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Travel time estimation on road networks is a valuable traffic metric. In this paper, we propose a machine learning based method
for trip travel time estimation in road networks. The method uses the historical trip information extracted from taxis trace data as
the training data. An optimized online sequential extreme machine, selective forgetting extreme learning machine, is adopted to
make the prediction. Its selective forgetting learning ability enables the prediction algorithm to adapt to trip conditions changes
well. Experimental results using real-life taxis trace data show that the forecasting model provides an effective and practical way for
the travel time forecasting.

1. Introduction

Real-time estimation of the travel time between locations in
city can help the individuals and transporters to plan their
trips more accurately. Meanwhile, people are more likely to
choose public transportation if they can know in advance that
the practically quickest driving route to a destination would
be still slower than the public transportation such as subway.
Itmay affect their travels and schedules verymuch.Therefore,
travel time prediction is important for both end users and
governments aiming to ease traffic and protect environment
[1].

Intuitively, taxi drivers are experienced in finding the
quickest driving routes based on their knowledge and they
generally know the routes between any two locations and
often follow the same routes [2, 3]. Hence, historically
recorded taxi trips should contain abundant information for
predicting the duration for a future trip.

In this paper, we propose a machine learning based
method to predict the travel time for a taxi at a given start
time, origin and destination. Our approach consists of the
following two steps.

(1) History trip information is extracted from taxis tra-
jectories. The trips that have same origin/destination
place are put together in chronological order. And

then, we use an average on all durations for these
trips whose start time is within the same time slot to
represent the travel time of the two locations during
the time slot.

(2) The trip information from step (1) is served as a
training set for our prediction method. The selective
forgetting extreme learning machine (SF-ELM) algo-
rithm is adopted to provide an optimal estimate of the
travel time.

To be noticed, the methods used in this paper are
designed for individual travel schedule purpose. It has poten-
tial for using in traffic planning purposes. Dynamic travel
time estimation is not considered in this paper.

The rest of the paper is organized as follows. In Section 2
we overview related work. In Section 3 we define the prob-
lem and explain our methodology. The experimental setup
and evaluation are described in Section 4. We conclude in
Section 5 with a summary and directions for future work.

2. Related Work

Quite a few researches have been proposed to estimate travel
time between two locations using taxis trace. These works
can be divided into two categories: road segment based
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and path based. Road segment based method separated trip
travel time into link travel times and intersection delays.
However, explicitlymodeling the time delay at an intersection
is not easy. Thus some works just represent a trip by a
sequence of connected road segments and estimate the trip
travel time by the summation of the travel time of each
individual road segment. Rahmani et al. [4] consider the
correlation between different road segments in terms of their
historical traffic patterns to infer the travel time on a road
segment and the delay at intersections. Yuan et al. [5] propose
a variant of road segment based method. Based on the
trajectories generated by a large number of taxis, they build a
landmark graph, where a node (entitled a landmark) is a road
segment frequently traveled by taxis and an edge denotes the
aggregation of taxis’ commutes between two landmarks. The
travel time of a path is then approximated by the summation
of the travel times between landmarks.

Path-based trip travel time estimating approaches esti-
mate the travel time of a path as a whole based on frequent
trajectory patterns. It first mines frequent patterns from
historical trajectories in advance [6] and then uses the average
travel time of a pattern to represent the travel of the path
corresponding to the pattern. APTTEmodel basedmethod is
proposed to estimate the travel time of a path [7]. They infer
the travel time of a road segment through a context-aware
tensor decomposition approach at first and then search for
the most optimal concatenation of trajectories for a query
path using a dynamic programing solution. Though they
infer the travel time for individual segments, the time is
combined with trajectory patterns to formulate a subpath
rather than simply concatenating them one by one. Based on
this method, some work considered the frequent trajectory
patterns as subpath and concatenated the subpaths into target
path [8]. The travel time of a path is then approximated
by the summation of the travel times of these subpaths.
These approaches do not need to model intersection delay.
However, the query paths may not fit into any patterns in
current time slot as well as in the history. To be able to
answer various query paths, these methods need to select
more trajectory patterns by using a small support.

