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We develop a reliability model for systems with s-dependent degradation processes using copulas. The proposed model
accommodates assumptions of s-dependence among degradation processes and allows for different marginal distributions. This
flexibility makes the model more attractive compared with the multivariate distribution model, which lay on the limitation of
the homogeneous marginal distribution and can only describe linear correlation. Marginal degradation process is modeled by
the inverse Gaussian (IG) process with time scale transformation. Furthermore, we incorporate random drift to account for the
possible heterogeneity in population. This paper also develops the statistical inference method using EM algorithm with two-
stage procedure. The comparison results of the reliability estimation under both s-dependent and s-independent assumptions are
illustrated in the illustrative example to demonstrate the applicability of the proposed method.

1. Introduction

For systems with high reliability, it is challenging to do
reliability assessment in a timely manner because usually
minor failures occur during such short time. Thus it is
difficult to assess reliability based only on limited lifetime
data. Compared with traditional lifetime data, degrada-
tion data contains more information, which records the
accumulation of damage over time. Degradation analysis
aims to characterize the underlying failure process and uses
more information than lifetime data analysis. In reality, a
system may have multiple degradation processes or con-
sists of multiple degrading components. The reliability of
a system is usually calculated under the assumption of s-
independence. However, assuming s-independence among
degradation processes may underestimate system reliability.
It is more realistic to assume some sort of dependence among
degradation processes.

In practice, the continuous degradation process is often
modeled by a stochastic process. Wiener process and the
Gamma process are two classes of stochastic processes that
have beenwidely used in degradationmodeling [1]. A distinct

feature of theWiener process is that its degradationmeasures
are not necessarily monotone [2], which is not applicable
in many cases. As an alternative, the Gamma process is
often used when monotonicity is required [3]. Although the
Wiener process and Gamma process have wide applications
in degradation modeling, only these two classes of models
cannot fit all degradation data well. Wang and Xu [4] showed
an application in which both Wiener and Gamma processes
do not fit the data well. They try to fit the GaAs Laser
data by using Wiener and Gamma process models, but
probability plots show that both of them fit the data poorly.
They suggest inverse Gaussian (IG) process as another good
choice for degradationmodeling which provides a monotone
degradation path. The IG process was proposed by Wasan
[5] in 1968. Notwithstanding wide applications of the IG
distribution, the IG process was scarcely used in degradation
modeling. Ye andChen [6] attributed the reason of its unclear
physical meanings to reliability engineers and prove that IG
process is the limit of a compound Poisson process whose
arrival rate goes to infinity while the jump size goes to zero
in a certain way. Their research provides a physical meaning
for the IG process as a degradation model.
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For multiple degradation processes, Wang and Coit [7]
introduced a general modeling approach to estimating the
reliability of a system using multivariate normal distribu-
tion under the condition that degradation mechanism is
unknown. Pan and Balakrishnan [8] introduced a reliability
model for systems with bivariate degradation processes by
utilizing bivariate Birnbaum-Saunders distribution. In their
model, the degradation process is described by Gamma pro-
cess and distribution of the first passage time is approximated
by Birnbaum-Saunders distribution. In recent years, much
attention has been placed on modeling the s-dependence
behavior between degradation variables by copulas, which
allows us to couple degradation variables from different
distribution families. Sari et al. [9] introduced a two-stage
model for bivariate processes using the copula function.
Experiment data from LED lighting systems are analyzed to
illustrate the application of the proposedmodel. Pan et al. [10]
proposed a bivariate Wiener degradation process to describe
the dependence between degradation characteristics, where
marginal distribution and multivariate dependence can be
modeled separately, and marginal distribution functions
of degradation measures may follow different distributions
families.

Based on the bivariate Wiener degradation model, Wang
et al. [11] put forward an adaptivemethod for residual life esti-
mation. In theirmethod, the dependence of degradation vari-
ables is characterized by the Frank copula function. Hao and
Su [12] presented a bivariate nonlinear Wiener degradation
model and useMarkov ChainMonte Carlo (MCMC)method
to estimate the model parameters. Wang and Pham [13]
established a s-dependent competing risk model to handle
the dependence among multiple degradation processes and
random shocks using copulas. Two types of dependence are
considered in their model: dependence among degradation
processes and dependence between degradation and shocks.

