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Correspondence should be addressed to M. A. Salido; msalido@dsic.upv.es

Received 22 July 2014; Revised 24 November 2014; Accepted 1 December 2014; Published 31 December 2014

Academic Editor: Andrzej Swierniak

Copyright © 2014 M. Rodriguez-Molins et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Decision makers must face the dynamism and uncertainty of real-world environments when they need to solve the scheduling
problems. Different incidences or breakdowns, for example, initial data could change or some resources could become unavailable,
may eventually cause the infeasibility of the obtained schedule. To overcome this issue, a robust model and a proactive approach
are presented for scheduling problems without any previous knowledge about incidences. This paper is based on proportionally
distributing operational buffers among the tasks. In this paper, we consider the berth allocation problem and the quay crane
assignment problem as a representative example of scheduling problems.The dynamism and uncertainty are managed by assessing
the robustness of the schedules. The robustness is introduced by means of operational buffer times to absorb those unknown
incidences or breakdowns. Therefore, this problem becomes a multiobjective combinatorial optimization problem that aims to
minimize the total service time, to maximize the buffer times, and to minimize the standard deviation of the buffer times. To
this end, a mathematical model and a new hybrid multiobjective metaheuristic is presented and compared with two well-known
multiobjective genetic algorithms: NSGAII and SPEA2+.

1. Introduction

Within a container terminal, operations related to move con-
tainers can be divided into four different subsystems (ship-
to-shore, transfer, storage, and delivery/receipt) [1]. In each
subsystem, terminal operators must deal with with different
complex optimization problems that can be overcome by
using artificial intelligence techniques. For instance, berthing
allocation or stowage planning problems are related to the
ship-to-shore area [2–5], remarshalling problem and trans-
port optimization [6] to the storage and transfer subsystems,
respectively, and planning and scheduling hinterland oper-
ations related to trains and trucks to the delivery/receipt
subsystem [7].

In this paper, we focus on two problems related to the
ship-to-shore area, the berth allocation problem (BAP) and
the quay crane assignment problem (QCAP).The former is a
well-known combinatorial optimization problem [8], which
consists in assigning berthing positions and mooring times
to incoming vessels.TheQCAP deals with assigning a certain

number of quay cranes (QCs) to eachmoored vessel such that
all required movements of containers can be fulfilled [9].

A comprehensive survey of BAP and QCAP is given in
[9]. These problems have been mostly considered separately,
with an interest mainly focused on BAP. An interesting
approach for BAP is presented by Kim and Moon [10] where
a simulated annealing metaheuristic is compared with a
mathematical model. However, there are some studies on the
combined BAP + QCAP considering different characteristics
of berths and cranes [11–15].

Most of the research in scheduling has been focused on
deterministic and complete information, but they are usually
not satisfied in real-world environments. Due to the fact
that the real world is uncertain, imprecise, and nondeter-
ministic, there might be unknown information, breakdowns,
incidences, or changes, which make the initial plans or the
obtained schedules become invalid. Thus, there are new
trends to cope these aspects in the optimization techniques:
proactive and reactive approaches [16]. In this paper, a proac-
tive approach is studied within the berth allocation and
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the quay crane assignment problems. The uncertainty within
these problems is due to lower movements per time unit
than expected or engine failures in quay cranes, among
others. Due to the introduction of this new objective in the
scheduling optimization problem, a multiobjective optimiza-
tion approach needs to be taken into consideration.

All the above studies do not take into consideration the
uncertainty of the real world to obtain a robust scheduling.
Robustness is a measure of the performance characteriza-
tion of an algorithm in the presence of uncertainties [17].
However, there are some studies that address the robust
scheduling. In [18], a robust optimization model for cyclic
berthing for a continuous and dynamic BAP is studied by
minimizing the maximal crane capacity over different arrival
scenarios of a bounded uncertainty given by their arrival
agreements. In [19], a proactive approach for a discrete and
dynamic model of the BAP is presented taking into account
uncertainties in the arrival and handling times given their
probability density functions. They propose a mixed integer
programming model and a genetic algorithm (GA) for both
problems: discrete berth allocation and QC assignment. The
objective is to minimize the sum of expected value, the
standard deviation of the service time, and the tardiness of
the incoming vessels.

Robust scheduling based on operational buffers has
already been introduced as a proactive approach in the
BAP. An approach to robust BAP is presented in [20]. They
presented a feedback procedure for the BAP that iteratively
improves the robustness of the initial schedule.This feedback
procedure determines the time buffers for each vessel by
means of adjustment rules.

In [21], another approach to the robust BAP is solved by
a scheduling algorithm that integrates simulated annealing
and branch-and-bound algorithms.This study introduces the
robustness as an objective to bemaximized and an evaluation
is carried out by varying the weights of these functions. The
robustness is achieved by a constant buffer time assigned to
all vessels.

In [22], the robust BAP problem is studied as a proactive
strategy as a multiobjective optimization problem. They
solved this problem with the squeaky wheel optimization
(SWO) metaheuristic. The first objective is to minimize the
late departures and the deviation from the desired position;
the second objective is to maximize the robustness of the
schedule. They tackle the robustness measure as a diminish-
ing return, specifically the exponential function, to capture
the decreasing marginal productivity of slacks in a berthing
schedule.

However, most of the above approaches consider discrete
berths or previous knowledge about the uncertainty in
arrival or handling times to produce robust schedules, but
usually this knowledge is not available. Furthermore, other
approaches propose how to obtain robust schedules by
means of operational buffer times, but these buffers are set
independently of the handling (or processing) time of the
vessels.

Overcoming the above approaches, hybridmetaheuristics
for both single and multiobjective combinatorial optimiza-
tion problems have received a significant interest from the

research community [23, 24], and also they have been used
in a wide range of real-world applications [25].

In this paper, we introduce a robust model to deal with
limited incidences with no previous knowledge about them
(Section 3) as well as a multiobjective approach to face this
problem (Section 4). A formal mixed integer programming
(MIP) is presented for the dynamic and continuous robust
BAP + QCAP that extends the model presented in [10]
(Section 5). Section 6 presents our proposed hybrid multiob-
jective genetic algorithm based on the scheme NSGAII [26]
in order to obtain near-optimal solutions in an efficient way.
This hybrid algorithm is used to solve the BAP + QCAP with
a continuous quay and dynamic arrivals as well as to provide
robust solutions by using operational buffers. As there is no
previous knowledge about the incidences, these operational
buffers are proportionally distributed among the tasks to
be able to absorb as many incidences as possible. Thereby,
a new objective function (standard deviation of robustness
measures) was introduced to pursue this goal.This algorithm
is compared with the mathematical model presented and two
well-known multiobjective genetic algorithms: NSGAII and
SPEA2+ [27] (Section 7). The development of the technique
presented in this paper will provide the terminal operators
with different robust berthing plans which are able to absorb
limited incidences.

The overall collaboration goal of our group at the Uni-
versitat Politècnica de València (UPV) with the Valencia
Port Foundation and the maritime container terminal MSC
(Mediterranean ShippingCompany S.A.) is to offer assistance
and help in the planning and scheduling of tasks such as
the allocation of spaces to outbound containers, to identify
bottlenecks, to determine the consequences of changes, to
provide support in the resolution of incidents, and to provide
alternative berthing plans. Thus, the development of the
technique presented in this paper will provide the terminal
operators with different robust berthing plans which are able
to absorb limited incidences.

2. Berthing Allocation and Quay Crane
Assignment: BAP + QCAP

Let 𝑉 be a set of incoming vessels; BAP + QCAP consists
in obtaining an optimal (or near-optimal) schedule of the
vessels𝑉 by assigningmooring times, berthing positions, and
QCs to each vessel. Our BAP + QCAP model is classified,
according to the classification given by Bierwirth and Meisel
[9] as follows.

(i) Spatial Attribute: Continuous Layout. We assume that
the quay is a continuous line, so there is no partition-
ing of the quay and the vessel can berth at arbitrary
positions within the boundaries of the quay. It must
be taken into account that, for a continuous layout,
berth planning ismore complicated than for a discrete
layout, but it better utilizes the quay space [9].

(ii) Temporal Attribute: Dynamic Arrival. Fixed arrival
times are given for the vessels, so that vessels cannot
berth before their expected arrival times.
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Figure 1: Data related to one vessel.

(iii) Handling Time Attribute: Unknown in Advance. The
handling time of a vessel depends on the number of
assigned QCs (QCAP) and the moves required.

(iv) Performance Measure: Wait and Handling Times. The
objective is to minimize the sum of the waiting and
handling times of all vessels 𝑉.

