
Research Article
Hybrid Artificial Bee Colony Algorithm and Particle Swarm
Search for Global Optimization

Wang Chun-Feng, Liu Kui, and Shen Pei-Ping

College of Mathematics and Information, Henan Normal University, Xinxiang 453007, China

Correspondence should be addressed to Wang Chun-Feng; wangchunfeng10@126.com

Received 17 July 2014; Accepted 1 October 2014; Published 28 October 2014

Academic Editor: Guangming Xie

Copyright © 2014 Wang Chun-Feng et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Artificial bee colony (ABC) algorithm is one of the most recent swarm intelligence based algorithms, which has been shown to
be competitive to other population-based algorithms. However, there is still an insufficiency in ABC regarding its solution search
equation, which is good at exploration but poor at exploitation. To overcome this problem, we propose a novel artificial bee colony
algorithmbased onparticle swarm searchmechanism. In this algorithm, for improving the convergence speed, the initial population
is generated by using good point set theory rather than random selection firstly. Secondly, in order to enhance the exploitation
ability, the employed bee, onlookers, and scouts utilize themechanism of PSO to search new candidate solutions. Finally, for further
improving the searching ability, the chaotic search operator is adopted in the best solution of the current iteration. Our algorithm is
tested on some well-known benchmark functions and compared with other algorithms. Results show that our algorithm has good
performance.

1. Introduction

Optimization problems play a very important role in many
scientific and engineering fields. In the last two decades,
several swarm intelligence algorithms, such as ant colony
optimization (ACO) [1, 2], particle swarm optimization
(PSO) [3, 4], and artificial bee colony (ABC) algoritm [5,
6], have been developed for solving difficult optimization
problem. Researchers have shown that algorithms based
on swarm intelligent have great potential [7–9] and have
attracted much attention.

The ABC algorithm was first proposed by Karaboga in
2005, inspired by the intelligent foraging behavior of honey
bee [5]. Since the invention of the ABC algorithm, it has been
used to solve both numerical and nonnumerical optimization
problems. The performance of ABC algorithm has been
compared with some other intelligent algorithms, such as
GA [10], differential evolution algorithm (DE) [11]. The
results show that ABC algorithm is better than or at least
comparable to the other methods. Recently, for improving
the performance of ABC algorithm, many variant ABC
algorithms have been developed. Alatas proposed a ABC

algorithm by using chaotic map as efficient alternatives
to generate pseudorandom sequence [12]. To improve the
exploitation ability, Zhu and Kwong presented a global-best-
solution-guided ABC (GABC) algortihm by incorporating
the information of global best solution into the solution
search equation [13]. By combing Powell's method, Gao
et al. proposed an improved ABC algorithm-Powell ABC
(PABC) algorithm [14]. In order to improve the exploitation
ability, a converge-onlookers ABC (COABC) was developed
by applying the best solution of the previous iteration in
search equation at the onlooker stage [15]. More extensive
review of ABC can refer to [16].

In addition, considering PSO has good exploitation abil-
ity, a few of hybrid ABC algorithms have been presented
based on PSO algorithm. For example, a novel hybrid
approach referred to as IABAP based on the PSO and ABC
is presented in [17]. In this algorithm, the flow of information
from bee colony to particle swarm is exchanged based on
scout bees. Another hybrid approach is the ABC-SPSO
algorithm based on the ABC and PSO [18]. In ABC-SPSO
algorithm, the update rule (solution updating equation) of the
ABC algorithm is executed among personal best solutions of
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the particles after themain loop of the PSO is finished. Unlike
the IABAP and ABC-SPSO, a hybrid method named HPA is
proposed.The global best solution of theHPA is created using
recombination procedure between global best solutions of the
PSO and the ABC.

In this paper, we present a hybrid artificial bee colony
algorithm based on particle swarm search for global opti-
mization, which is named “ABC-PS.” For furthermore
improving the performance, some strategies have been
applied. The experimental results show that the algorithm
could do well in improving the performance of ABC algo-
rithm in most areas.

The rest of the paper is organized as follows. The original
ABC algorithm is introduced in Section 2. The PSO is
explained inmaterial andmethods in Section 3.Theproposed
ABC-PS approach is described in Section 4.The performance
of the ABC-PS is compared with that of original ABC
algorithm and the state-of-art algorithm in Section 5. Finally,
conclusions are given in Section 6.