A few works use machine learning techniques to predict
travel time. Blandin et al. use machine learning techniques
and convex optimization to estimate arterial travel time [9].
Sampled travel time from probe vehicles is assumed to be
known and served as a training set for a machine learning
algorithm to provide a nonlinear estimate of the travel time.
They use convex optimization to improve the performance of
the nonlinear estimate through kernel regression. A dynamic
Bayesian network based approach is proposed in [10] to
estimate travel time on road links. The travel times on the
road links are assumed to be independent and to be log-
normally distributed, and the parameters are estimated using
Markov chain Monte Carlo methods.

Most of these works focus on predicting travel time on
road links or routes other than trips. In reality, individuals
may not know the real route the taxi driver will choose.
Furthermore, for a new trip, it is nearly impossible to find
historical trips with the exact same path traversed for long
journeys. In our work, we propose to use a trip based

approach. We think that the changes of trip duration over
time imply the traffic condition dynamics. So we use the
history trip duration as training sample and use an optimized
online sequential learning method to build the prediction
model.

3. Methodology

3.1. Problem Statement. We aim to forecast the trip travel
time of a certain origin and destination location at a future
start time of a day based on the past trip travel time of that
day. The insight we have for a viable solution is that the
travel time between two locations at a certain time interval
can be well predicted using its historical durations of four
former intervals. However, trip durations can be affected by
many factors, such as weather and time of day. In the current
work, we assume that the history trip information implies
this knowledge and only focuses on short term travel time
forecasting.

Given a training set consisting of 𝑘 samples 𝑆 = {(𝑥
𝑛
, 𝑡
𝑛
) |

𝑥
𝑛

∈ 𝑅𝑢, 𝑡
𝑛

∈ 𝑅V, 𝑛 = 1, 2, . . . , 𝑘}, where 𝑥
𝑛
is a 𝑢 ∗ 1 input

vector and 𝑡
𝑛
is a V∗1 target vector, 𝑢 = 4. Each 𝑥

𝑛𝑖
represents

the trip duration during 𝑖th time interval of 𝑛th day and each
𝑡
𝑛𝑖
represents the trip duration during target time interval of

𝑛th day. We would like to learn a function ℎ : 𝑅𝑢 → 𝑅V

which, given 𝐿, would provide an estimate of the travel time
𝑡 for any 𝑥 ∈ 𝑅𝑢. This is a typical regression problem.

3.2. Data Preparation. A taxi’s trace is a series of state records
in chronological order. Each state is sampled in a fixed time
interval and consists of the following fields:

TAXI ID: the unique ID of sampled taxi;
GPS POSITION: the longitude and latitude of that
taxi at the sampling time;
SPEED: the taxi speed at the sampling time, in
kilometer per hour;
ORIENTATION: the direction of that taxi at the
sampling time;
METER STATE: indicating whether the taxi is heavy
at the sampling time, where 1 means the taxi is
occupied (with passenger) and 0 means the taxi is
empty (without passenger). METER STATE turning
from 0 to 1 is a pick-up event and from 1 to 0 is a drop-
off event;
TIME: the sampling time.

A taxi’s trip contains the information beginning with a
pick-up event and lasting until encountering a drop-off event.
The target of the data preparation is to derive the sample
training data from original taxi’s trace.We need to put similar
trips together to derive a sample observation.

DEFINITION 1 (trip): a trip Tr is a quaternion
containing the following four items: start location
(Tr.sl), start time (Tr.st), destination location (Tr.dl),
and duration (Tr.du).
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Figure 1: Determining the start/end region.

The start location, the end location, and the start time of a
trip are the three basic features of each trip. If two trips have
basic features similar to each other, they are similar. In the
original taxis trace, the start and end location are recorded
as points. The similarity between two points is meaningless.
We use the start region and end region to replace the points.
The start and end regions are determined by computing the
nearest region at the right hand of taxi’s move direction.
The detailed implementation of this method can be found
in many literatures. For example, the red arrow in Figure 1
shows the move direction and the red dotted line labels the
right hand side of the move direction.