Following, we introduce the notation used for each vessel
𝑖 ∈ 𝑉 (Figure 1). The integer data variables are

(i) 𝐾: total number of QCs in the container terminal.
We assume all QCs carry out the same number of
movements per time unit (movsQC), given by the
container terminal,

(ii) 𝐿: total length of the berth in the container terminal,

(iii) 𝑎
𝑖
: arrival time of the vessel 𝑖 at port,

(iv) 𝑐
𝑖
: number of requiredmovements to load and unload

containers of vessel 𝑖,

(v) ℓ
𝑖
: vessel length.

The decision variables are

(i) 𝑚
𝑖
: mooring time of 𝑖.Thus, waiting time (𝑤

𝑖
) of vessel

𝑖 is calculated as (𝑤
𝑖
= 𝑚

𝑖
− 𝑎

𝑖
),

(ii) 𝑝
𝑖
: berthing position where vessel 𝑖moors,

(iii) 𝑞
𝑖
: number of assigned QCs to vessel 𝑖,

(iv) 𝑢
𝑖𝑘
: indicates whether the QC 𝑘 (1 ≤ 𝑘 ≤ 𝐾) works

(1) or not (0) on the vessel 𝑖,

(v) 𝑛
𝑖𝑘
: denotes that the number of QCs assigned to vessel

𝑖 is 𝑘 QCs (𝑛
𝑖𝑘
= 1), For instance, if vessel 3 has been

assigned 4 QCs, then 𝑛
34

= 1 and the others QCs
𝑛
3𝑘
= 0, ∀𝑘 = 1, . . . , 𝐾, 𝑘 ̸= 4.

The variables derived from the previous ones are

(i) 𝐻
𝑖𝑘
: loading and unloading time at quay (handling

time) of vessel 𝑖 using 𝑘 QCs (1 ≤ 𝑘 ≤ 𝐾). This
handling time depends on 𝑐

𝑖
and it is defined by

𝐻
𝑖𝑘
= ⌈

𝑐
𝑖

𝑘 ∗ movsQC
⌉ ∀𝑖 ∈ 𝑉, ∀𝑘 = 1, . . . , 𝐾, (1)

(ii) ℎ
𝑖
: required handling time of vessel 𝑖when 𝑞

𝑖
QCs are

assigned to it. This value is set by means of𝐻
𝑖𝑞𝑖
,

(iii) 𝑡
𝑖𝑘
: working time of the 𝑘th QC (1 ≤ 𝑘 ≤ 𝐾) that is

assigned to vessel 𝑖,
(iv) 𝑑

𝑖
: departure time of vessel 𝑖 (𝑑

𝑖
= 𝑚

𝑖
+ ℎ

𝑖
),

(v) 𝑠
𝑖
and 𝑒

𝑖
: indexes of the first and last QC assigned to

vessel 𝑖, respectively.

In this study, the following assumptions are considered.

(i) All the information related to the waiting vessels
is known in advance (arrival, priority, moves, and
length).

(ii) Every vessel has a draft that is lower than or equal to
the draft of the quay.

(iii) Movements of QCs along the quay as well as berthing
and departure times of vessels are not considered
since it supposes a constant penalty time for all
vessels.

(iv) Simultaneous berthing is allowed, subject to the
length of the berth.

Usually in container terminals, the number of QCs could
vary during execution at the quay.This issue has been studied
in Rodriguez-Molins et al. [5]. However, in this paper and
without loss of generality, we study the robustness of the
schedules assuming that the number of QCs assigned to one
vessel does not vary along themoored time. Once a QC starts
a task in a vessel, it must complete it without any pause or
shift (nonpreemptive tasks). Thus, all QCs assigned to the
same vessel 𝑖 have the same working time on the vessel (𝑡

𝑖𝑘
=

ℎ
𝑖
, ∀𝑘 = 1, . . . , 𝐾, 𝑢

𝑖𝑘
= 1).

The following constraints must be accomplished.

(i) Moored time of vessel 𝑖must be at least the same that
its arrival time (𝑚

𝑖
≥ 𝑎

𝑖
).

(ii) There is a safe distance between two moored ships.
We assume that each vessel 𝑖 has a 2.5% of this length
at each side as a safe distance (𝜂

𝑖
) (Figure 1). This safe

distance is added to the length of each vessel 𝑖: 𝑙
𝑖
:=

ℓ
𝑖
+ 2𝜂

𝑖
.

(iii) There must be enough contiguous space at berth to
moor a vessel 𝑖 of length (𝑙

𝑖
).

(iv) There must be at least one QC assigned to each vessel.
Furthermore, there is a maximum number of QCs
that can be assigned to vessel 𝑖 (QC+

𝑖
). This value,

(QC+

𝑖
), depends on the length of each vessel (ℓ

𝑖
), since

a safe distance is required between two contiguous
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QCs (safeQC) and the maximum number of QCs
that the container terminal allows per vessel (maxQC)
(equtaion (2)). Both safeQC and maxQC parameters
are given by the container terminal:

QC+

𝑖
= min(maxQC,max(1, ⌊

ℓ
𝑖

safeQC
⌋)) ∀𝑖 ∈ 𝑉. (2)

Our objective is to allocate all vessels according to several
constraints minimizing the total waiting (𝑇

𝑤
) and handling

or processing time (𝑇
ℎ
), known as the service time (𝑇

𝑠
), for

all vessels:

𝑇
𝑤
= ∑

𝑖∈𝑉

𝑤
𝑖
, (3)

𝑇
ℎ
= ∑

𝑖∈𝑉

ℎ
𝑖
, (4)

𝑇
𝑠
= 𝑇

𝑤
+ 𝑇

𝑠
. (5)

3. Robust BAP + QCAP Model

Uncertainty and nondeterminism of real-world environ-
ments may cause difficulties in the initial plans made by the
decision makers. In container terminals, the initial obtained
schedules for the BAP + QCAP problem might become
invalid due to different reasons: breakdowns in QCs, late
arrivals of the vessels, extreme weather events, a lower ratio
of movements per QC than expected, and so forth.

The robustness concept means that, given a schedule,
this initial schedule remains feasible when minor incidences
occur in its actual scenario.

The usual disruptions to be considered in BAP + QCAP
are the following:

(i) early or late arrival of a vessel 𝑖 from its expected
arrival time (𝑎

𝑖
);

(ii) the handling time of a vessel 𝑖 is larger than its
expected handling time (ℎ

𝑖
).

In this paper, we focus just on the disruptions affecting
the handling time which eventually delay the departure time.
In case of incidences related to late arrivals, they could also be
modeled as delays in the handling time of the vessels which
eventually also delay their departure time.

Definition 1. Given the possible disruptions, we consider that
a schedule is robust if a disruption in one vessel does not affect
or alter the mooring times of the other vessels.

The robustness of a schedule of BAP + QCAP might
be guaranteed through two periods of time related to each
vessel: waiting time of a vessel (𝑤

𝑖
) and buffer time after the

departure of each vessel (𝑏
𝑖
) [28]. Without loss of generality,

early arrivals are not taken into account since they only
increase waiting times but they do not alter mooring times.

The schedule could absorb delays or breakdowns that do
not exceed the sum of those two periods (𝑤

𝑖
+ 𝑏

𝑖
). Therefore,

both times should be maximized in order to achieve the
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Figure 2: Buffer times 𝑏
𝑖
given an example schedule.

maximum robustness and ensure that there is no need to
reschedule the involved vessels. However, it should be kept
in mind that the first objective of the BAP + QCAP is to
minimize the total service time of the incoming vessels (𝑤

𝑖
+

ℎ
𝑖
). Therefore, following the proposal given by Davenport et

al. [29], we focus on maximizing only the second period of
time, buffer times (∑ 𝑏

𝑖
), to obtain robust schedules.