2. The Original ABC Algorithm

ABC algorithm contains three groups of bees: employed bees,
onlookers, and scouts. The numbers of employed bees and
onlookers are set equally. Employed bees are responsible
for searching available food sources and gathering required
information.They also pass their food information to onlook-
ers. Onlookers select good food source from those found by
employed bees to further search the foods. When the quality
of the food source is not improved through a predetermined
number of cycles, the food source is abandoned by its
employed bee. At the same time, the employed bee becomes
a scout and start to search for a new food source. In ABC
algorithm, each food source represents a feasible solution
of the optimization problem and the nectar amount of a
food source is evaluated by the fitness value (quality) of the
associated solution. The number of employed bees is set to
that of food sources.

Assume that the search space is𝑑-dimension, the position
of the 𝑖th food source (solution) can be expressed as a
𝑑-dimension vector 𝑥

𝑖
= (𝑥
𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝑑
), 𝑖 = 1, 2, . . . , 𝑆𝑛,

𝑆𝑛 is the number of food sources. The detail of the orginal
ABC algorithm is given as follows.

At the initialization stage, a set of food source positions
is randomly selected by the bees as in (1) and their nectar
amounts are determined:

𝑥
𝑖𝑗
= 𝑥
𝑗
+ rand (0, 1) ∗ (𝑥𝑗 − 𝑥𝑗) , (1)

where 𝑖 ∈ {1, 2, . . . , 𝑆𝑛}, 𝑗 ∈ {1, 2, . . . , 𝑑}, 𝑥
𝑗
and 𝑥

𝑗
are the

lower bound and upper bound of the 𝑗th dimension, respec-
tively.

An onlooker bee evaluates the nectar information taken
from all employed bees and chooses a food source with a
probability related to its nectar amount.The food source with
higher quality would have a larger opportunity to be selected

by onlookers. The probability could be obtained from the
following equation:

𝑃
𝑖
=

fit (𝑥
𝑖
)

∑
𝑆𝑛

𝑖=1
fit (𝑥
𝑖
)
, (2)

where fit(𝑥
𝑖
) is the nectar amount of the 𝑖th food source and

it is associated with the objective function value 𝑓(𝑥
𝑖
) of the

𝑖th food source. Once a food source 𝑥
𝑖
is selected, she utilizes

(3) to produce a modification on the position (solution) in
her memory and checks the nectar amount of the candidate
source (solution)

𝑥


𝑖𝑗
= 𝑥
𝑖𝑗
+ 𝜓 ∗ (𝑥

𝑖𝑗
− 𝑥
𝑘𝑗
) , (3)

where 𝑖, 𝑘 ∈ {1, 2, . . . , 𝑆𝑛}, 𝑘 ̸= 𝑖, 𝑥
𝑖𝑗
is a new feasible solution

that produced from its previous solution𝑥
𝑖𝑗
and the randomly

selected neighboring solution 𝑥
𝑘𝑗
; 𝜓 is a random number

between [−1, 1], which controls the production of a neighbor
food source position around 𝑥

𝑖𝑗
; 𝑗 and 𝑘 are randomly

chosen indexes. In each iteration, only one dimension of each
position is changed. Providing that its nectar is higher than
that of the previous one, the bee memorizes the new position
and forgets the old one.

In ABC algorithm, there is a control parameter called
limit in the original ABC algorithm. If a food source is not
improved anymore when limit is exceeded, it is assumed to
be abandoned by its employed bee and the employed bee
associated with that food source becomes a scout to search
for a new food source randomly, which would help avoiding
local optima.