Previous research has been focused on utilizing mul-
tivariate distributions. This approach has some drawbacks.
One major drawback is that it limits the distribution of each
degradation variable. Degradation variables should have the
same distribution. Meanwhile, such approaches are applica-
ble only when degradation variables are linearly correlated.
Some researchers use copulas to model the dependence
among degradation processes, which allows for different
marginal distributions. A more interesting problem that has
not been addressed in the literature is the effect of copulas
on s-dependence modeling for systems with IG processes.
This paper makes a further study on s-dependence modeling
using IG process and copulas. We first use the IG process
with randomdrift and time scale transformation tomodel the
monotonic degradation process; then we employ the copula
method to fit the joint distribution of multiple degradation
processes. We also develop the statistical inference method
using EM algorithm with two-stage procedure to estimate
model parameters.

The remainder of the paper is organized as follows.
Section 2 introduces an IG process with random drift and
time scale transformation. Section 3 proposes a system reli-
ability model under s-dependent assumption using copulas.
The statistical inference for themodel parameters is discussed

in Section 4. In Section 5, a simulation study is conducted
to demonstrate the quality of the estimators. Section 6 gives
an example of crack growth problem to demonstrate the
proposed method. Section 7 concludes the paper.

2. IG Process with Random Drift and Time
Scale Transformation

In practice, many systems or components have their perfor-
mance characteristics whose degradation over time can be
measured. The degradation path over time can be modeled
by a stochastic process {𝑋(𝑡); 𝑡 ≥ 0}. In our study, we use
the inverse Gaussian (IG) process to describe monotonic
degradation process.

Definition 1. The inverse Gaussian process is defined as the
stochastic process satisfying the following.

(i) 𝑋(𝑡+𝑠)−𝑋(𝑠) follows an inverseGaussian distribution
with mean 𝑡 and scale 𝜎𝑡2.

(ii) 𝑋(𝑡) has independent increments on nonoverlapping
intervals; that is, 𝑋(𝑡
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Consider that the IG process {𝑋(𝑡); 𝑡 ≥ 0} with 𝑋(𝑡) −
𝑋(𝑠) follows IG(𝜇(𝜏(𝑡) − 𝜏(𝑠)), 𝜎(𝜏(𝑡) − 𝜏(𝑠))2), where 𝜏(⋅)
is the transformed time scale; the transformation depends
on particular mechanism. General discussions about time
transformation can be found in Whitmore and Schenkelberg
[15]. 𝜇 is the drift parameter; 𝜎 is the diffusion param-
eter. Let 𝜏(0) = 0 and 𝑋(0) = 0; thus 𝑋(𝑡) follows
IG(𝜇𝜏(𝑡), 𝜎𝜏2(𝑡)) with mean 𝜇𝜏(𝑡) and variance 𝜇3𝜏(𝑡)/𝜎,
where IG(𝜇𝜏(𝑡), 𝜎𝜏2(𝑡)) denotes the IG distribution with
probability density function (PDF):

𝑓IG (𝑥) =
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exp[−
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and cumulative distribution function (CDF)

𝐹IG (𝑥) = Φ[√
𝜎
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𝜇
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(2)

In many engineering applications, the failure of a system
is definedwhen the degradation process𝑋(𝑡) crosses a critical
threshold level 𝐷 for the first time. The corresponding time
𝑇
𝐷
is

𝑇
𝐷
= inf {𝑡 : 𝑋 (𝑡) > 𝐷} . (3)
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Because IG process has monotonic property, the reliabil-
ity function of the first passage time 𝑇

𝐷
can be obtained from

the relation 𝑃(𝑇
𝐷
> 𝑡) = 𝑃(𝑋(𝑡) < 𝐷) = 𝐹IG(𝐷) as

𝑅 (𝑡) = Φ[−√
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(4)