Let𝜑
𝑖
be the vessels that succeed vessel 𝑖 and occupy some

berth space of vessel 𝑖 (𝜑𝑝
𝑖
) or use any of QCs assigned to

vessel 𝑖 (𝜑𝑞
𝑖
). The buffer time of vessel 𝑖 (𝑏

𝑖
) is the minimum

difference (𝜏
𝑖𝑗
) between the departure time of vessel 𝑖 (𝑑

𝑖
) and

the mooring time of vessel 𝑗 (𝑚
𝑗
, 𝑗 ∈ 𝜑

𝑖
). In case there is no

vessel in 𝜑
𝑖
, the maximum buffer time is assigned to 𝑏

𝑖
(an

infinite value). Figure 2 shows an example of the buffer times
(𝑏
𝑖
) assigned for each scheduled vessel as an empty rectangle:

𝜑
𝑝

𝑖
= {∀𝑗 ∈ 𝑉, 𝑚

𝑗
≥ 𝑑

𝑖

∧ [𝑝
𝑖
, 𝑝

𝑖
+ 𝑙

𝑖
) ∩ [𝑝

𝑗
, 𝑝

𝑗
+ 𝑙

𝑗
) ̸= ⌀} ∀𝑖 ∈ 𝑉

𝜑
𝑞

𝑖
= {∀𝑗 ∈ 𝑉,𝑚

𝑗
≥ 𝑑

𝑖
∧ ∃𝑘, 1 ≤ 𝑘 ≤ 𝐾

∧𝑢
𝑖𝑘
= 1 ∧ 𝑢

𝑗𝑘
= 1} ∀𝑖 ∈ 𝑉

𝜑
𝑖
= 𝜑

𝑝

𝑖
∪ 𝜑

𝑞

𝑖
∀𝑖 ∈ 𝑉

𝜏
𝑖𝑗
= 𝑚

𝑗
− 𝑑

𝑖
∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝜑

𝑖

𝑏
𝑖
=
{

{

{

+∞,
𝜑𝑖
 = 0

min
𝑗∈𝜑𝑖

(𝜏
𝑖𝑗
) , otherwise ∀𝑖 ∈ 𝑉.

(6)

In this paper, we assume that the more handling time is,
the more likely it is to suffer incidences.Therefore, in general,
the larger the buffers are, the more robust the schedules are.
Nevertheless, regarding the concept of decreasing produc-
tivity (or diminishing returns) presented in [22], there is a
certain buffer size beyondwhich nomore robustness is added
to the schedule. Thereby, there is no need to assign large
buffer times to each vessel. For instance, in Figure 2, vessel
1 would not need 8 time units of buffer time (𝑏

1
) since its

handling time is only 3 time units. It is not likely that this
vessel would suffer a delay of thatmagnitude. However, vessel
2, with a handling time of 8 time units, has only 2 time units of
buffer time (𝑏

2
). In this case, it is highly likely that this vessel
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Figure 3: Two possible schedules given the same incoming vessels.

suffers some breakdown or delay and so it becomes invalid
this schedule.

Furthermore, we consider that the magnitude of the
incidence is related to the handling time of the vessel. Thus,
the robustness measure of each vessel 𝑖 (𝑟

𝑖
∈ [0, 1]) is related

to the buffer time 𝑏
𝑖
and the average handling time ℎ∗

𝑖
(equa-

tion (7)). It should be mentioned that other functions, for
example, exponential function, could be adopted to define the
robustness of each vessel:

ℎ
∗

𝑖
=

𝑐
𝑖

((1 +QC+

𝑖
) /2) movsQC

. (7)

Given the robustness of each vessel, the robustness of a
schedule𝑅 ∈ [0, |𝑉|] is defined by (9), where𝜔

𝑖
is a weighting

factor (𝜔
𝑖
≥ 1) which depends on historical data, if available.

A 𝜔
𝑖
= 1 value represents that vessel 𝑖 used to finish its tasks

as expected, and 𝜔
𝑖
> 1 value denotes that vessel 𝑖 used to be

delayed:

𝑟
𝑖
= min(1,

𝑏
𝑖

𝜔
𝑖
ℎ
∗

𝑖

) , ∀𝑖 ∈ 𝑉, (8)

𝑅 = ∑

𝑖∈𝑉

𝑟
𝑖
. (9)

In this paper, we address the BAP + QCAP problem
without knowledge of the incidences; thus, the weighting
factor is the same for all the vessels (𝜔

𝑖
= 1, ∀𝑖 ∈ 𝑉).

Example 2. Figure 3 shows two different schedules given the
same set of 9 incoming vessels. Each vessel is labeled with its
vessel’s ID and the assigned QC number in brackets. Fur-
thermore, the buffer time between vessels is also showed.

On the one hand, Figure 3(a) represents a robust schedule
since limited incidences over any vessel could be absorbed.
On the other hand, Figure 3(b) shows a schedule with the
optimal solution according to the objective function 𝑇

𝑠
. The

latter schedule will be highly likely unfeasible if any incidence
occurs.

Figures 3(a) and 3(b) are an example of the well-known
trade-off between optimality and robustness. However, a
robust schedule is not only achieved by extending an optimal
schedule over the time. A robust schedule must also consider
an optimized allocation of vessels to achieve the maximum
sum of buffer sizes with a proper distribution among all
vessels. Note that the optimality is not directly the makespan
of the schedule but the total service time (waiting and
handling times).

An important issue in this paper is that there is no avail-
able information about how likely the incidences or break-
downs occur. Therefore, it is interesting that these buffers are
proportionally distributed among all the vessels. Thereby, a
third objective is introduced into the model in order to
improve the robustness of a schedule: minimizing the stan-
dard deviation (𝜎) of the robustness measures of all vessels
(𝑟
𝑖
∀𝑖 ∈ 𝑉):

𝜎 = √
1

|𝑉|
∑

𝑖∈𝑉

(𝑟
𝑖
− 𝑟), (10)

where 𝑟 is the average of the buffers of the schedule and |𝑉| is
the number of incoming vessels.

Both measures presented above, robustness of a schedule
(𝑅) and standard deviation of these values (𝜎), represent
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Figure 4: Two different schedules with similar robustness and different standard deviation.

the actual robustness of a schedule R to be maximized (see
(11)). This measure guarantees the absorption of incidences
that imply at most a delay of a R% of the weighted average
handling time (𝜔

𝑖
ℎ
∗

𝑖
):

R = 𝑅 − 𝜎. (11)

Example 3. Figure 4 shows two different schedules with a
similar robustness value (𝑅 = 0.7) but different standard
deviations, 𝜎

1
= 0.17 and 𝜎

2
= 0.45. With these values, the

first schedule has an actual robustness value of R
1
= 0.7 −

0.17 = 0.53. Thus, in average, this schedule guarantees that
it could absorb incidences that imply at most a delay of the
53% of the average handling time of the vessels. In contrast,
the second schedule has an actual robustness value of R

2
=

0.7 − 0.45 = 0.25; thus, it is able to absorb only incidences
that imply at most a 25% of the average handling time of the
vessels.

Surico et al. [30] presented a close function tomeasure the
robustness of a schedule (avg(𝑤

𝑖
) − 𝛼𝜎(𝑤

𝑖
), ∀𝑖 ∈ 𝑉). avg(𝑤

𝑖
)

and 𝜎(𝑤
𝑖
) denote the average and the standard deviation

of the waiting times, respectively; 𝛼 is a constant weighting
factor that must be set. However, this measure does not
reflect the relationship between the handling or processing
time of the task and the buffer times. Thus, to our best
knowledge, there is no other study which, considering the
BAP + QCAP with a continuous quay and dynamic arrivals,
tackles the robustness without any previous knowledge about
the incidences.

Figure 4 shows two different schedules of 10 vessels with
the same high value of the robustness measure. However,
schedule of Figure 4(a) has a greater value for the standard
deviation (𝜎) than schedule of Figure 4(b). Thereby, it is
important to note that buffer times from schedule in Fig-
ure 4(a) are not equally distributed and this schedule will fail

if an incidence which delays the departure time just 1 time
unit over vessels 4 or 6 occurs or more than 3 time units over
vessel 1. However, in the schedule in Figure 4(b), it is highly
unlikely to be invalid since all vessels have enough buffer time
after its schedule departure time.

4. Multiobjective Approach for
the Robust BAP + QCAP

Three different objectives must be optimized to solve the
robust BAP +QCAP: the service time (𝑇

𝑠
) (equation (5)), the

robustness (𝑅) (equation (9)), and the standard deviation of
the robustnessmeasures𝜎(𝑅) (equation (10)).These objective
functions must be normalized in order to apply the search
process correctly.

Equation (14) shows how to normalize the service time
objective into the interval [0, 1] (�̂�

𝑠
) and it implies to normal-

ize both the waiting time �̂�
𝑤
(equation (12)) and the handling

time �̂�
𝑠
(equation (13)). On the one hand, the handling time

is just a linear normalization since the maximum (ℎ
+

𝑖
) and

minimum (ℎ
−

𝑖
) times are known by assigning the minimum

(1) and the maximum number of QCs to vessel 𝑖 (QC+

𝑖
).