For the similarity between two time stamps, we choose
to replace the time stamp with the time interval it belongs to.
An hour-of-day time granularity is used in ourwork.Thus the
definition of trip can be redefined by start time interval, start
region, end region, and duration. Finally, we put the similar
trips together and compute the average duration of them to
derive a sample observation.

3.3. ELM, OS-ELM, and SF-ELM. Extreme learningmachine
is a learning algorithm for the single hidden layer feed
forward neural networks used in classification and regression
[11]. Originating from the batch learning extreme learning
machine (ELM), OS-ELM inherits the advantage of ELM
which can provide good generalization performance at an
extremely fast learning speed. In addition, OS-ELM has the
online sequential learning ability which does not require
retraining when new data are received [12]. The SF-ELM
(selective forgetting extreme learning machine) is proposed
by Zhang and Wang in [13]. It adopts the latest training
sample and weights the old training samples iteratively to
insure that the influence of the old training samples is
weakened. The output weight of SF-ELM is determined
recursively during online training procedure according to its
generalization performance.

(A) ELM. Given a training set consisting of 𝑘 samples 𝑆 =

{(𝑥
𝑛
, 𝑡
𝑛
) | 𝑥
𝑛

∈ 𝑅𝑢, 𝑡
𝑛

∈ 𝑅V, 𝑛 = 1, 2, . . . , 𝑘}, where 𝑥
𝑛
is a

𝑢 ∗ 1 input vector and 𝑡
𝑛
is a V ∗ 1 target vector. The number

of nodes in hidden layer is 𝐿 and 𝑓() is the activate function:

𝐿

∑
𝑖=1

𝛽
𝑖
𝑓 (𝑎
𝑖
, 𝑏
𝑖
, 𝑥
1
) = 𝑡
1

...

𝐿

∑
𝑖=1

𝛽
𝑖
𝑓 (𝑎
𝑖
, 𝑏
𝑖
, 𝑥
𝑘
) = 𝑡
𝑘
,

(1)

where 𝑎
𝑖
is the weight connecting the input nodes and the 𝑖th

hidden node, 𝑏
𝑖
is the bias of 𝑖th hidden node, and 𝛽

𝑖
is the

weight connecting the 𝑖th hidden node and the output nodes.
Consequently, (1) can be written as

𝐻
𝑘
𝛽
𝑘
= 𝑇
𝑘
, (2)

where

𝐻
𝑘
=

[
[

[

𝑓 (𝑎
1
, 𝑏
1
, 𝑥
1
) ⋅ ⋅ ⋅ 𝑓 (𝑎

𝐿
, 𝑏
𝐿
, 𝑥
1
)

... d
...

𝑓 (𝑎
1
, 𝑏
1
, 𝑥
𝑘
) ⋅ ⋅ ⋅ 𝑓 (𝑎

𝐿
, 𝑏
𝐿
, 𝑥
𝑘
)

]
]

]

(3)

is hidden layer output matrix of the network and 𝛽
𝑘

=

[𝛽
1
, 𝛽
2
, . . . , 𝛽

𝐿
]𝑇 and 𝑇

𝑘
= [𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑘
]𝑇 are output weight

matrix and target matrix, respectively:

𝛽
𝑘
= (𝐻
𝑇

𝑘
𝐻
𝑘
)
−1

𝐻
𝑇

𝑘
𝑇
𝑘
. (4)

Finally, the prediction model can be formulated as

𝑡 =

𝐿

∑
𝑖=1

𝛽
𝑖
𝑓 (𝑎
𝑖
, 𝑏
𝑖
, 𝑥) . (5)

(B) OS-ELM. OS-ELM, originated from basic ELM, is an
online sequential learning algorithm that can learn data
not only one-by-one but also chunk-by-chunk with fixed or
varying chunk size [12]. It consists of twophases: initialization
phase and sequential learning phase. In the initialization
phase, a base ELM model is trained using a small chunk of
initial training data. For instance, the output weight for an
initial training dataset 𝑆