Suppose that a system has 𝐾 degradation processes and
each of them is governed by an IG process. We assume that
all samples have common inspection times. The inference
can be easily extended to the case where inspection times
are different. In a degradation test, 𝑁 units are tested and
the degradation measures of all units are observed at ordered
inspection times 𝑡
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𝑝 = 0, 1, 2, . . . , 𝐾, 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 0, 1, 2, . . . ,𝑀, where
𝐾 is the total number of degradation processes,𝑁 is the total
number of test units, and𝑀 is the total number of inspection
times. In general, the degradation data can be presented in
the form
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Because of the independent property of IG process,
increments for nonoverlapping intervals are independent.
Therefore, we focus on the degradation increment. Define
𝑡
0
= 0,𝑥(𝑖)
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where 𝜇
𝑝
and 𝜎
𝑝
are parameters for 𝑝th degradation process.
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Considering heterogeneity within the population, ran-
dom effects are often used to account for heterogeneous
degradation rates across units [16, 17]. Normality assumption
for 𝜇
𝑝
has been adopted by many studies [18]. To avoid the

negative values of 𝜇
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and simplify the deviation, we assume
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where 𝜙(⋅) is the PDF of standard normal distribution,Φ(⋅) is
the CDF of standard normal distribution, and𝑝 = 1, 2, . . . , 𝐾.
Note that, conditional on 𝜇−1
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The random drift model covers simple model without
random effects when 𝛿

𝑝
→ ∞. The time scale transfor-

mation can also be eliminated if we let 𝜏
𝑝
(𝑡) = 𝑡. When

both 𝛿
𝑝
→ ∞ and 𝜏

𝑝
(𝑡) = 𝑡, the random drift model

with time scale transformation degenerates to the regular IG
process. This means that the random drift model with time
scale transformation can be viewed as an extended model
which includes several IG process models as special cases.
In degradation data analysis, an extended model is a much
flexible choice to fit a specific dataset.

3. Modeling for Systems with Multiple
Degradation Processes

Although, in many studies, multiple degradation processes
are assumed to have independent property, it may be more
realistic to assume some sort of dependence among degra-
dation processes. According to Sklar’s theorem [19], if 𝐻
is a joint distribution function with continuous margins
𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑛
, then there exists a unique copula 𝐶 such that,
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This theorem provides the theoretical foundation for the
application of copulas. Based on Sklar’s theorem, any mul-
tivariate distribution can be decomposed into a copula and
its marginal. Thus, copula functions provide a much more
flexible and realistic way to study multivariate distributions.
Table 1 lists some well-known one-parameter Archimedean
copulas, in which 𝑢 and V are marginal distributions.

Properties of the copula have been explored in a number
of studies; for example, see Jia et al. [20].

Consider a system subject tomultiple s-dependent degra-
dation processes. The degradation processes are denoted
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Table 1: Summary of some one-parameter Archimedean copulas.

Copulas 𝐶(𝑢, V) Parameter

Gumbel copula exp {−[(− ln 𝑢)𝛼 + (− ln V)𝛼]1/𝛼} 𝛼 ∈ [1,∞)

Frank copula −
1

𝛼
ln(1 + (𝑒

−𝛼𝑢
− 1)(𝑒

−𝛼V
− 1)

𝑒−𝛼 − 1
) 𝛼 ∈ (−∞,∞) \ {0}

Clayton copula [max(𝑢−𝛼 + V−𝛼 − 1, 0)]−1/𝛼 𝛼 ∈ [−1,∞) \ {0}

Joe copula 1 − [(1 − 𝑢)
𝛼
+ (1 − V)𝛼 − (1 − 𝑢)𝛼(1 − V)𝛼]1/𝛼 𝛼 ∈ [1,∞)

Amh copula 𝑢V
1 − 𝛼(1 − 𝑢)(1 − V)

𝛼 ∈ [−1, 1]
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where 𝐹
𝑝
(𝑋
𝑝
(𝑡)) is the CDF of𝑋

𝑝
(𝑡) for 𝑝 = 1, 2, . . . , 𝐾.

The system is considered to be failed if either degradation
process 𝑋

𝑝
(𝑡) reaches its corresponding failure threshold,

which is known as 𝐷
𝑝
for 𝑝 = 1, 2, . . . , 𝐾. Therefore,

the reliability of a system with s-dependent degradation
processes is
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where 𝑆 means safe region, within which the system is
working and 𝐹

𝑝
(𝐷
𝑝
) is the CDF of𝑋

𝑝
(𝑡) for 𝑝 = 1, 2, . . . , 𝐾.