On the other hand, normalizing the waiting time requires to
determine a maximum total waiting time (𝑊

𝐹
). In this case,

𝑊
𝐹
value is the total waiting time of the incoming vessels

when a first-come, first-served (FCFS) policy is applied,
assigning 2 QCs to each vessel, and just one vessel is allowed
in the berth at the same time (see, for example, Figure 5).The
maximum total waiting time (𝑊

𝐹
) could also be obtained by

assigning just one QC to each incoming vessel, but in that
case, 𝑊

𝐹
value would be too large and all the normalized

waiting times would be close to zero:

�̂�
𝑤
=

1

𝑊
𝐹

∑

𝑖∈𝑉

(𝑚
𝑖
− 𝑎

𝑖
) �̂�

𝑤
∈ [0, 1] , (12)
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Figure 5: Schedule generated to obtain the maximum value of wait-
ing time𝑊

𝐹
.

�̂�
ℎ
=

1

|𝑉|
∑

𝑖∈𝑉

(
ℎ
𝑖
− ℎ

−

𝑖

ℎ
+

𝑖
− ℎ

−

𝑖

) �̂�
ℎ
∈ [0, 1] , (13)

�̂�
𝑠
=
�̂�
𝑤
+ �̂�

ℎ

2
�̂�
𝑠
∈ [0, 1] . (14)

Robustness objective function must also be normalized
into the interval [0, 1] (�̂�) as defined by (15). The third objec-
tive, standard deviation of robustness measures, is already
normalized due to the fact that 𝑟

𝑖
values are already in the

interval [0, 1] (equation (10)):

�̂� =
𝑅

|𝑉|
�̂� ∈ [0, 1] . (15)

Thereby, the objective function for the robust BAP +
QCAP is to minimize the function 𝐹 (equation (16)). Each
coefficient 𝜆

𝑖
(0 ≤ 𝜆

𝑖
≤ 1) assigns different weights to

each component or objective function in order to establish
an aggregate function:

𝐹 = 𝜆
1
�̂�
𝑠
− 𝜆

2
�̂� + 𝜆

3
𝜎. (16)

These coefficients 𝜆
𝑖
are subject to∑

𝑖
𝜆
𝑖
= 1.

In a multiobjective optimization problem, usually there
is no single solution wherein all its objectives are simulta-
neously optimized. However, there may exist a set of Pareto
optimal solutions with different trade-offs between their
objective functions. Pareto efficiency, or Pareto optimality, is
a solution in which it is impossible to make any one criterion
better off without making at least one criterion worse off
[31]. Pareto optimal solutions are defined by means of the
dominance concept. Considering the robust BAP+QCAP, let
𝑥 and 𝑦 be two different solutions; 𝑥 dominates 𝑦 if at least
one of the following conditions is satisfied:

�̂�
𝑠 (𝑥) < �̂�𝑠 (𝑦) ∧ �̂� (𝑥) ≥ �̂� (𝑦) ∧ 𝜎 (𝑥) ≤ 𝜎 (𝑦) ,

�̂�
𝑠 (𝑥) ≤ �̂�𝑠 (𝑦) ∧ �̂� (𝑥) > �̂� (𝑦) ∧ 𝜎 (𝑥) ≤ 𝜎 (𝑦) ,

�̂�
𝑠 (𝑥) ≤ �̂�𝑠 (𝑦) ∧ �̂� (𝑥) ≥ �̂� (𝑦) ∧ 𝜎 (𝑥) < 𝜎 (𝑦) .

(17)

Given a set of feasible solutions 𝐷, a solution 𝑥 ∈ 𝐷 is
Pareto optimal solution if it is nondominated by any other

solution 𝑥 ∈ 𝐷. The Pareto optimal set is the set of all the
solutions that are Pareto optimal solutions [31].

In general, generating the Pareto optimal set is expensive
computationally and it is often impracticable. Therefore,
algorithms try to find a good approximation of the Pareto
optimal set. In this work, we refer that each approximation
as Pareto front, which contains solutions that, although are
nondominated among them, could be dominated by other
solutions not found by our algorithms.

5. Mathematical Formulation

A mixed integer programming (MIP) model is presented to
solve the robust BAP + QCAP. The objective function of this
model is to minimize (16). This mathematical model is based
on the model presented in [10, 28].

In the proposed model, 𝑀 denotes a sufficiently large
number (as it is used in MIP). Furthermore, there are four
auxiliary binary variables. 𝑧𝑥

𝑖𝑗
is a decision variable that

indicates if vessel 𝑖 is located to the left of vessel 𝑗 on the berth
(𝑧𝑥

𝑖𝑗
= 1); 𝑧𝑦

𝑖𝑗
= 1 indicates that vessel 𝑖 is moored before vessel

𝑗 in time.The auxiliary variable 𝑢
𝑖𝑘
indicates whether the QC

𝑘 works (1) or not (0) on vessel 𝑖; 𝑛
𝑖𝑘
= 1 denotes that the

number of QCs assigned to vessel 𝑖 is 𝑘:

∀ 𝑖,𝑗∈𝑉

𝑖 ̸=𝑗

∀
𝑘=1,...,𝐾

𝑧
𝑥

𝑖𝑗
, 𝑧

𝑦

𝑖𝑗
, 𝑢

𝑖𝑘
, 𝑛

𝑖𝑘
0/1 integer. (18)

In the proposed model, there are four auxiliary binary
variables. 𝑧𝑥

𝑖𝑗
is a decision variable that indicates if vessel 𝑖 is

located to the left of vessel 𝑗 on the berth (𝑧𝑥
𝑖𝑗
= 1); 𝑧𝑦

𝑖𝑗
= 1

indicates that vessel 𝑖 is moored before vessel 𝑗 in time. The
auxiliary variable 𝑢

𝑖𝑘
indicates whether the QC 𝑘works (1) or

not (0) on vessel 𝑖; 𝑛
𝑖𝑘
= 1 denotes that the number of QCs

assigned to vessel 𝑖 is 𝑘.
The constraints of this mathematical model are detailed

below. Constraint (19) ensures that vessels must moor afer
they arrive at the terminal:

∀
𝑖∈𝑉

𝑚
𝑖
≥ 𝑎

𝑖
. (19)

Constraints (20) and (21) establish the waiting and departure
times according to𝑚

𝑖
and ℎ

𝑖
:

∀
𝑖∈𝑉

𝑤
𝑖
= 𝑚

𝑖
− 𝑎

𝑖
, (20)

∀
𝑖∈𝑉

𝑑
𝑖
= 𝑚

𝑖
+ ℎ

𝑖
. (21)

Constraint (22) guarantees that a moored vessel does not
exceed the length quay:

∀
𝑖∈𝑉

𝑝
𝑖
+ 𝑙

𝑖
≤ 𝐿. (22)

The number of QCs to the vessel 𝑖 are assigned by means of
constraints (23)–(28) as follows:

∀
𝑖∈𝑉

𝑞
𝑖
=

𝐾

∑

𝑘=1

𝑢
𝑖𝑘
, (23)

∀
𝑖∈𝑉

𝐾

∑

𝑘=1

𝑛
𝑖𝑘
= 1, (24)
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∀
𝑖∈𝑉

𝐾

∑

𝑘=1

𝑛
𝑖𝑘
𝑘 = 𝑞

𝑖
, (25)

∀
𝑖∈𝑉

1 ≤ 𝑞
𝑖
≤ QC+

𝑖
, (26)

∀
𝑖∈𝑉

1 ≤ 𝑠
𝑖
≤ 𝑒

𝑖
≤ 𝐾, (27)

∀
𝑖∈𝑉

𝑞
𝑖
= 𝑒

𝑖
− 𝑠

𝑖
+ 1. (28)

Constraints (29)–(31) establish the minimum handling time
needed to load and unload their containers according to the
number of assigned QCs:

∀
𝑖∈𝑉

𝐾

∑

𝑘=1

𝑡
𝑖𝑘
movsQC ≥ 𝑐

𝑖
(29)

∀
𝑖∈𝑉

𝐾

∑

𝑘=1

𝑛
𝑖𝑘
𝐻
𝑖𝑘
= ℎ

𝑖
(30)

∀
𝑖∈𝑉

ℎ
𝑖
= max

∀𝑘=1,...,𝐾

𝑡
𝑖𝑘
. (31)

Constraint (32) ensures that QCs that are not assigned to
vessel 𝑖 have 𝑡

𝑖𝑘
= 0:

∀
𝑖∈𝑉
∀
𝑘=1,...,𝐾

𝑡
𝑖𝑘
−𝑀𝑢

𝑖𝑘
≤ 0. (32)

Constraint (33) forces all assignedQCs to vessel 𝑖working the
same number of hours:

∀
𝑖∈𝑉
∀
𝑘=1,...,𝐾

ℎ
𝑖
−𝑀(1 − 𝑢

𝑖𝑘
) − 𝑡

𝑖𝑘
≤ 0. (33)

