 𝜁𝑁(𝑡)]
𝑇; 𝜁(𝑡) and 𝑤(𝑡) are

uncorrelated. The variance matrix of 𝜁(𝑡) is 𝑄
𝜁
(𝑡) =

diag (𝜎2
𝜁1
(𝑡) 𝜎
2

𝜁2
(𝑡) ⋅ ⋅ ⋅ 𝜎

2

𝜁𝑁
(𝑡)) where the symbol diag(⋅)

denotes the diagonal matrix.
According to the different cases that the matrix ℎ̃(𝑡) is full

row-rank, full column-rank, or not full-rank, we can obtain
the WMF-QKF dependent on probabilities of 𝛾

𝑖
(𝑡) similar to

design of the above subsection.

Remark 4. Two kinds of WMF-QKFs have been proposed.
The filter dependent on the values of 𝛾

𝑖
(𝑡) (WMF-QKFV) has

better accuracy than that dependent on the probabilities of
𝛾
𝑖
(𝑡) (WMF-QKFP) since more information is used. How-

ever,WMF-QKFV requires the online computation since it is
dependent on the stochastic variable 𝛾

𝑖
(𝑡) at each time.WMF-

QKFP can be computed offline since it is only dependent
on the probabilities. Moreover, WMF-QKFP has the reduced
online computational cost than WMF-QKFV.

3.3.MultipleDimensionMeasurementCase. WMF-QKFwith
optimization problems has been solved for systems with
scalar measurement in Sections 3.1 and 3.2. In this section, we
consider theWMF-QKF for systemswithmultiple dimension
measurements. We consider the system

𝑥 (𝑡 + 1) = Φ (𝑡) 𝑥 (𝑡) + Γ (𝑡) 𝑤 (𝑡)

𝑦
𝑖 (𝑡) = 𝐻𝑖 (𝑡) 𝑥 (𝑡) + V

𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

(12)

where 𝑦
𝑖
(𝑡) ∈ 𝑅

𝑞𝑖 is the measurement vector of the 𝑖th sensor;
other variables have the same definitions as Section 2. 𝐻

𝑖
(𝑡)

is full row rank. We make the following assumptions.

Assumption 5. 𝑤(𝑡) ∈ 𝑅
𝑟 and V

𝑖
(𝑡) ∈ 𝑅

𝑞𝑖 , 𝑖 = 1, 2, . . . , 𝑁,
are uncorrelated white noises with zero mean and variance
matrices 𝑄

𝑤
(𝑡) and 𝑄V𝑖(𝑡), and their each component is

uncorrelated with each other; that is, 𝑄
𝑤
(𝑡) and 𝑄V𝑖(𝑡) are

diagonal matrices.

Assumption 6. 𝑦(𝑘)
𝑖
(𝑡) ∈ [𝑈

(𝑘)

𝑖
, 𝑈
(𝑘)

𝑖
], 𝑘 = 1, 2, . . . , 𝑞

𝑖
; 𝑖 =

1, 2, . . . , 𝑁, where 𝑦(𝑘)
𝑖
(𝑡) is the kth component of observation

vector 𝑦
𝑖
(𝑡) and 𝑈(𝑘)

𝑖
and 𝑈(𝑘)

𝑖
are known constants.

The system structure is similar to Figure 1. For each
component 𝑦(𝑘)

𝑖
(𝑡) of measurement 𝑦

𝑖
(𝑡) from the 𝑖th sensor,

we quantize each component 𝑦(𝑘)
𝑖
(𝑡) to 𝑚

(𝑘)

𝑖
(𝑡) with the

length of 𝑏(𝑘)
𝑖
(𝑡) bits according to the quantized approach in

Section 3.1. Let the quantized noise be 𝑛(𝑘)
𝑖
(𝑡) = 𝑚

(𝑘)

𝑖
(𝑡) −

𝑦
(𝑘)

𝑖
(𝑡); then the variance of the quantized noise 𝑛(𝑘)

𝑖
(𝑡) is

𝜎
2

𝑛
(𝑘)

𝑖

(𝑡) ≤ 𝛿
2

𝑛
(𝑘)

𝑖

(𝑡), 𝛿2
𝑛
(𝑘)

𝑖

(𝑡) = (𝑈
(𝑘)

𝑖
− 𝑈
(𝑘)

𝑖
)
2
/[4(2
𝑏
(𝑘)

𝑖
(𝑡)
− 1)
2
].

Furthermore, 𝑛(𝑘)
𝑖
(𝑡), V(𝑙)
𝑗
(𝑡), 𝑖, 𝑗 = 1, 2, . . . , 𝑁; 𝑘 = 1, 2, . . . , 𝑞

𝑖
;

𝑙 = 1, 2, . . . , 𝑞
𝑗
, and 𝑤(𝑡) are uncorrelated with each other.