4. Statistical Inference

4.1. Time Scale Determination. In a few situations we under-
stand well the parametric form for time scale 𝜏(𝑡) based
on physics mechanism or prior knowledge. When there is
no such failure mechanism to describe the time scale, we
use a statistical method to help us determine the parametric
form. From (6), we can see that the mean degradation
path is 𝐸[𝜇]𝜏(𝑡), where 𝐸[𝜇] can be obtained by using the
property of truncated normal distribution. We may average
the samples to obtain themean degradation curve and specify
a parametric form for 𝜏(𝑡) by fitting the mean path. Linear
relationship, power law relationship, and exponential law
relationship are the most used parametric forms.

4.2. Parameter Estimation. Suppose that the multivariate
distribution is specified by𝐾margins with CDF 𝐹

𝑝
and PDF
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Using MLE, the full log-likelihood function of the copula
with marginal function can be expressed as

ln 𝐿 (𝛼,𝛽)

=

𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

[ ln 𝑐 (𝐹
1
(𝑥
1𝑖𝑗
;𝛽
1
) , 𝐹
2
(𝑥
2𝑖𝑗
;𝛽
2
) , . . . ,

𝐹
𝐾
(𝑥
𝐾𝑖𝑗
;𝛽
𝐾
) ; 𝛼) +

𝐾

∑
𝑝=1

ln𝑓
𝑝
(𝑥
𝑝𝑖𝑗
;𝛽
𝑝
)] .

(14)

The parameters can be estimated by maximizing the
above log-likelihood function. However, the log-likelihood
is computationally difficult to work with, or even infeasible.
Here we use a two-stage procedure of firstly estimating
the marginal parameters and then estimating the copula
parameter from the joint likelihoodwith themarginal param-
eters estimated in the first stage. Computational difficulty is
greatly reduced since each stage has a very small number of
parameters. Joe [21] has studied the efficiency properties of
this two-stage estimation procedure. He points out that this
method has good efficiency and can sometimes be equivalent
to MLE method.

Stage 1 (marginal parameters). Each marginal distribution
𝐹
𝑝
has its own parameter set 𝛽

𝑝
= (𝜎
𝑝
, 𝛾
𝑝
, 𝜔
𝑝
, 𝛿
𝑝
). In the

first stage, the log-likelihood of the𝐾marginals is separately
maximized to get estimates 𝛽 = (𝛽

1
,𝛽
2
, . . . ,𝛽

𝐾
)
𝑇.
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Based on (9), the log-likelihood function of each degra-
dation process can be expressed as

ln 𝐿 (𝛽
𝑝
) =

𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

ln𝑓
𝑝
(𝑥
𝑝𝑖𝑗
;𝛽
𝑝
) , 𝑝 = 1, 2, . . . , 𝐾, (15)

where 𝐾 is the total number of degradation processes, 𝑁 is
the total number of test units, and𝑀 is the total number of
inspection times.

The log-likelihood function is very flat around �̂�
𝑝
.

Direct maximization of the likelihood function often yields
a solution far away from the MLE. We use Expectation-
Maximization (EM) algorithm to solve this problem as it is
free of the rounding error.Wedenote𝜇

𝑝
= [𝜇
𝑝1
, 𝜇
𝑝2
, . . . , 𝜇

𝑝𝑁
]

as the unobserved data and x
𝑝
as the observed data. Given

the complete data including 𝜇
𝑝
and x
𝑝
, the log-likelihood of

unknown parameters 𝛽
𝑝
= (𝜎
𝑝
, 𝛾
𝑝
, 𝜔
𝑝
, 𝛿
𝑝
), up to a constant,

can be expressed as

ln 𝐿 (𝜎
𝑝
, 𝛾
𝑝
, 𝜔
𝑝
, 𝛿
𝑝
)

=

𝑁
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𝑀

∑
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[
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1

2
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𝑝𝑖𝑗
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𝑝𝑖
𝜏
𝑝𝑗
)
2
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+
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[

[

ln 𝛿
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𝑝𝑖
− 𝜔
𝑝
)
2

2
− ln (1 − Φ (−𝛿
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𝜔
𝑝
))]

]

.