Constraint (34) avoids that one QC is assigned to two
different vessels at the same time:

∀
𝑖,𝑗∈𝑉

∀
𝑘=1,...,𝐾

𝑢
𝑖𝑘
+ 𝑢

𝑗𝑘
+ 𝑧

𝑥

𝑖𝑗
≤ 2. (34)

Constraints (35) and (36) force the QCs to be contiguously
assigned (from 𝑠

𝑖
up to 𝑒

𝑖
):

∀
𝑖∈𝑉
∀
𝑘=1,...,𝐾

𝑀(1 − 𝑢
𝑖𝑘
) + (𝑒

𝑖
− 𝑘) ≥ 0, (35)

∀
𝑖∈𝑉
∀
𝑘=1,...,𝐾

𝑀(1 − 𝑢
𝑖𝑘
) + (𝑘 − 𝑠

𝑖
) ≥ 0. (36)

The safety distance between vessels is taken into account by
constraint (37) as follows:

∀ 𝑖,𝑗∈𝑉

𝑖 ̸=𝑗

𝑝
𝑖
+ 𝑙

𝑖
≤ 𝑝

𝑗
+𝑀(1 − 𝑧

𝑥

𝑖𝑗
) . (37)

Constraint (38) avoids that one vessel uses aQCwhich should
cross through the others QCs:

∀ 𝑖,𝑗∈𝑉

𝑖 ̸=𝑗

𝑒
𝑖
+ 1 ≤ 𝑠

𝑗
+𝑀(1 − 𝑧

𝑥

𝑖𝑗
) . (38)

Constraint (39) avoids that vessel 𝑗moors while the previous
vessel 𝑖 is still at the quay:

∀ 𝑖,𝑗∈𝑉

𝑖 ̸=𝑗

𝑑
𝑖
≤ 𝑚

𝑗
+𝑀(1 − 𝑧

𝑦

𝑖𝑗
) . (39)

Constraint (40) establishes the relationship between each pair
of vessels avoiding overlaps:

∀ 𝑖,𝑗∈𝑉

𝑖 ̸=𝑗

𝑧
𝑥

𝑖𝑗
+ 𝑧

𝑥

𝑗𝑖
+ 𝑧

𝑦

𝑖𝑗
+ 𝑧

𝑦

𝑗𝑖
≥ 1. (40)

Constraint (41) ensures that the total waiting time of the
schedule does not exceed the maximum total waiting time
(𝑊

𝐹
):

∑

𝑖∈𝑉

𝑤
𝑖
≤ 𝑊

𝐹
. (41)

Constraints (42)–(44) assign the time between the departure
time of vessel 𝑖 and the mooring time of vessel 𝑗. For those
vessels 𝑗 so that 𝑧𝑡

𝑖𝑗
̸= 1, they are assigned 𝑀 as a value

representing an unbounded time for the robustness:

∀ 𝑖,𝑗∈𝑉

𝑖 ̸=𝑗

𝑧
𝑡

𝑖𝑗
= 𝑧

𝑥

𝑖𝑗
+ 𝑧

𝑥

𝑗𝑖
+ 𝑧

𝑦

𝑖𝑗
, (42)

∀ 𝑖,𝑗∈𝑉

𝑖 ̸=𝑗∧(𝑧
𝑡

𝑖𝑗
=0∨𝑧
𝑡

𝑖𝑗
=2)

𝜏
𝑖𝑗
= 𝑀, (43)

∀ 𝑖,𝑗∈𝑉

𝑖 ̸=𝑗∧𝑧
𝑡

𝑖𝑗
=1

𝑑
𝑖
+ 𝜏

𝑖𝑗
= 𝑚

𝑗
+𝑀(1 − 𝑧

𝑦

𝑖𝑗
) . (44)

Constraints (45) and (46) set the value of the available buffer
time after vessel 𝑖 and its robustness value, respectively:

∀
𝑖∈𝑉

𝑏
𝑖
= min(min

𝑗∈𝑉

𝑖 ̸=𝑗

(𝜏
𝑖𝑗
) , ℎ

∗

𝑖
) , (45)

∀
𝑖∈𝑉

𝑟
𝑖
ℎ
∗

𝑖
= 𝑏

𝑖
. (46)

The decision variable 𝑧𝑡
𝑖𝑗
(see constraint (47)) indicates if a

vessel 𝑗moors later than 𝑖 and, at the same time, the vessel 𝑗
intersects with the berth length occupied by vessel 𝑖 (𝑧𝑡

𝑖𝑗
):

∀ 𝑖,𝑗∈𝑉

𝑖 ̸=𝑗

0 ≤ 𝑧
𝑡

𝑖𝑗
≤ 2 (47)

6. Multiobjective Genetic
Algorithms: MOGA + SA

Commonly approximations of the Pareto optimal sets of a
multiobjective optimization problem are obtained by means
of multiobjective evolutionary algorithms [31]. Furthermore,
nowadays, metaheuristics are usually hybridized with other
techniques or algorithms in order to enhance their effective-
ness and performance [23, 24]. One of the most common
forms of hybrid genetic algorithm involves incorporating
local search to a canonical genetic algorithm. Genetic algo-
rithm is used to perform global exploration among the pop-
ulation, and local search is used to perform local exploitation
around the chromosomes. Because of the complementary
properties of genetic algorithms and local search methods,
the hybrid approach often outperforms either methods oper-
ating alone [32].

Thereby, a hybrid multiobjective genetic algorithm
(MOGA) has been implemented in this paper. The NSGAII
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Figure 6: Structure of one gene of a chromosome.

schema has been extended with a multiobjective local search
based on the multiobjective simulated annealing proposed
by Bandyopadhyay et al. [33] (AMOSA), hereinafter named
as MOGA + SA (see Algorithm 1). Moreover, two different
schemes from the literature have been assessed NSGAII [26]
and SPEA2+ [27].

The same chromosome structure is used in these three
MOGAs. This chromosome has as many genes as incoming
vessels (|𝑉|). Each gene consists of three values (see Figure 6):
(1) the ID of the next vessel to dispatch (𝑖); (2) the number of
QCs assigned (𝑞

𝑖
); (3) the buffer size after this vessel (𝑏

𝑖
).

It should be noted that each gene must be composed of
feasible values with respect to vessel 𝑖. That is, according to
the problem constraints, each vessel 𝑖 can be assigned at most
QC+

𝑖
cranes. Therefore, 1 ≤ 𝑞

𝑖
≤ QC+

𝑖
. Likewise, if the berth

length is 𝐿, then 𝜂
𝑖
≤ 𝑝

𝑖
≤ 𝐿 − 𝑙

𝑖
− 𝜂

𝑖
.

In the following subsections, genetic operators that are
used by the implementations of NSGAII and SPEA2+ are
described.

6.1. Decoding and Evaluation of One Chromosome/Solution.
The structure of the chromosome, specifically the order of
the vessels, is used as a dispatching rule. Hence, we use the
following decoding algorithm: the genes are visited from left
to right in the chromosome sequence. For each gene (𝑖, 𝑞

𝑖
, and

𝑏
𝑖
), the vessel 𝑖 is scheduled at the earliest mooring time with

𝑞
𝑖
consecutive QCs available, so that none of the constraints

are violated. In case there are several positions available at the
earliest mooring time, the one closest to the berth extremes is
selected. After the departure of the vessel 𝑖 (𝑑

𝑖
), it is ensured

that there are 𝑏
𝑖
time units where no other vessel 𝑗 (∀𝑗 ∈ 𝑉, 𝑗 ̸=

𝑖) uses the QCs assigned to vessel 𝑖 nor moors where vessel 𝑖
does [𝑝

𝑖
, 𝑝

𝑖
+ 𝑙

𝑖
).

Once a valid mooring time (𝑚
𝑖
) and initial position

(𝑝
𝑖
) have been assigned to each vessel 𝑖, the fitness of

the chromosome (equation (16)) is obtained by computing
each one of the objective functions: total service time (�̂�

𝑠
),

robustness (�̂�), and standard deviation of the robustness (𝜎).

6.2. Generation of Initial Population. Construction of initial
population (𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 procedure) is per-
formed so that the service time of a percentage of the initial
population (GA parameter) is at least as good as the solution
provided by the FCFS policy. The other chromosomes (or
solutions) are constructed by instantiating each gene in the
following way.

(i) Vessel identifier (𝑖): an integer, between 1 and 𝑁, is
randomly chosen. Two genes of the same chromo-
some cannot have the same vessel identifier.

(ii) Number of QCs (𝑞
𝑖
): an integer, between 1 and QC+

𝑖
,

is randomly chosen.
(iii) Buffer size (𝑏

𝑖
): the initial buffer size is 0 for all genes

of the initial population.