Then, similar to scalar measurement case, we can deal with
the WMF-QKF. The detailed algorithm is omitted here.

Remark 7. For the case of multiple dimension measurements
of each sensor, 𝐻

𝑖
(𝑡) is assumed to be full row rank. If

not, the full-rank decomposition can be implemented. Then
the measurement of each sensor can be compressed to a
reduced dimension measurement without information loss.
Or other compressed algorithms [21, 22] can be used for
the multiple dimension measurements of each sensor. Then
its each component is quantized and transmitted. Thus, the
bandwidth can be saved.

4. Simulation Research

Consider a discrete-time system measured by five sensors:

𝑥 (𝑡 + 1) = [

[

0.9226 −0.633 0

1 0 0

0 1 0

]

]

𝑥 (𝑡) + [

[

0.5

0

0.2

]

]

𝑤 (𝑡)

𝑦
𝑖 (𝑡) = ℎ𝑖𝑥 (𝑡) + V

𝑖 (𝑡) , 𝑖 = 1, 2, 3,

(13)

where 𝑦
𝑖
(𝑡) is the measurement signal and V

𝑖
(𝑡) is the

measurement noise with mean zero and variance 𝜎2V𝑖 and is
independent with Gaussian noise 𝑤(𝑡) with mean zero and
variance 𝜎2

𝑤
. Our goal is to find the WMF-QKF dependent

on values (WMF-QKFV) of 𝛾
𝑖
(𝑡) and WMF-QKF dependent

on probabilities (WMF-QKFP) of 𝛾
𝑖
(𝑡). In the simulation, we

set noise variances 𝜎2
𝑤
= 1, 𝜎2V1 = 1, 𝜎2V2 = 2, 𝜎2V3 = 2.5,

𝜎
2

V4
= 2.5, 𝜎2V5 = 3, measurement matrices ℎ

1
= ℎ
2
= ℎ
3
=

[23.738 20.287 0] and ℎ
4
= ℎ
5
= [0 20 23], the initial

values 𝑥(0) = [0 0 0]
𝑇 and 𝑃

0
= 0.1𝐼

3
, where 𝐼

3
is a 3 × 3

identity matrix, the bounds 𝑈
1
= 𝑈
2
= 𝑈
3
= 𝑈
4
= 𝑈
5
= −40

and 𝑈
1
= 𝑈
2
= 𝑈
3
= 𝑈
4
= 𝑈
5
= 40 for measurements of five

sensors, the initial bandwidths 𝑏
1
= 𝑏
2
= 𝑏
3
= 𝑏
4
= 𝑏
5
= 1,

and the probabilities 𝛼
1
= 0.5, 𝛼

2
= 0.7, 𝛼

3
= 0.8, 𝛼

4
= 0.8

and 𝛼
5
= 0.7 and we take 100 sampling data.

We solve the optimization problem (3) with the bits of the
whole bandwidth 𝐵 = 12. We can compute the bandwidths
𝑏
1
= 3, 𝑏

2
= 3, 𝑏

3
= 2, 𝑏

4
= 2, and 𝑏

5
= 2. Tracking

performance of WMF-QKFV and WMF-QKFP is shown in
Figure 2 where bold curves denote the true value, dotted
curves denote the estimates of WMF-QKFV, and dashed
curves denote the estimates of WMF-QKFP. We see that
WMF-QKFV has better accuracy than WMF-QKFP under
the same bandwidth constraint. The comparison of mean
square errors MSE

𝑘
= (∑
500

𝑖=1
(𝑥
(𝑖)

𝑘
(𝑡 | 𝑡) − 𝑥

𝑘
(𝑡))
2

)/500 by 500
times Monte-Carlo test, 𝑘 = 1, 2, 3, denoting the kth compo-
nent of the state of all LFs, WMF-QKFV, and WMF-QKFP
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Figure 2: Comparison of tracking for WMF-QKFP and WMF-QKFV under whole bandwidth 𝐵 = 12.

is shown in Figure 3. We see that WMF-QKFP and WMF-
QKFV have better accuracy than any local filter and WMF-
QKFV has better accuracy thanWMF-QKFP. All simulations
verify the effectiveness of the proposed algorithms.

5. Conclusion

The weighted measurement fusion quantized filtering prob-
lem is investigated in a sensor network with bandwidth
constraint and imperfect channels of missing measurements.
Using the knowledge of whether a measurement is lost at
the present time or the probabilities of missing measure-
ments, two weighted measurement fusion quantized Kalman

filters are developed based on the quantized measurements
received, respectively. They have the same accuracy as the
corresponding centralized fusion estimators and have the
reduced computational cost.
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