(16)

For the E-Step, we need to estimate 𝐸(𝐿(𝜎
𝑝
, 𝛾
𝑝
, 𝜔
𝑝
, 𝛿
𝑝
))

given the observed data and current estimated parameters.
Ye and Chen [6] have proven that the conditional distribu-
tion of 𝜇−1

𝑝𝑖
follows TN((𝜎

𝑝
∑
𝑀

𝑗=1
𝑡
𝑖𝑗
+ 𝜔
𝑝
𝛿
2

𝑝
)/(𝜎
𝑝
∑
𝑀

𝑗=1
𝑥
𝑖𝑗
+

𝛿
2

𝑝
), 𝜎
𝑝
∑
𝑀

𝑗=1
𝑥
𝑖𝑗
+ 𝛿
2

𝑝
). By using the property of truncated

normal distribution, we can easily obtain 𝑎
𝑝𝑖
= 𝐸[𝜇

−1

𝑝𝑖
| x
𝑝𝑖
]

and 𝑏
𝑝𝑖
= 𝐸[𝜇

−2

𝑝𝑖
| x
𝑝𝑖
] for each unit. After substituting them

into (16), we have

𝐸 (ln 𝐿 (𝜎
𝑝
, 𝛾
𝑝
, 𝜔
𝑝
, 𝛿
𝑝
)) = 𝑙

1
(𝜎
𝑝
, 𝛾
𝑝
) + 𝑙
2
(𝜔
𝑝
, 𝛿
𝑝
) , (17)

where

𝑙
1
(𝜎
𝑝
, 𝛾
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=
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(18)

𝑙
2
(𝜔
𝑝
, 𝛿
𝑝
) =

𝑁

∑
𝑖=1

[ln 𝛿
𝑝
− 𝛿
2

𝑝
(
1

2
𝑏
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)) ] .

(19)

It is noted that 𝑙
1
(𝜎
𝑝
, 𝛾
𝑝
) only depends on 𝜎

𝑝
, 𝛾
𝑝
, and

𝑙
2
(𝜔
𝑝
, 𝛿
𝑝
) only depends on 𝜔

𝑝
, 𝛿
𝑝
. So, in the M-Step, we

can compute the updated parameter estimates separately.The
estimation equations for 𝜎

𝑝
, 𝛾
𝑝
can be easily obtained by

maximizing (18); that is,

𝜎
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(20)

We can also obtain 𝜔
𝑝
, 𝛿
𝑝
by solving

𝑁𝜙(−𝜔
𝑝
𝛿
𝑝
)

[1 − Φ (−𝜔
𝑝
𝛿
𝑝
)]
= (

𝑁
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𝑖=1

𝑎
𝑝𝑖
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𝑝𝑖
− 𝑎
𝑝𝑖
𝜔
𝑝
) .

(21)

After obtaining updated parameter estimates in the M-
Step,we can iterate to obtain new estimates until convergence.
It is worth noting that both (20) and (21) contain only two
parameters. It is much easier to find the optimal solution,
as opposed to the direct maximization of the original log-
likelihood function.

Stage 2 (copula parameters). With given �̂� in Stage 1, the
estimation of the parameter 𝛼 from the copula function can
be performed as

�̂� = argmax
𝛼∈Θ

𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

ln 𝑐 (𝐹
1
(𝑥
1𝑖𝑗
; �̂�
1
) ,

𝐹
2
(𝑥
2𝑖𝑗
; �̂�
2
) , . . . , 𝐹

𝐾
(𝑥
𝐾𝑖𝑗
; �̂�
𝐾
) ; 𝛼) ,

(22)

where Θ is the parameter space. 𝑐(𝐹
1
(⋅;𝛽
1
), 𝐹
2
(⋅;𝛽
2
), . . .,

𝐹
𝐾
(⋅;𝛽
𝐾
); 𝛼) is the density function derived from copula

𝐶(⋅; 𝛼).

The copula parameter 𝛼 can be estimated by maximizing
the full log-likelihood function in (22).

4.3. Goodness-of-Fit and Model Selection. When there
are several potential copula functions available, the most
straightforward way to quantitatively select the model is to
use the Akaike Information Criterion (AIC). The AIC is
defined as

AIC = 2𝑞 − 2 ln (𝐿) , (23)

where 𝑞 is the number of unknown parameters in the
statistical model and ln(𝐿) is the maximized value of the log-
likelihood function for the estimated model.