3. Particle Swarm Optimization (PSO)

As a swarm-based stochastic optimization method, the PSO
algorithm was developed by Kennedy and Eberhart [19],
which is based on social behavior of bird flocking or fish
schooling. The original PSO maintains a population of
particles 𝑥

𝑖
= (𝑥

𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝑑
), 𝑖 = 1, 2, . . . , 𝑆𝑛 which

distribute uniformly around search space at first. Each
particle represents a potential solution to an optimization
problem. After randomly produced solutions are assigned
to the particles, velocities of the particles are updated by
using self-best solution of the particle obtained previous in
iterations and global best solution obtained by the particles
so far at each iteration. This is formulated as follows:

V𝑗
𝑖
(𝑘 + 1) = V𝑗

𝑖
(𝑘) + 𝑐1 ∗ 𝑟1 ∗ [𝑝

best
𝑖,𝑗

(𝑘) − 𝑥
𝑗

𝑖
(𝑘)]

+ 𝑐
2
∗ 𝑟
2
∗ [𝑔

best
𝑗

(𝑘) − 𝑥
𝑗

𝑖
(𝑘)] ,

(4)

where V
𝑖
(𝑘+1) (−Vmax ≤ V

𝑖
(𝑘+1) ≤ Vmax)which represents

the rate of the position change for the particle; 𝑥𝑗
𝑖
(𝑘) is the 𝑖th

particle in 𝑗th dimension at step 𝑘; V𝑗
𝑖
(𝑘) is the velocity of the

𝑖th particle in 𝑗th dimension at step 𝑘; 𝑝best
𝑖,𝑗

is the personal
best position of the 𝑖th particle in 𝑗th dimension at time step
𝑘; 𝑔best is the global best position obtained by the population
at step 𝑘; 𝑐

1
and 𝑐
2
are the positive acceleration constants used
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to scale the contribution of cognitive and social components,
respectively; 𝑟

1
and 𝑟
2
which are stochastic elements of the

algorithm are random numbers in the range [0, 1]. For each
particle 𝑖, Kennedy and Eberhart [19] proposed that the
position 𝑥

𝑖
can be updated in the following manner:

𝑥
𝑗

𝑖
(𝑘 + 1) = 𝑥

𝑗

𝑖
(𝑘) + V𝑗

𝑖
(𝑘 + 1) . (5)

Considering the minimization problem, the personal best
solution of the particle at the next step 𝑘 + 1 is calculated as

𝑝
best
𝑖

(𝑘 + 1)

= {
𝑝
best
𝑖

(𝑘) , if 𝑓 (𝑥
𝑖 (𝑘 + 1)) ≥ 𝑓 (𝑝

best
𝑖

(𝑘)) ,

𝑥
𝑖 (𝑘 + 1) , if 𝑓 (𝑥

𝑖 (𝑘 + 1)) < 𝑓 (𝑝
best
𝑖

(𝑘)) .

(6)

The global best position 𝑔best is determined by using (7) (𝑆𝑛
is the number of the particles):

𝑔
best

= min {𝑓 (𝑝best
𝑖
)} , 𝑖 = 1, 2, . . . , 𝑆𝑛, (7)

where 𝑓 is the objective function.
In (4), to control the exploration and exploitation abilities

of the swarm, Shi and Eberhart proposed a new parameter
called as “inertia weight 𝜔” [20]. The inertia weight controls
the momentum of the particle by weighing the contribution
of the previous velocity. By adding the inertia weight 𝜔, (4) is
changed

V𝑗
𝑖
(𝑘 + 1) = 𝜔 ∗ V𝑗

𝑖
(𝑘) + 𝑐1 ∗ 𝑟1 ∗ [𝑝

best
𝑖,𝑗

(𝑘) − 𝑥
𝑗

𝑖
(𝑘)]

+ 𝑐
2
∗ 𝑟
2
∗ [𝑔

best
𝑗

(𝑘) − 𝑥
𝑗

𝑖
(𝑘)] .

(8)

Based on the description of PSO,we can see that the parti-
cles have a tendency to fly towards the better and better search
area over the course of search process. So, the PSO algo-
rithm can enforce a steady improvement in solution quality.

4. Hybrid Approach (ABC-PS)

From the above discussion of ABC and PSO, it is clear
that the global best solution of the population does not be
directly used in ABC algorithm; at the same time, it can be
concluded that when the particles in the PSO get stuck in
the local minima, it may not get rid of the local minima.
For overcoming these disadvantages of two algorithms, we
propose a hybrid global optimization approach by combing
ABC algorithm and PSO searching mechanism. In this
algorithm, the initial population is generated by using good
point set theory.