𝑘
with 𝑘 training samples is obtained

as

𝛽
𝑘
= 𝑃
𝑘
𝐻
𝑇

𝑘
𝑇
𝑘
, (6)

where𝑃
𝑘
= (𝐻
𝑇

𝑘
𝐻
𝑘
)
−1

.Then, in the sequential learning phase,
when a new training data (𝑥

𝑘+1
, 𝑡
𝑘+1

) arrives, calculate the (𝑘+
1)th hidden-layer output vector:

ℎ
𝑘+1

= [𝑓 (𝑎
1
, 𝑏
1
, 𝑥
𝑘+1

) , 𝑓 (𝑎
2
, 𝑏
2
, 𝑥
𝑘+1

) , . . . , 𝑓 (𝑎
𝐿
, 𝑏
𝐿
, 𝑥
𝑘+1

)] .

(7)

Then compute 𝑃
𝑘+1

by 𝑃
𝑘
and ℎ
𝑘+1

as follows:

𝑃
𝑘+1

= 𝑃
𝑘
−

𝑃
𝑘
ℎ𝑇
𝑘+1

ℎ
𝑘+1

𝑃
𝑘

𝐼 + ℎ
𝑘+1

𝑃
𝑘
ℎ𝑇
𝑘+1

. (8)
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The output weights can be calculated recursively by

𝛽
𝑘+1

= 𝛽
𝑘
+ 𝑃
𝑘+1

ℎ
𝑇

𝑘+1
(𝑡
𝑘+1

− ℎ
𝑘+1

𝛽
𝑘
) . (9)

In OS-ELM, the number of training data required in the
initial phase has to be equal to or greater than the number
of hidden nodes.The rank of𝐻

𝑘
is required to be equal to the

number of hidden nodes to ensure that OS-ELM can achieve
the same learning performance as ELM.

(C) SF-ELM. SF-ELM is an extension algorithm of OS-
ELM. It can selectively update the output weight based on a
predefined allowable error. Assuming 𝛽

𝑘
has been obtained

from the initial phase of OS-ELM, when new training data
(𝑥
𝑘+1

, 𝑡
𝑘+1

) arrives, 𝛽
𝑘+1

can be represented by

𝛽
𝑘+1

= ([
𝐻
𝑘

ℎ
𝑘+1

]

𝑇

[
𝐻
𝑘

ℎ
𝑘+1

])

−1

[
𝐻
𝑘

ℎ
𝑘+1

]

𝑇

[
𝑇
𝑘

𝑡
𝑘+1

]

= (𝐻
𝑇

𝑘
𝐻
𝑘
+ ℎ
𝑇

𝑘+1
ℎ
𝑘+1

)
−1

(𝐻
𝑇

𝑘
𝑇
𝑘
+ ℎ
𝑇

𝑘+1
𝑡
𝑘+1

) ,

(10)

where 𝐻
𝑇

𝑘
𝐻
𝑘
and 𝐻𝑇

𝑘
𝑇
𝑘
are obtained by the old training

samples. To weaken the influence of old training samples,
it adds weight to the two components. Equation (9) can be
rewritten as

𝛽
𝑘+1

= (𝜔𝐻
𝑇

𝑘
𝐻
𝑘
+ ℎ
𝑇

𝑘+1
ℎ
𝑘+1

)
−1

(𝜔𝐻
𝑇

𝑘
𝑇
𝑘
+ ℎ
𝑇

𝑘+1
𝑡
𝑘+1

) , (11)

where 𝜔 is the forgetting factor and 0 < 𝜔 < 1; set

𝑃
𝑘+1

= (𝜔𝐻
𝑇

𝑘
𝐻
𝑘
+ ℎ
𝑇

𝑘+1
ℎ
𝑘+1

)
−1

. (12)

When inverting both sides of (11), it can get

𝑃
−1

𝑘+1
= 𝜔𝑃
−1

𝑘
+ ℎ
𝑇

𝑘+1
ℎ
𝑘+1

. (13)

Combining formula (12) with formula (10), the output
weights can be calculated recursively as