Based on this criterion, the model with the smallest AIC
value is selected as the best fittingmodel. However, themodel
with the smallest AIC does not necessarily be a correctmodel.
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Table 2: Biases and standard errors of the estimates based on the proposed EM approach.

(𝑁,𝑀) 𝜎 𝜔 𝛿 𝛾

Bias MSE Bias MSE Bias MSE Bias MSE
(10, 5) 1.04 10.37 0.113 0.20 0.37 0.51 −5𝑒 − 3 1.4𝑒 − 3

(10, 10) 0.57 4.62 0.086 0.21 0.34 0.47 −3.8𝑒 − 3 4.9𝑒 − 4

(10, 15) 0.31 2.82 0.092 0.20 0.33 0.42 −2.6𝑒 − 3 2.7𝑒 − 4

(10, 20) 0.29 2.04 0.078 0.19 0.33 0.39 −1.6𝑒 − 3 1.6𝑒 − 4

(15, 5) 0.67 5.13 0.082 0.17 0.26 0.25 −4𝑒 − 3 8.1𝑒 − 4

(15, 10) 0.44 2.93 0.072 0.17 0.24 0.25 −3.7𝑒 − 3 3.1𝑒 − 4

(15, 15) 0.30 1.97 0.079 0.17 0.23 0.21 −2.9𝑒 − 3 1.7𝑒 − 4

(15, 20) 0.23 1.44 0.053 0.17 0.22 0.21 −1.8𝑒 − 3 1.1𝑒 − 4

(30, 5) 0.24 2.28 0.029 0.13 0.12 0.09 −2.5𝑒 − 3 3.5𝑒 − 4

(30, 10) 0.23 1.33 0.023 0.13 0.11 0.09 −2.4𝑒 − 3 1.3𝑒 − 4

(30, 15) 0.22 0.86 0.021 0.13 0.12 0.08 −1.9𝑒 − 3 7.6𝑒 − 5

(30, 20) 0.10 0.61 0.004 0.12 0.12 0.08 −1.4𝑒 − 3 4.6𝑒 − 5

We should also check the correlation coefficient between
variables. The most widely known correlation coefficients
are Pearson’s 𝑟, Kendall’s tau, and Spearman’s rho. Because
Pearson’s 𝑟 only measures the linear correlation between
random variables, it is not a proper measure of association
in this study. We only focus on Kendall’s tau and Spearman’s
rho, which does not rely on linear correlated restriction.
When applying these correlation coefficients to the bivariate
degradation processes, Kendall’s tau can be stated as

𝜏 = 4∬
[0,1]
2

𝐶 (𝑢, V) 𝑑𝐶 (𝑢, V) − 1, (24)

and Spearman’s rho can be stated as

𝜌 = 12∬
[0,1]
2

𝐶 (𝑢, V) 𝑑𝑢 𝑑V − 3, (25)

where 𝑢 and V are the CDFs of marginal random variables.
The model that fits the data well is expected to yield the

maximum Kendall’s tau and Spearman’s rho. More details
could be found in Nelsen [19].

5. Simulation Study

To demonstrate the quality of the EM estimators proposed in
last section, a simulation study has been carried out. Assume
𝜏(𝑡) = 𝑡

𝛾 as time scale. Without loss of generality, we fix 𝜎 =
10, 𝜔 = 0.5, 𝛿 = 1, and 𝛾 = 1.5. We choose the number of test
units to be𝑁 = 10, 15, and 30 and the number of inspections
times to be𝑀 = 5, 10, 15, and 20. Each unit is inspected at
𝑡
𝑖
= 𝑖, for 𝑖 = 1, 2, . . . ,𝑀. Under each parameter setting (𝑁,

𝑀), the bias and the mean square error (MSE) of the MLE
are computed based on 1000 Monte Carlo replications. The
results are displayed in Table 2.

From Table 2, it is readily observed that the biases and
MSEs become smaller as the number of test units (𝑁) and
inspections times (𝑀) increase. The result reveals that the
parameters of our model can be accurately estimated with
reasonable sample sizes.