4.1. Background on Good Point Set. Let 𝐺
𝑑
be 𝑑-dimensional

unit cube in Euclidean space. If 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑑
) ∈ 𝐺

𝑑
,

then 0 ≤ 𝑥
𝑖
≤ 1 (𝑖 = 1, 2, . . . , 𝑑). Let 𝑝

𝑛
(𝑘) be a set of 𝑛 points

in 𝐺
𝑑
; then 𝑝

𝑛
(𝑘) = {(𝑥

(𝑛)

1
(𝑘), . . . , 𝑥

(𝑛)

𝑑
(𝑘)) | 0 ≤ 𝑥

(𝑛)

𝑖
(𝑘) ≤

1, 1 ≤ 𝑘 ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑑}. Let 𝑟 = (𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑑
) be a point

in 𝐺
𝑑
, for 𝑁

𝑛
(𝑟) = 𝑁

𝑛
(𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑑
) denoted the number

of points in 𝑝
𝑛
(𝑘) which content with 0 ≤ 𝑥

(𝑛)

𝑖
(𝑘) ≤ 𝑟

𝑖
,

𝑖 = 1, . . . , 𝑑.

Definition 1. Let 𝜑(𝑛) = sup
𝑟∈𝐺𝑑

|(𝑁
𝑛
(𝑟)/𝑛) − |𝑟||, |𝑟| =

𝑟
1
𝑟
2
⋅ ⋅ ⋅ 𝑟
𝑑
; then 𝜑(𝑛) is called discrepancy of point set 𝑝

𝑛
(𝑘).

Definition 2. Let 𝑥 ∈ 𝐺
𝑑
; if 𝑝
𝑛
(𝑘) = (𝑟

(𝑛)

1
∗𝑘, . . . , 𝑟

(𝑛)

𝐷
∗𝑘), (𝑘 =

1, . . . , 𝑛) has discrepancy 𝜑(𝑛), 𝜑(𝑛) = 𝑐(𝑟, 𝜖)𝑛
(−1+𝜖), where

𝑐(𝑟, 𝜖) is constant only relate with 𝑟, 𝜖 (𝜖 > 0), then 𝑝
𝑛
(𝑘) is

called good point set and 𝑟 is called good point.

Remark 3. If let 𝑟
𝑖
= 2 cos(2𝜋𝑖/𝑝), 1 ≤ 𝑖 ≤ 𝑑, where 𝑝 is the

minimum prime number content with (𝑝 − 3)/2 ≥ 𝑑, then 𝑟
is a good point. If let 𝑟

𝑖
= 𝑒
𝑖, 1 ≤ 𝑖 ≤ 𝑑, 𝑟 is a good point also.

Theorem 4. If 𝑝
𝑛
(𝑘) (1 ≤ 𝑘 ≤ 𝑛) has discrepancy 𝜑(𝑛), 𝑓 ∈

𝐵
𝑑
, then



∫
𝑥∈𝐺𝑑

𝑓 (𝑥) 𝑑𝑥 −∑
𝑓 (𝑝
𝑛 (𝑖))

𝑛



≤ V (𝑓) 𝜑 (𝑛) , (9)

where 𝐵
𝑑
is a 𝑑-dimensional Banach space of functions 𝑓 with

norm ‖ ∙ ‖, V(𝑓) = ‖𝑓 − 𝑢‖ measures the variability of the
function 𝑓.

Theorem 5. For arbitrary 𝑓 ∈ 𝐵
𝑑
, if (9) holds, then one has

point 𝑝
𝑛
(𝑘) (1 ≤ 𝑘 ≤ 𝑛), in which discrepancy is not more than

𝜑(𝑛).

Theorem 6. If 𝑓(𝑥) content with |𝜕𝑓/𝜕𝑥
𝑖
| ≤ 𝐿, 1 ≤ 𝑖 ≤ 𝑑,

|𝜕
2
𝑓/𝜕𝑥
𝑖
𝜕𝑥
𝑗
| ≤ 𝐿, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑑, . . . , |𝜕𝑑𝑓/𝜕𝑥

1
⋅ ⋅ ⋅ 𝜕𝑥
𝑑
| ≤ 𝐿,

where 𝐿 is an absolute constant, when we want to estimate the
integral of a function 𝑓 over the 𝑑-dimensional unit hypercube
𝐺
𝑑
, namely 𝑢 = ∫

𝑥∈𝐺𝑑

𝑓(𝑥)𝑑𝑥, by the average value off over
any point set 𝑝

𝑛
(𝑘) (1 ≤ 𝑘 ≤ 𝑛), 𝑄

𝑛
= ∑(𝑓(𝑝

𝑛
(𝑖))/𝑛), then the

integration error 𝐸
𝑛
= 𝑢 − 𝑄

𝑛
is not smaller than 𝑜(𝑛−1).