Once all chromosomes in the initial population have been
instantiated, their fitness values are obtained as described
in Section 6.1. Furthermore, the Pareto front X is updated
considering all these chromosomes. Let 𝑥 be a chromosome
(or solution); 𝑥 is added to the Pareto front X if there is no
other solution 𝑦 ∈ X such that 𝑦 dominates 𝑥. If 𝑥 is added
toX, then all solutions dominated by 𝑥 are removed fromX.

6.3. Evolution of One Population. In each iteration of the
MOGA, a new population is built from the previous one
(or the initial) by applying the genetic operators of selection,
reproduction, and replacement. The proposed approach fol-
lows the scheme:

(i) selection: all chromosomes in the actual population
are randomly grouped into pairs;

(ii) reproduction: (1) each one of these pairs is mated
or not according to the crossover probability 𝑃

𝑐

generating two offspring; (2) each offspring, or parent
if the parents were not mated, undergoes mutation in
accordance with the mutation probability 𝑃

𝑚
;

(iii) replacement: after evaluating the chromosomes pre-
viously generated, a tournament selection (4 : 2) is
carried out among each pair of parents and their off-
spring as a replacement.

6.4. Crossover. The crossover operator receives one pair of
chromosomes (𝑃

1
and 𝑃

2
), which are in the current popu-

lation 𝑝𝑜𝑝 and have been randomly selected. The objective
of this operator is to construct two offspring chromosomes
(𝑂

1
and 𝑂

2
). For that, each time the crossover operation is

performed, the following steps are made.

(1) Two cross points are randomly chosen, 𝑘
1
and 𝑘

2
(1 ≤

𝑘
1
< 𝑘

2
≤ 𝑁).

(2) Each gene in chromosomes 𝑃
1
and 𝑃

2
which is in

position𝑝, 𝑘
1
≤ 𝑝 < 𝑘

2
, is copied to the same position

in chromosomes 𝑂
1
and 𝑂

2
, respectively.

(3) Each gene in chromosomes 𝑃
1
and 𝑃

2
which is in

position 𝑝, 1 ≤ 𝑝 < 𝑘
1
, is copied to the same position

in chromosomes 𝑂
1
and 𝑂

2
, respectively.

(4) Each gene in chromosomes 𝑃
1
and 𝑃

2
which is in

position 𝑝, 𝑘
2
≤ 𝑝 ≤ 𝑁, is copied to the same position

in chromosomes 𝑂
1
and 𝑂

2
, respectively.

Figure 7 is a graphical representation of the procedure
that is used to perform the crossover operation, which is
based on the technique generalized position crossover [34]
that is commonly used in permutation based encodings.

In one chromosome there cannot be two genes with the
same vessel identifier. Therefore, if the vessel identifier in the
gene that will be copied already exists in the offspring (𝑂

1
/𝑂

2
)
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Input: I: instance of robust BAP + QCAP;
𝑝𝑜𝑝𝑠𝑖𝑧𝑒: number of chromosomes;
𝑘: number generations for local search

Output: X: set of nondominated schedules
{Generate the parent population 𝑃

0
}

𝑃
0
← generateInitialPopulation(𝑝𝑜𝑝𝑠𝑖𝑧𝑒,I)

{Generate the offspring population 𝑄
0
}

𝑄
0
← evolvePopulation(𝑃, 𝑝𝑜𝑝𝑠𝑖𝑧𝑒)

𝑡 ← 0

while No termination criterion is satisfied do
𝑢𝑛𝑖𝑜𝑛𝑆𝑒𝑡 ←makeUnionSet(𝑃

𝑡
, 𝑄

𝑡
)

𝐹 ← fastNondominatedSort(𝑢𝑛𝑖𝑜𝑛𝑆𝑒𝑡)
X← updateParetoFront(𝐹

0
)

{Create the next parent population 𝑃
𝑡+1
}

𝑖 ← 0

𝑃
𝑡+1

← 0

while 𝑖 < |𝐹| ∧ |𝑃
𝑡+1
| + |𝐹

𝑖
| < 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 do

{Add the 𝑖th nondominated front (𝐹
𝑖
) into the parent population 𝑃

𝑡+1
}

𝑃
𝑡+1

← 𝑃
𝑡+1

∪ 𝐹
𝑖

𝑖 ← 𝑖 + 1

end while
if |𝑃

𝑡+1
| < 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 then

{Sort 𝐹
𝑖
according to the crowding distance measure}

crowdingDistance(𝐹
𝑖
)

sort(𝐹
𝑖
)

{Add the first 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 − |𝑃
𝑡+1
| elements of 𝐹

𝑖
}

𝑗 ← 0

while 𝑗 < |𝐹
𝑖
| ∧ |𝑃

𝑡+1
| < 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 do

𝑃
𝑡+1

← 𝑃
𝑡+1

∪ {𝐹
𝑖
[𝑗]}

𝑗 ← 𝑗 + 1

end while
end if
{Use selection, crossover, and mutation to create a new population 𝑄

𝑡+1
}

𝑄
𝑡+1

← evolvePopulation(𝑃
𝑡+1

, 𝑝𝑜𝑝𝑠𝑖𝑧𝑒)
{Perform the local search each 𝑘 generations.}
if 𝑡%𝑘 = 0 then
X
, 𝑆

𝑛
←mosa(X)

{Assign the new Pareto front toX}
X← X

𝑄
𝑡+1

← clustering(𝑄
𝑡+1

, 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 − |𝑆
𝑛
|)

{The new solutions found by the local search are kept in the population}
𝑄
𝑡+1

← 𝑄
𝑡+1

∪ 𝑆
𝑛

end if
{Increase the number of iterations}
𝑡 ← 𝑡 + 1

end while
return Schedule of each element of the Pareto frontX

Algorithm 1: Implementation of MOGA + SA.

during steps 2 or 3, a new gene must be selected from the
chromosome parent (𝑃

1
/𝑃

2
).

Once the vessel identifier of the selected gene does not
exist in the offspring, then the gene is copied to the offspring
in the corresponding position.

6.5. Mutation. Mutation operation is performed on one chro-
mosome, following these steps.

(1) Two positions (𝑘
1
and 𝑘

2
) of the chromosome are ran-

domly chosen (1 ≤ 𝑘
1
< 𝑘

2
≤ 𝑁).

(2) Genes that are in positions between 𝑘
1
and 𝑘

2
(both

included) are shuffled.

(3) The number of QCs in each gene located between
𝑘
1
and 𝑘

2
(both included) is modified by a feasible

random value with respect to the vessel in the same
gene.

(4) The buffer size in each gene located between 𝑘
1
and

𝑘
2
, both included, is modified by a random value that
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Figure 7: Crossover operation.
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· · ·

· · ·
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47

190

Figure 8: An example of mutation operation.

is between 0 and the average handling time ℎ∗
𝑖
, of the

vessel 𝑖 in the same gene.

Figure 8 shows how the offspring 𝑜
𝑖
, which has been

obtained after the crossover operation, is mutated. First, two
values 𝑘

1
= 2 and 𝑘

2
= 4 are selected randomly. Then, all

genes between both positions are shuffled. Gene 2 is moved
to position 4, gene 3 to position 1, and gene 4 to position 3.
Finally, the number of QCs and the buffer size of each gene
in position 𝑝, 2 ≤ 𝑝 ≤ 4, are modified by selecting feasible
random values for each one.

6.6. Local Search. The multiobjective simulated annealing
presented by Bandyopadhyay et al. [33] has been modified
and included into the MOGA as a local search to solve
the robust BAP + QCAP. The neighborhood structure of a
solution takes advantage of the chromosome structure and
their neighbors are obtained by changing the values of the
variables presented in its genes (𝑖, 𝑞

𝑖
, and 𝑏

𝑖
). Algorithm 2

describes how to modify a given solution 𝑐𝑢𝑟 in order to
create a neighbor 𝑛𝑒𝑤. In this process, two operations are
applied to solution 𝑐𝑢𝑟:

(i) interchanging the position of two vessels (V
1
and V

2
)

in the chromosome, randomly chosen,
(ii) changing the values of number of QCs assigned (𝑞

𝑖
)

and buffer size (𝑏
𝑖
) of a vessel 𝑖 randomly chosen.