6. Illustrative Example

Lu andMeeker [14] presented a fatigue-crack-growth dataset.
Degradation data from 21 samples are collected. The time
unit is in million cycles; all samples are measured every
0.01 million cycles from 0 to 0.09. We choose the first 20
samples from the dataset and divide them into two groups.
We assume that samples in the first group represent crack
A, while samples in the second group represent crack B.
The length growth of the cracks can be seen as degradation
processes. Considering a system subject to fatigue cracks in
two different positions, the system is defined to be failed if
the length of crack A crosses 1.6 inch or the length of crack
B crosses 1.3 inch.The fatigue-crack-growth data are listed in
Table 3 and depicted in Figure 1. A similar idea is also adopted
in other study cases to analyze their models [8]. Now, we
further apply our method to the dataset.

We first apply the IG process with random drift and time
scale transformation to fit the fatigue-crack-growth data.
Figure 1 shows that degradation path is not linear over time.
Lu and Meeker [14] suggested that Power Law is appropriate
for crack size modeling, and thus 𝜏(𝑡) = 𝑡𝛾 is adopted as the
transformed time scale.The estimates ofmarginal parameters
are listed in Table 4. The 90% confidence intervals are
estimated using the parametric percentile bootstrap method
with 2000 bootstrap replication, as shown in Table 4.

Based on (6), the estimated crack length paths is given by

𝐸 [𝑋 (𝑡)] = 𝐸 [𝜇] 𝜏 (𝑡) = 𝐸 [𝜇] 𝑡
𝛾
. (26)

To demonstrate the goodness of fit, themean crack length
paths estimated from the above model and from the sample
average are compared. If these two lines overlap, it suggests
that the model is correct. The mean crack length paths based
on (26) are plotted in conjunction with the sample average,
as shown in Figure 2. In addition, the result by bivariate
Birnbaum-Saunders method from Pan and Balakrishnan [8]
is also depicted in the same figure for comparison. Intuitively,
it can be seen that our model tally quite well with sample
average, indicating that the model fits the data well. From
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Table 3: Fatigue crack growth data from Lu and Meeker [14].

Crack Path Million cycles
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

A

1 0.90 0.95 1.00 1.05 1.12 1.19 1.27 1.35 1.48 1.64
2 0.90 0.94 0.98 1.03 1.08 1.14 1.21 1.28 1.37 1.47
3 0.90 0.94 0.98 1.03 1.08 1.13 1.19 1.26 1.35 1.46
4 0.90 0.94 0.98 1.03 1.07 1.12 1.19 1.25 1.34 1.43
5 0.90 0.94 0.98 1.03 1.07 1.12 1.19 1.24 1.34 1.43
6 0.90 0.94 0.98 1.03 1.07 1.12 1.18 1.23 1.33 1.41
7 0.90 0.94 0.98 1.02 1.07 1.11 1.17 1.23 1.32 1.41
8 0.90 0.93 0.97 1.00 1.06 1.11 1.17 1.23 1.30 1.39
9 0.90 0.92 0.97 1.01 1.05 1.09 1.15 1.21 1.28 1.36
10 0.90 0.92 0.96 1.00 1.04 1.08 1.13 1.19 1.26 1.34

B

1 0.90 0.93 0.96 1.00 1.04 1.08 1.13 1.18 1.24 1.31
2 0.90 0.93 0.97 1.00 1.03 1.07 1.10 1.16 1.22 1.29
3 0.90 0.92 0.97 0.99 1.03 1.06 1.10 1.14 1.20 1.26
4 0.90 0.93 0.96 1.00 1.03 1.07 1.12 1.16 1.20 1.26
5 0.90 0.92 0.96 0.99 1.03 1.06 1.10 1.16 1.21 1.27
6 0.90 0.92 0.95 0.97 1.00 1.03 1.07 1.11 1.16 1.22
7 0.90 0.93 0.96 0.97 1.00 1.05 1.08 1.11 1.16 1.20
8 0.90 0.92 0.94 0.97 1.01 1.04 1.07 1.09 1.14 1.19
9 0.90 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16
10 0.90 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16

Table 4: Estimation and the 90% confidence intervals.