By Theorems 4–6, it can be seen that if we estimate the
integral based on good point set, the degree of discrepancy
𝜑(𝑛) = 𝑐(𝑟, 𝜖)𝑛

−1+𝜖 is only related with 𝑛. This is a good idea
for high dimensional approximation computation. In other
words, the idea of good point set is to take the point set more
evenly than random point.

For the 𝑑-dimensional local search space𝐻, the so-called
good point set which contains 𝑛 points can be found as
follows:

𝑝
𝑛 (𝑘) = {({𝑟1 ∗ 𝑘} , {𝑟2 ∗ 𝑘} , . . . , {𝑟𝑑 ∗ 𝑘}) , 𝑘 = 1, . . . , 𝑛} ,

(10)

where 𝑟
𝑖
= 2 cos(2𝜋𝑖/𝜌), 1 ≤ 𝑖 ≤ 𝑑, 𝜌 is the minimum prime

number which content with 𝜌 ≥ 2𝑑 + 3, and {𝑟
𝑖
∗ 𝑘} is the

decimal fraction of 𝑟
𝑖
∗ 𝑘 (or with 𝑟

𝑖
= 𝑒
𝑖, 1 ≤ 𝑖 ≤ 𝑑).

Since good point set principle is based on unit hypercube
or hypersphere, in order to map 𝑛 good points from space
𝐻 : [0, 1]

𝑑 to the search space 𝑇 : [𝑥, 𝑥]
𝑑, we define the

following transformation:

𝑥
𝑖
= 𝑥
𝑖
+ {𝑟
𝑖
∗ 𝑘} ∗ (𝑥

𝑖
− 𝑥
𝑖
) . (11)

In the following, for two-dimensional space [−1, 1], we
generate 100 points by using goog point set method and
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Figure 1: 100 points by using goog point set method.
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Figure 2: 100 points by using random method.

randommethod, respectively, and give the distribution effect
of them (see Figures 1 and 2). It can be seen that good point
set is uniform, and as long as the sampling number is certain,
the income distribution effect is the same at every time; so
good point set method has good stability.

4.2. Chaotic Search Operation. In our algorithm, assume that
𝑔
best is the best solution of the current iteration. To enrich the

searching behavior in 𝑔best and to avoid being trapped into
local optimum, chaotic dynamics is incorporated into our
algorithm and the detail is given as follows. Firstly, the well-
known logistic equation is employed to generate a chaotic
sequence, which is defined as follows:

ch
𝑖+1
= 4 ∗ ch

𝑖
∗ (1 − ch

𝑖
) , 1 ≤ 𝑖 ≤ 𝐾, (12)

where𝐾 is the length of chaotic sequence. Then map ch
𝑖
to a

chaotic vector in the interval [𝑥, 𝑥]:

CH
𝑖
= 𝑥 + ch

𝑖
∗ (𝑥 − 𝑥) , 𝑖 = 1, . . . , 𝐾, (13)

where 𝑥 and 𝑥 are the lower bound and upper bound of
variable 𝑥, respectively. Finally, adopt the following equation
to generate the new candidate solution 𝑥:

𝑥 = (1 − 𝜆) ∗ 𝑔
best

+ 𝜆 ∗ CH
𝑖
, 𝑖 = 1, . . . , 𝐾, (14)

where 𝜆 is the shrinking factor, which is defined as follows:

𝜆 =
maxcycle − iter + 1

maxcycle
, (15)

where maxcycle is the maximum number of iterations and
iter is the number of current iteration.

By (15), it can be seen that 𝜆 will become small with
the evolution generations increasing. Furthermore, combing
(13), it is easy to see that 𝜆 is smaller, less chaotic search
is needed. Thus, from the above discussion, we know that
the local search range becomes smaller with the process of
evolution.