𝛽
𝑘+1

= 𝑃
𝑘+1

(𝜔𝐻
𝑇

𝑘
𝑇
𝑘
+ ℎ
𝑇

𝑘+1
𝑡
𝑘+1

)

= 𝑃
𝑘+1

(𝜔𝑃
−1

𝑘
𝛽
𝑘
+ ℎ
𝑇

𝑘+1
𝑡
𝑘+1

)

= 𝑃
𝑘+1

((𝑃
−1

𝑘+1
− ℎ
𝑇

𝑘+1
ℎ
𝑘+1

) 𝛽
𝑘
+ ℎ
𝑇

𝑘+1
𝑡
𝑘+1

)

= 𝛽
𝑘
+ 𝑃
𝑘+1

ℎ
𝑇

𝑘+1
(𝑡
𝑘+1

− ℎ
𝑘+1

𝛽
𝑘
) .

(14)

Applying Sherman-Morrisonmatrix inversion lemma to (11),
the recursion formula of 𝑃

𝑘
can be written as

𝑃
𝑘+1

=
𝑃
𝑘

𝜔
−

𝑄
𝑘
𝑄𝑇
𝑘

𝜔 (𝜔 + ℎ
𝑘+1

𝑄
𝑘
)
, (15)

where 𝑄
𝑘

= 𝑃
𝑘
ℎ𝑇
𝑘+1

. By (14) and (15), we can update the
output weight 𝛽

𝑘+1
by the known output weight 𝛽

𝑘
and the

newly coming training data (𝑥
𝑘+1

, 𝑡
𝑘+1

). Based on the solid
foundation presented above, our trip travel time estimation
algorithm based on SF-ELM can be summarized as follows.

3.4. Proposed Forecasting Algorithm. Assume that the num-
ber of initial training data is larger than the number of hidden
nodes and new training data are coming one by one. It should
also be noted that there is one problem in OS-ELM and SF-
ELM. If the term 𝐻

𝑇

𝑘
𝐻
𝑘
is singular, then 𝑃

𝑘
= (𝐻
𝑇

𝑘
𝐻
𝑘
)
−1

is
unsolvable. To avoid this situation, we adopt the regularized
idea in ReOS-ELM and add a small positive value to 𝐻𝑇

𝑘
𝐻
𝑘
.

During the offline calibration phase, the historical trip
duration sample data are used to build up the initial OS-
ELM model. During the online phase, new coming trip
informationwill be integratedwith the initial OS-ELMmodel
to selectively update and generate a revisedmodel, in order to
reflect the traffic dynamics.

(A) Offline Calibration Phase. Suppose that𝑁 days trip dura-
tion data 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
for a certain OD have been extracted

from taxis trace, 𝑁 ≥ 𝐿, 𝑥
𝑖

= [𝑥
𝑖1
, 𝑥
𝑖2
, 𝑥
𝑖3
, 𝑥
𝑖4
, 𝑥
𝑖5
]
𝑇,

where 𝑥
𝑖1
, 𝑥
𝑖2
, 𝑥
𝑖3

and 𝑥
𝑖4

are trip duration values of the
start four time intervals in the 𝑖th day respectively, 𝑥

𝑖5
is

the trip duration value of the target time interval in the
𝑖th day. We reconstruct it to the sample training data as
(𝑥
1
, 𝑡
1
), (𝑥
2
, 𝑡
2
), . . . , (𝑥

𝑘
, 𝑡
𝑘
), where 𝑥

𝑖
= [𝑥
𝑖1
, 𝑥
𝑖2
, 𝑥
𝑖3
, 𝑥
𝑖4
]
𝑇 are

adopted as the training input𝑋, 𝑡
𝑖
= 𝑥
𝑖5
are the training target

or output of the model, and 𝑘 = 𝑁. The detailed steps can be
illustrated as follows.

Step 1. Assign random values for input parameters: input
weights 𝑎

𝑖
and bias 𝑏

𝑖
, 𝑖 = 1, . . . , 𝐿.

Step 2. Calculate the initial hidden layer output matrix 𝐻
𝑘
.