Parameter Crack A Crack B
Estimation CI. lower CI. upper Estimation CI. lower CI. upper

𝜎 69226 53583 104220 17778 14183 27403
𝜔 0.074 0.066 0.079 0.149 0.128 0.160
𝛿 123.628 90.466 268.429 52.161 38.557 140.941
𝛾 1.349 1.324 0.390 1.257 1.232 1.312
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Figure 1: The development of crack length over time: (a) crack A, (b) crack B.
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Figure 2: Estimated mean paths based on sample average and on
our model.
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Figure 3: Comparison of the reliability of two cracks.

Figure 2 we can also see that crack A has a higher degradation
rate than crack B.

The marginal reliability of these two cracks obtained
from the estimated IG distribution is displayed in Figure 3.
Although the degradation rate of crack A is higher than crack
B, the reliability curve of crackA tends to be higher than crack
B.The reason is that crack B is defined to be failed if crack size
exceeds 1.3 inch, which is lower than the threshold of crack A.

Given the estimates ofmarginal parameters inTable 4, the
copula method is applied to fit the dependent crack size data.
To choose the most suitable fitting copula, we test six selected
copulas using the AIC as the criteria for goodness of fit. The
results are summarized in Table 5.
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Figure 4: Comparison of the system reliability under both s-
dependent and s-independent assumptions.

From Table 5, we see that the model with Frank copula
has the smallest AIC of −1118.13, followed by the Gumbel
copula with AIC of −1114.89. Clayton copula is the worst
fitting among all the copulas, with AIC of −1095.96. That
is, the AIC criterion favors the Frank copula. The model
with Frank copula also has both the largest Kendall’s tau
and Spearman’s rho. Therefore, Frank copula may be the
best choice to describe the dependence between the two
degradation processes.

Given the estimated parameters, we can derive the system
reliability from (12), as shown in Figure 4. By means of
the bivariate Birnbaum-Saunders method proposed by Pan
and Balakrishnan [8], their estimated reliability curve is
also depicted in Figure 4, which is very similar to the s-
dependent reliability curve from our method. By comparing
these two curves we can further validate the effectiveness of
our method. As we can see from this figure, s-dependent
reliability curve and s-independent reliability curve are over-
lapped at early time. Because at the early stage both of
the two degradation processes are in a good status, and
unlikely to impact on each other. However, the reliability
estimated by Pan and Balakrishnan [8] is a little bit high at
early time. This evidence tends to suggest that the bivariate
Birnbaum-Saunders method may not be the best choice for
the data. After a period of time, s-independent reliability
curve tends to be slightly lower than s-dependent reliabil-
ity curve because degradation processes are subject to the
same stress condition; small degradation amount of one
degradation process tends to occur with small degradation
amount of the other degradation process. That is, there
exists some sort of dependence between the degradation
processes.
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Table 5: Goodness-of-Fit for the four copulas.

Copula Parameter Estimation AIC Kendall’s tau Spearman’s rho Ranking
Gumbel 1.5150 −1114.89 0.3399 0.4836 2
Frank 3.9127 −1118.13 0.3816 0.5487 1
Clayton 0.3544 −1095.96 0.1505 0.2241 6
Gaussian 0.4880 −1112.91 0.3246 0.4708 3
Joe 1.7663 −1112.25 0.2985 0.4294 4
Amh 0.8235 −1108.12 0.2436 0.3590 5

7. Conclusions

This study has investigated reliability modeling method for
systems with s-dependent degradation processes. We first
introduced an inverse Gaussian (IG) process with random
drift and time scale transformation to describe marginal
degradation process.This is an extended family of IG process
models that contains several existing models as its limiting
cases. Based on copulas, we then developed a system relia-
bility model subject to s-dependent degradation processes.
The statistical inference method was developed using EM
algorithm with two-stage procedure. In the crack length
growth problem, we applied the model to fit the crack size
data. The estimation accuracy was compared in a numerical
example.The results revealed that our model is suitable when
the degradation path is nonlinear.The system reliability tends
to be higher than s-independent situation after early stage.
This is expected because ourmodel considers the dependence
among degradation processes. If we ignore the dependent
relationship, significant information loss is expected. There-
fore, our model is potentially very useful for multivariate
degradation data analysis, because a common way to model
for multivariate data has limitation of the same marginal
distribution and can only describe linear correlation.
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