4.3.The Statement of ABC-PS Algorithm. Based on the above,
the ABC-PC algorithm is given in this subsection.

Algorithm 7.
(1) Set the population size 𝑆𝑛, give themaximumnumber

of iteration maxcycle, 𝑤max, 𝑤min, Vmax, and Vmin.
(2) Use (11) to creat an initial population {𝑥

𝑖
| 𝑖 = 1, . . . ,

𝑆𝑛}. Calculatethe function value of the population
{𝑓
𝑖
| 𝑖 = 1, . . . , 𝑆𝑛}, find the best solution 𝑔best and

the personal bests of the population 𝑝best
𝑖

.
(3) While the stopping criterion is not meet do
(4) For 𝑖 = 1 to 𝑆𝑛 do % the employed bee phase
(5) Update the velocities of the particles and the positions

of the particlesby using (8) and (5), respectively.
(6) Determine personal bests of the particles by using (6),

and update trail.
(7) End if
(8) Determine the 𝑔best of the population.
(9) End for
(10) For 𝑖 = 1 to 𝑆𝑛 do % the onlooker phase
(11) If rand < Prob(𝑖)
(12) Update the velocity of the food source 𝑖 and its the

position by using (8) and (5).
(13) Determine personal bests of the particles by using (6),

and update trail.
(14) End if
(15) If trail

𝑖
= max(trail) > limit, then % the scout phase

replace 𝑥
𝑖
with a new solution produced by (2).

(16) End if
(17) Determine the 𝑔best of the population.
(18) Chaotic search 𝐾 times in 𝑔best, and redetermine the

𝑔
best of the population.

(19) iter = iter + 1.
(20) End while
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Figure 3: The relation of the best value and each iteration (the
function Matyas).

5. Comparison of the ABC-PS with the Other
Hybrid Methods Based on the ABC

In this section, ABC-PS is applied tominimize a set of bench-
mark functions. In all simulations, the inertia weight in (4) is
defined as follows:

𝜔 =
𝜔max − 𝜔min
maxcycle

∗ iter, (16)

where 𝜔max and 𝜔min are the maximum inertia weight and
minimum weight, respectively, iter denotes the times of
current iteration. From the above formula, it can be seen that,
with the iteration increasing, the velocity V

𝑖
of the particle

𝑥
𝑖
becomes important more and more. 𝜔max and 𝜔min are

set to 0.9 and 0.4, respectively. Vmin = −1, Vmax = 1, and
𝑐
1
= 𝑐
2
= 1.3.

Experiment 1. In order to evaluate the performance of ABC-
PS algorithm, we have used a test bed of four traditional
numerical benchmarks as illustrated in Table 1, which include
Matyas, Booth, 6 Hump Camelback, and GoldsteinCPrice
functions. The characteristics, dimensions, initial range, and
formulations of these functions are given in Table 1. Empirical
results of the proposed hybrid method have been compared
with results obtained with that of basic ABC algorithm and a
latest algorithm COABC [15].

The values of the common parameters used in three algo-
rithms such as population size and total evaluation number
are chosen in the same. Population size is 50 for all functions,
the limit is 10. For each function, all the methods were run 30
times independently. In order to make comparison clear, the
globalminimums,maximumnumber of iterations,mean best
values, standard deviations are given in Table 2. For ABC and
ABC-PS, Figures 3, 4, 5, and 6 illustrate the change of the best
value of each iteration. The experiment shows that the ABC-
PSmethod is much better than the initial ABC algorithm and
COABC.
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ABC-PS
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Figure 4: The relation of the best value and each iteration (the
function Booth).
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Figure 5: The relation of the best value and each iteration (the
function Camelback).

Experiment 2. To further verify the performance of ABC-
PS, 12 numerical benchmark functions are selected from the
literatures [13–15].This set consists of many different kinds of
problems such as unimodal, multimodal, regular, irregular,
separable, nonseparable, and multidimensional. The charac-
teristics, dimensions, initial range, and formulations of these
functions are listed in Table 3.

In order to fairly compare the performance of ABC-PS,
COAB, GABC [13], and PABC [14], the experiments are con-
ducted the same way as described [13–15]. The minimums,
max iterations, mean best values, and standard deviations
found after 30 runs are given in Table 4. The bold font in
Table 4 is the optimum value among different methods. From
Table 4, it can be see that the method ABC-PS is superior to
other algorithms in most cases, expect to 𝑓

5
and 𝑓

6
.
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Table 1: Benchmark functions used in Experiment 1.