Input: 𝑐𝑢𝑟: Actual solution/chromosome;
Output: 𝑛𝑒𝑤: Neighbor solution/chromosome;
Copy chromosome 𝑐𝑢𝑟 into 𝑛𝑒𝑤
{Interchange the order of two vessels}
Vessels V

1
and V

2
randomly chosen from 𝑛𝑒𝑤

Interchange position of V
1
and V

2
in 𝑛𝑒𝑤

{Change the buffer assigned after its departure}
Randomly choose other vessel V from 𝑛𝑒𝑤

𝑟 ← 𝑟𝑎𝑛𝑑𝐼𝑛𝑡𝑒𝑔𝑒𝑟(0, 2)

if 𝑟 = 0 then
𝑏V = 0

else if 𝑟 = 1 then
𝑏V = ℎ

∗

𝑖

else
if 𝑟𝑎𝑛𝑑(0, 1) ≤ 0.5 then

{Decrease a 10% the buffer size}

𝑏V ← max(0, 𝑏V −
ℎ
∗

𝑖

10
)

else
{Increase a 10% the buffer size}

𝑏V ← min(ℎ∗
𝑖
, 𝑏V +

ℎ
∗

𝑖

10
)

end if
end if
if 𝑟𝑎𝑛𝑑(0, 1) ≤ 0.5 then

{Change number of assigned QCs}
𝑞V ← 𝑟𝑎𝑛𝑑(2,QC+

V )

end if
return Neighbour chromosome/solution 𝑛𝑒𝑤

Algorithm 2: createNeighbor.

This multiobjective simulated annealing algorithm (mosa
function) is computed every 𝑘 iterations. It receives, as
parameter, the Pareto front X of the actual iteration of the
MOGA + SA. As a result, it returns two different sets of
solutions or schedules:

(i) a Pareto front X where the solutions from X have
been improved to obtain a local optimal following the
AMOSA scheme,

(ii) a new set 𝑆
𝑛
consisting of the new nondominated

solutions found in the search which are part ofX.

Unlike AMOSA [33], the simulated annealing algorithm
implemented in this paper makes use of a different clustering
method (see Algorithm 3) based on the crowding distance
used in theNSGAII algorithm.This clusteringmethod selects
the representative solutions of the population according to
the density of solutions surrounding a particular solution.
After this local search process is performed, the solutions
in 𝑆

𝑛
set replace the solutions in population 𝑡𝑚𝑝𝑃𝑜𝑝 whose

crowding distances are the lowest ones. The solution to be
replaced is chosen by means of the same clustering method
used in the simulated annealing. The purpose is to improve
the quality of the population by keeping the solutions that are
most spread around the search space.
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Input: 𝑃: population;
𝑁

𝑚
; maximum number of chromosomes;

Output: 𝑃: population with exactly𝑁
𝑚
chromosomes;

{calculate the crowding distance for each element/chromosome in 𝑃}
crowdingDistance(𝑃)
{sort the elements in ascending order}
sort(𝑃)
{choose the biggest𝑁

𝑚
elements according to the crowding distance}

𝑃

← 𝑁

𝑚
elements of 𝑃 with the biggest crowding distances

return 𝑃


Algorithm 3: Clustering.

Table 1: Setting of the algorithms.

(a) NSGAII and SPEA2+ settings

Parameter MOGA scheme
Number of generations 500
Number of chromosomes 100
Mutation probability (𝑃

𝑚
) 0.1

Crossover probability (𝑃
𝑐
) 0.9

(b) Multiobjective local search settings from MOGA + SA

Parameter MOGA + SA
Initial temperature (𝑇max) 20
Minimum temperature (𝑇min) 0.001
Annealing factor (𝛼) 0.9
Termination criterion 𝑇 < 𝑇min

Cycle length 2

7. Evaluation

As no benchmark is available in the literature, the experi-
ments were performed in a corpus of 100 instances randomly
generated, where parameters (maxQC, safeQC, etc.) follow
the suggestions of container terminal operators. All these
benchmarks are freely available at http://gps.webs.upv.es/
bap-qcap/. Each one is composed of a queue from 100 vessels.
These instances follow an exponential distribution for the
interarrival times of the vessels (scale parameter 𝛽 = 20).The
number of requiredmovements and length of vessels are uni-
formly generated in [100, 1000] and [70, 400], respectively. In
all cases, the berth length (𝐿) was fixed to 700 meters; the
number of QCs was 7 (corresponding to a determined MSC
berth line) and the maximum number of QCs per vessel was
5 (maxQC); the safe distance between QCs (safeQC) was 35
meters and the number ofmovements that QCs carry out was
2.5 (movsQC) per time unit.

The approaches developed in this paper, NSGAII,
SPEA2+, and MOGA + SA, were coded using C++; their
settings are showed in Tables 1(a) and 1(b). Due to the
stochastic nature of the GA process, each instance was solved
30 times and the results show the average obtained values.
Themathematical model was coded and solved by using IBM

ILOG CPLEX Optimization Studio 12.5. Due to the fact that
the square root function defines concave region, standard
deviation function could not be introduced into the objective
function in the mathematical solver. They were solved on an
Intel i7-2600 3.4Ghz with 8GbRAM.

CPLEX is able to obtain a schedule of an instance for a
given 𝜆 value. Algorithm 4 describes how to obtain a Pareto
front using CPLEX solver for a given instance in order to be
compared with the MOGA.

Figure 9 shows the Pareto fronts obtained of a represen-
tative instance by both the MOGA + SA and CPLEX. In this
experiment, the timeout for the CPLEX solver was set to
1000 seconds for each 𝜆 value. It is important to note that
the greater the incoming vessels are, the fewer the solutions
obtained by CPLEX solver are. Given this timeout, CPLEX
was only able to get optimal solutions when 𝜆 = 0.0 and the
incoming vesselswere set to 10 and 20.Considering the Pareto
fronts obtained by MOGA + SA and CPLEX, they were very
similar with a queue of 10 vessels (see Figure 9(a)). However,
for instance, with a queue 20 vessels, the solutions obtained by
CPLEX were not able to reach the quality of the Pareto front
of MOGA + SA (see Figure 9(b)). Furthermore, it turned out
that for 40 incoming vessels just one nonoptimal solution
was obtained (see Figure 9(d)) and even more there was no
solution with 50 vessels.

Multiobjective optimization algorithms are not compara-
ble directly since there is no a unique optimal solution. Zitzler
et al. [35] propose different measures to compare Pareto
front approximations. Among these measures, the size of the
dominated space or the hypervolume is one of the most used
measures to differentiate two algorithms [36]. This measure
is related to a reference point 𝑝 and it is set according to the
suggestion ofWhile et al. [36]. To this end, for each objective,
the worst value from any of the sets being compared is chosen
and increased by an 𝜖 value.

Comparison among these different schemes has been per-
formed by using the Kruskal-Wallis’ nonparametric statistical
test, according to Zitzler et al. [35]. This test assesses whether
there are significant differences among different sets of values:
in this case, sets of hypervolume measures. Table 2 shows the
values obtained for this test given the results after solving five
instances of 50 vessels with the three different algorithms.
Kruskal-Wallis test revealed a significance effect of the algo-
rithms on the hypervolumes (𝑃 value < 0.01).
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Figure 9: Pareto fronts of GA and CPLEX varying in the number of incoming vessels (|𝑉|).

Table 2: Kruskal-Wallis test over the hypervolumes obtained in 5 different instances.

Instance 𝑃 value Average hypervolume
NSGAII SPEA2+ MOGA + SA

1 <2.2e − 16 0.175315 0.207921 0.236660
2 <2.2e − 16 0.174893 0.204749 0.252922
3 <2.2e − 16 0.178945 0.216683 0.261251
4 <2.2e − 16 0.180473 0.221138 0.258453
5 3.699e − 15 0.160139 0.173000 0.223231

As there was a significance difference among them, a
post-hoc test using a pairwise comparison test (Wilcoxon)
with Bonferroni correction was carried out and showed the
significant differences between the different algorithms. As
an example, Table 3 shows the results of theWilcoxon test for
the fifth instance. Note that,MOGA+ SA algorithmproduces
Pareto fronts which are statistically different with respect to

the other algorithms. Examining the average values inTable 2,
it can be determined thatMOGA+ SA obtained better Pareto
front approximations.

Figure 10 shows the Pareto fronts obtained by NSGAII
and MOGA + SA algorithms. The schedules with the mini-
mum andmaximum values for each objective are highlighted
by circles. It is important to note that MOGA + SA algorithm
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Input: I: Instance;
𝑇
𝑜
: timeout;

Output: X: Set of nondominated solutions;
Initialize set of solutions 𝑆 = {}
for 𝜆 ∈ {0, 1} (steps of 0.1) do
Solve the mathematical model for the instanceI and 𝜆 value given the timeout 𝑇

𝑜

Add the schedule with the tuple of the objective functions (�̂�, �̂�
𝑠
) to the set 𝑆

end for
X← nondominated solutions from 𝑆.