Step 3. Then the initial output weight can be got from the
(𝑥
1
, 𝑡
1
), (𝑥
2
, 𝑡
2
), . . . , (𝑥

𝑘
, 𝑡
𝑘
) as

𝛽
𝑘
= 𝑃
𝑘
𝐻
𝑇

𝑘
𝑇
𝑘
, (16)

where 𝑃
𝑘
= (𝐻𝑇
𝑘
𝐻
𝑘
+ 𝜆𝐼)−1, where 𝐼 is the unit matrix and 𝜆

is the coefficients of ridge regression.

Although we have required 𝑁 ≥ 𝐿, we could not ensure
that daily training examples are distinctive. According to the
ridge regression theory, adding a small positive value into the
diagonal𝐻𝑇

𝑘
𝐻
𝑘
can avoid singular problemwhen the number

of initial training data is less than the hidden nodes number.
Thus the algorithm can also be effective if enough training
samples are difficult to obtain ahead of time. In addition, the
term 𝜆 can also control the relative importance between the
training error and the norm of output weights [14].

(B) Online Calibration Phase. During this phase, new trip
duration is statistically computed from trajectory data and
adopted as online training samples. When a new 𝑥

𝑘+1
comes,

the revised model can be obtained by the following steps.

Step 1. Compute the input vector ℎ
𝑘+1

, and then the predic-
tion value of 𝑡

𝑘+1
can be computed by

𝑡
𝑘+1

= ℎ
𝑘+1

𝛽
𝑘
. (17)
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Step 2. Calculate the output weight 𝛽
𝑘+1

. When the real value
of 𝑡
𝑘+1

had been got from the new trip information, selectively
update the 𝑃

𝑘
according to the following formula:

𝑃
𝑘+1

=

{{

{{

{

𝑃
𝑘

𝜔
−

𝑄
𝑘
𝑄𝑇
𝑘

𝜔 (𝜔 + ℎ
𝑘+1

𝑄
𝑘
)

𝐸 > 𝜀

𝑃
𝑘

𝐸 ≤ 𝜀,

(18)

where𝐸 = |𝑡
𝑘+1

−𝑡
𝑘+1

| and 𝜀 is the predefined threshold value.
Then update the output weight 𝛽

𝑘
according to

𝛽
𝑘+1

= 𝛽
𝑘
+ 𝑃
𝑘+1

ℎ
𝑇

𝑘+1
(𝑡
𝑘+1

− ℎ
𝑘+1

𝛽
𝑘
) . (19)

Step 3. Set 𝑘 = 𝑘 + 1 for the next online calibration.

4. Experiments and Analysis

4.1.TheDataset. In our experiments, we used real life dataset.
The dataset consists of one-month GPS trajectories collected
from over 30,000 taxis in Beijing between 01/11/2012 and
30/11/2012. The region data used in O/D extraction is the real
residential areas of Beijing. In the current digital map dataset,
Beijing has 590 regions as shown in Figure 2. We extracted
trip information from the trace dataset at first and divide it
into two datasets. Each day’s trip data is composed of 24 time
intervals of trip OD and duration information. The first 20
consecutive days of trip data are used as training dataset for
the offline calibration. The rest of ten days’ data is used for
online calibration.

We cannot guarantee that there are sufficient taxis travers-
ing between each O/D pair anytime even if we have a large
number of taxis. To ensure that the experiment has enough
sample data, we choose theODpairs that traversed by enough
taxis as the prediction target.TheODpairs that are connected
by red line in Figure 3 are the pairs meeting the requirement.
Ten OD pairs within downtown area are selected from these
OD pairs and taken as the trip time prediction target. The
straight line distance of these OD pairs ranges from 2 km to
10 km. For the four sample time intervals, we choose the time
intervals between 7 and 11 o’clock.

4.2. Experiment Setting. In our experiment, the radial basis
function (RBF) is chosen as the activation function. The
optimal hidden node number is set to 7 through a tenfold
cross-validation.We define the travel time estimation error to
be the time lag between the real traveled time and the system
estimated travel time. The forgetting factor 𝜔 is set to 0.98.
The coefficient of ridge regression 𝜆 is set to 0.001.