Functions C Range
𝑓
1
= 0.26(𝑥

2

1
+ 𝑥
2

2
) − 0.48𝑥

1
𝑥
2

UN [−10, 10]
𝑓
2
= (𝑥
1
+ 2𝑥
2
− 7)
2
+ (2𝑥

1
+ 𝑥
2
− 5)
2 MS [−10, 10]

𝑓
3
= 4𝑥
2

1
− 2.1𝑥

4

1
+ 𝑥
6

1
/3 + 𝑥

1
𝑥
2
− 4𝑥
2

2
+ 4𝑥
4

2
MN [−5, 5]

𝑓
4
= [1 + (𝑥

1
+ 𝑥
2
+ 1)
2
(19 − 14𝑥

1
+ 3𝑥
2

1
− 14𝑥

2
+ 6𝑥
1
𝑥
2
+ 3𝑥
2

2
)] MN [−2, 2]

∗ [30 + (2𝑥
1
− 3𝑥
2
)
2
(18 − 32𝑥

1
+ 12𝑥

2

1
+ 48𝑥

2
− 36𝑥

1
𝑥
2
+ 27𝑥

2

2
)]

C: characteristic; U: unimodal; M: multimodal; N: nonseparable; S: separable.

Table 2: Results obtained by ABC, COABC, and ABC-PS algorithms.

Function Min Max iteration Algorithm Mean SD

𝑓
1

0 1000
ABC 6.03𝑒 − 07 3.64𝑒 − 07

COABC 4.45𝑒 − 07 4.63𝑒 − 07

ABC-PS 0 0

𝑓
2

0 1000
ABC 1.68𝑒 − 17 1.38𝑒 − 17

COABC 6.19𝑒 − 23 2.06𝑒 − 22

ABC-PS 0 0

𝑓
3

−1.03 1000
ABC −1.03 7.20𝑒 − 17

COABC −1.03 1.76𝑒 − 16

ABC-PS −1.03162845348988 0

𝑓
4

3 1000
ABC 3 1.47𝑒 − 3

COABC 3 3.21𝑒 − 06

ABC-PS 2.99999999999992 6.28e − 16

Table 3: Benchmark functions used in Experiment 2.

Functions C D Range
𝑓
1
= 0.26(𝑥

2

1
+ 𝑥
2

2
) − 0.48𝑥

1
𝑥
2

UN 2 [−10, 10]

𝑓
2
=

𝑛−1

∑

𝑖=1

[100(𝑥
𝑖+1
− 𝑥
2

𝑖
)
2
+ (𝑥
𝑖
− 1)
2
] UN 30 [−30, 30]

𝑓
3
= 4𝑥
2

1
− 2.1 ∗ 𝑥

4

1
+
𝑥
6

1

3
+ 𝑥
1
𝑥
2
− 4𝑥
2

2
+ 4𝑥
4

2
MN 2 [−5, 5]

𝑓
4
= −20 exp(−0.2 ∗ √

𝑛

∑

𝑖=1

𝑥
2

𝑖

𝑛
) − exp(

𝑛

∑

𝑖=1

cos(2Π
𝑥
𝑖

𝑛
)) + 20 + 𝑒 MN 60 [−32, 32]

𝑓
5
=

1

4000

𝑛

∑

𝑖=1

𝑥
2

𝑖
−

𝑛

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖
) + 1 MN 60 [−600, 600]

𝑓
6
= 418.982887 ∗ 𝑛 −

𝑛

∑

𝑖=1

(𝑥
𝑖
sin(√|𝑥

𝑖
|)) MN 30 [−500, 500]

𝑓
7
= 100(𝑥

2

1
− 𝑥
2
)
2
+ (𝑥
1
− 1)
2
+ (𝑥
3
− 1)
2
+ 90(𝑥

2

3
− 𝑥
4
)
2

UN 4 [−10, 10]
+10.1((𝑥

2
− 1)
2
+ (𝑥
4
− 1)
2
) + 19.8(𝑥

2
− 1)(𝑥

4
− 1)

𝑓
8
=

𝑛

∑

𝑖=1

|𝑥
𝑖
|
𝑖+1 US 30 [−1, 1]

𝑓
9
=

𝑛

∑

𝑖=1

|𝑥
𝑖
| +

𝑛

∏

𝑖=1

|𝑥
𝑖
| US 60 [−10, 10]

𝑓
10
= max {|𝑥

𝑖
| | 1 ≤ 𝑖 ≤ 𝑛} US 60 [−100, 100]

𝑓
11
=
1

𝑛

𝑛

∑

𝑖=1

(𝑥
4

𝑖
− 16𝑥

2

𝑖
+ 5𝑥
𝑖
) MS 60 [−5, 5]

𝑓
12
=

𝑛

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos(2𝜋𝑥

𝑖
) + 10) MS 60 [−5.12, 5.12]

C: characteristic; U: unimodal; M: multimodal; N: nonseparable; S: separable.
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Table 4: ABC-PS performance comparison of ABC and the state-of-art algorithms in [13–15].

Function Min Max iteration Algorithm Mean SD

𝑓
1

0 1000
ABC 6.03𝑒 − 07 3.64𝑒 − 07

COABC (with UTEB = 3) 1.42𝑒 − 152 4.44𝑒 − 152

ABC-PS 0 0

𝑓
2

0 2000
ABC 0.24 0.46

COABC (with UTEB = 3) 0.08 0.10

ABC-PS 5.494e − 18 0

𝑓
3

−1.03 1000
ABC −1.03 7.20𝑒 − 17

COABC (with UTEB = 3) −1.03 2.10𝑒 − 16

ABC-PS −1.03162845348988 0

𝑓
4

0 1000
ABC 3 1.47𝑒 − 3

COABC (with UTEB = 3) 3.40𝑒 − 13 6.35𝑒 − 14

ABC-PS 8.881e − 016 0

𝑓
5

0 2000
ABC 4.46𝑒 − 09 6.68𝑒 − 09

COABC (with UTEB = 3) 0 0
ABC-PS 1.551𝑒 − 012 3.468𝑒 − 012

𝑓
6

0 1000
ABC 2.05𝑒 + 02 1.63𝑒 + 02

COABC (with UTEB = 3) 0 0
ABC-PS −3.637𝑒 − 012 0

𝑓
7

0 2000
ABC 1.71𝑒 − 01 6.94𝑒 − 02

COABC (with UTEB = 3) 9.35𝑒 − 03 4.64𝑒 − 03

ABC-PS 8.042e − 07 3.680e − 07

𝑓
8

0 1000
ABC 7.69𝑒 − 22 2.18𝑒 − 21

PABC 4.46𝑒 − 61 1.09𝑒 − 60

ABC-PS 8.344e − 067 1.865e − 066

𝑓
9

0 1000
GABC 4.73𝑒 − 13 1.56𝑒 − 13

PABC 1.65𝑒 − 18 1.63𝑒 − 18

ABC-PS 2.494e − 018 3.734e − 018

𝑓
10

0 1000
GABC 6.38𝑒 − 01 1.75𝑒 − 01

PABC 8.82𝑒 − 01 1.26𝑒 − 01

ABC-PS 2.50e − 006 3.01e − 006

𝑓
11

−78.33236 1000
GABC −78.3322 1.32𝑒 − 05

PABC −78.3323 2.62𝑒 − 14

ABC-PS −78.33233 1.004e − 014

𝑓
12

0 1000
GABC 9.35𝑒 − 01 1.87𝑒 − 00

PABC 9.58𝑒 − 03 6.27𝑒 − 03

ABC-PS 0 0

6. Conclusion

In this paper, a hybrid ABC algorithm based on particle
swarm searching mechanism (ABC-PS) was presented. For
overcoming the disadvantage of ABC algorithm, we adopted
good point set theory to generate the initial food source; then,
the mechanism of PSO was utilized to search new candidate
solutions for improving the exploitation ability of bee swarm;
finally, the chaotic search operator was adopted in the best
solution of the current iteration to increase the searching
ability. The experimental results show that the ABC-PS
exhibits a magnificent performance and outperforms other
algorithms such as ABC, GABC, COABC, and PABC inmost
case.
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