4.3. Experiment Result and Analysis. With the selected set-
ting, we run our algorithm with the sample dataset. At
first, the algorithm is performed on history trips from each
OD pair in our selected ten OD pairs to forecast its travel
duration during two time intervals, respectively. We choose
two typical time intervals, one during peak-off period and
another during peak period, to do the prediction. Figure 4
shows the result.

In this round of experiment, the maximal percentage
error of our prediction method is 19.48%. The real trip

Figure 2: Residential areas distribution of Beijing city.

Figure 3: Trip count statistical.

happened in peak time period. We checked the digital map
and verified that the corresponding O/D pair is located at
the surrounding areas of central business district. In Figure 5,
the O/D pair is labeled by thick red line. The destination of
the trip lies in the area which is labeled by blue rectangle. In
this area, a jewelry exhibition was held in Beijing National
Agricultural Center. It caused widespread congestion in the
region.

4.3.1. Performance of Selective Update. To test the online
learning and selective update ability of SF-ELM, we select
one OD pair as the prediction target and make prediction
for ten days. The result is shown in Figure 6. The degree
of prediction error occurs randomly and could not reflect
the online learning ability of SF-ELM well. The unforeseen
traffic events account for part of the reasons.The comparison
of computational cost between SF-ELM and OS-ELM has
been listed in Table 1. The selective update ability of SF ELM
enables it to skip one time’s model update. Thus it achieves a
higher efficiency than OS-ELM.
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Figure 4: Trip durations of ten pairs OD on date 23.

Figure 5: The OD pair with the maximum.

4.3.2. Influence of 𝑁 and 𝐿. In our experiment, the training
sample arrives in a one-by-one manner. Because the number
of initial training data is much larger than the hidden nodes
number 𝐿, we can only consider the case that Rank(𝐻

𝑘
) =

Rank(𝑃
𝐾
) = 𝐿. To analyze the influence of 𝑁 and 𝐿 on

the model, we assume that a larger number is assigned to 𝐿,
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Figure 6: Trip durations of an OD pair in ten days.

Table 1: Computational cost between SL-ELM and OS-ELM.

Number of calibration points
(offline + online)

Average testing time (S)
OS-ELM SL-ELM

20 + 2 0.016 0.018
20 + 4 0.033 0.037
20 + 6 0.048 0.039
20 + 8 0.062 0.055
20 + 10 0.081 0.072

𝐿 = 30, and the matrix 𝐻𝑇
𝑘
𝐻
𝑘
tends to be singular. As 𝜆 is

already introduced in our model, the rank of 𝑃
𝐾
remains at

𝐿 due to the 𝜆𝐼. However, when 𝐿 = 30, the norm of output
weights ‖𝛽

𝑘
‖
2 is much smaller than that of 𝐿 = 7.The training

error has been improved while the prediction error remains
randomly in this case.Due to the limited training samples, the
stablity of output weight norm is not presented in the current
work.

5. Conclusion and Future Work

In this paper, we proposed a novel trip travel time forecasting
algorithm based on SF-ELM. Trip travel times are modeled
as average running travel times of all trips between the
certain O/D other than the sum up of link travel times and
intersection delays. Since road network components such
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as traffic signals have significant effects on travel times and
these factors are difficult to integrate into road link-based
prediction model, our trip based model can indirectly reflect
the trip conditions change and our methods are simple and
practicable and can be used in engineering. The empirical
results showed that it can provide a reasonable forecasting
value in most cases. In the meanwhile, the selective and
forgetting ability of SF-ELM made it possible to reflect and
adapt to the trip condition changes better than OS-ELM.

ELM and its variant have received increasing attentions
in recent years andmany efforts have been dedicated to apply
them in various applications [14–16]. Although they have
obvious advantages in theory, the actual application field is
limited at present [17]. Therefore, how to apply ELM to the
daily life effectively is an important aspect in future research.
For example, how to integrate various trip conditions in the
forecasting model is understudied by us.
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