Algorithm 4: Pareto front from the mathematical model.

Table 3: Wilcoxon test over the hypervolumes obtained for a given
instance.

NSGAII SPEA2+
SPEA2+ 0.00011 —
MOGA + SA <2e − 16 <2e − 16

was able to produce a Pareto front with higher quality. Figures
10(a) and 10(d) show the relationship between �̂� and �̂�

𝑠
.

MOGA + SA algorithm turned out to achieve schedules
with greater robustness and lower �̂�

𝑠
values (�̂� = 1; �̂�

𝑠
=

0.3831) than NSGAII algorithm (�̂� = 0.9227; �̂�
𝑠
= 0.4196).

Furthermore, taking into account the relationship between �̂�
𝑠

and �̂� (see Figures 10(c) and 10(f)), MOGA + SA algorithm
achieved schedules with lower standard deviation of robust-
ness (𝜎(�̂�) = 0.0) than the ones obtained by the NSGAII
algorithm (𝜎(�̂�) = 0.1557).

The performance of the schedules obtained by our
approach (MOGA + SA) was evaluated by generating actual
scenarios with some incidences in the actual handling time of
the vessels. An incidence over a vessel 𝑖 is modeled as a delay
𝑑 in the handling time of vessel 𝑖. This incidence is absorbed
if there is enough buffer time behind vessel 𝑖 as to not alter the
mooring time of the subsequent vessels. For each instance, the
vessels that vary their handling times were uniformly chosen
among all the scheduled vessels.

In this experiment, 100 instances of 100 vessels were eval-
uated. For each instance, three different schedules were cho-
sen from the Pareto front according to their robustness (see
Table 4(a)): the one with the minimum robustness (𝑅min),
the one with the maximum robustness (𝑅Max), and one
intermediate robust schedule (𝑅

𝑖
where 𝑅min < 𝑅

𝑖
< 𝑅Max).

Likewise, three schedules were chosen according to their
service time (see Table 4(b)) and other three schedules
according to their standard deviation of the robustness (see
Table 4(c)).

The incidences (or delays, 𝑑) introduced were randomly
chosen from different ranges. These ranges vary from a
minimum value (1) to a maximum value, which is related to
the handling time (ℎ

𝑖
) of the vessel affected by the incidence

(see first column in Table 4). For each range, 100 incidences
were uniformly created and applied to the three schedules of
each instance.

Table 4(a) shows the percentage of incidences absorbed
by each type of schedule. It can be observed that the more
robust the schedule is, the more incidences absorbed. For
instance, with delays 𝑑 ∈ [1, 0.5ℎ

𝑖
], the 𝑅min schedule only

absorbed 18.73% of incidences in average, but the𝑅Max sched-
ule absorbed up to 99.85.%. Note that as the delay became
larger, fewer schedules can absorb the incidences.With delays
in the range of [1, 0.2ℎ

𝑖
], the𝑅Max schedule can absorb 99.95%

of incidences in average. However, with larger ranges, the
incidences absorbed decreased down to 97.15% in average.
This pattern was also repeated in Table 4(b). The lower 𝑇

𝑠
,

the lower incidences absorbed due to the fact that either there
would not be buffers among vessels or there would be small
buffers.

Table 4(c) shows the percentage of incidences absorbed
choosing three schedules by their standard deviation values.
As expected, the highest percentages of incidences absorbed
were obtained with the lowest values of standard deviation,
for example, 99.34%with delays in the range [1, 0.8ℎ

𝑖
]. In gen-

eral, schedules with the lowest standard deviation are related
to those schedules with the greatest buffers proportionally
distributed among all vessels (the most robust schedules).

The percentage of incidences absorbed by themost robust
schedules using or not the local search algorithm are showed
in Table 5. In this experiment, a timeout of 30 seconds was set
for both algorithms. It is important to note that adding the
local search to the multiobjective genetic algorithm allowed
to increase the incidences absorbed in all the ranges. For
instance, in range [1, 1.0ℎ

𝑖
], NSGAII was able to absorb

95.33% of incidences, whereas the MOGA + SA was able to
absorb 97.34% of incidences.

8. Conclusions

The competitiveness among container terminals causes the
need to improve the efficiency of each one of the subprocesses
or scheduling problems that are performed within them.
However, this efficiency is affected by the uncertainty of the
environment. This uncertainty might provoke delays in the
arrivals of the vessels or handling times greater than expected
due to extreme weather events, breakdowns in engines,
delays, and so forth. Furthermore, these scheduling problems
are even harder since they are interrelated and sometimes
there is no previous knowledge about these incidences. To
this end, we introduce the robustness into these scheduling
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Figure 10: Pareto fronts obtained by using or not local search.

problems. In this paper, we introduce the robustness into
one of the main scheduling problems in container terminals:
berth allocation and quay crane assignment problems. Its
objective function is to minimize the total service time
of the incoming vessels. The robustness, as second objec-
tive function, has been modeled as a measure related to

the likelihood of a schedule to absorb incidences. This
robustness has been related to the operational buffers found
after each assigned vessel. The greater the operational buffers
are, the higher the robustness of the schedule is. However, due
to the lack of the knowledge about incidences, operational
buffers should be distributed among vessels proportionally,
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Table 4: Percentages of incidences absorbed in schedules of 100
vessels.

(a) Delays applied to schedules with different levels of �̂�

Range 𝑅min 𝑅
𝑖

𝑅Max

𝑑 ∈ [1, 0.2ℎ
𝑖
] 21.78 95.51 99.95

𝑑 ∈ [1, 0.5ℎ
𝑖
] 18.73 93.58 99.85

𝑑 ∈ [1, 0.8ℎ
𝑖
] 16.64 90.49 98.96

𝑑 ∈ [1, 1.0ℎ
𝑖
] 13.92 87.10 98.01

𝑑 ∈ [1, 1.2ℎ
𝑖
] 12.93 85.31 97.15

(b) Delays applied to schedules with different levels of �̂�𝑠

Range 𝑇
𝑠min 𝑇

𝑠𝑖
𝑇
𝑠Max

𝑑 ∈ [1, 0.2ℎ
𝑖
] 20.17 79.91 99.94

𝑑 ∈ [1, 0.5ℎ
𝑖
] 16.16 73.88 99.75

𝑑 ∈ [1, 0.8ℎ
𝑖
] 13.89 65.17 98.94

𝑑 ∈ [1, 1.0ℎ
𝑖
] 11.85 60.25 98.08

𝑑 ∈ [1, 1.2ℎ
𝑖
] 10.32 56.76 96.74

(c) Delays applied to schedules with different levels of 𝜎(�̂�)

Range 𝜎(𝑅)min 𝜎(𝑅)
𝑖

𝜎(𝑅)Max

𝑑 ∈ [1, 0.2ℎ
𝑖
] 99.96 75.48 61.85

𝑑 ∈ [1, 0.5ℎ
𝑖
] 99.95 72.23 54.42

𝑑 ∈ [1, 0.8ℎ
𝑖
] 99.34 67.88 48.72

𝑑 ∈ [1, 1.0ℎ
𝑖
] 98.87 65.34 47.77

𝑑 ∈ [1, 1.2ℎ
𝑖
] 97.39 62.38 45.75

Table 5: Percentages of incidences absorbed in schedules of 100
vessels obtained using or not LS (timeout 30 secs).

Range 𝑅Max no LS 𝑅Max with LS
𝑑 ∈ [1, 0.2ℎ

𝑖
] 99.53 99.88

𝑑 ∈ [1, 0.5ℎ
𝑖
] 99.40 99.70

𝑑 ∈ [1, 0.8ℎ
𝑖
] 97.62 98.51

𝑑 ∈ [1, 1.0ℎ
𝑖
] 95.33 97.34

𝑑 ∈ [1, 1.2ℎ
𝑖
] 94.04 96.00

and thus the third objective managed in this way is to mini-
mize the standard deviation of the robustness measurements.

In this paper, a mixed integer programming (MIP)model
and a newhybridmultiobjective genetic algorithm (MOGA+
SA) were developed for the dynamic and continuous robust
BAP + QCAP. They were compared with two well-known
multiobjective genetic algorithms (MOGAs): NSGAII and
SPEA2+. In multiobjective optimization problems there is
no a unique optimal solution, and it is necessary to assess
the trade-off between all the objectives by using the Pareto
front. Visualizing Pareto fronts provides container terminals
operators with a helpful system to decide which schedule is
better depending on the actual state of the container terminal.

The results showed that the MIP model was able to
obtain robust and efficient schedules up to 10 incoming
vessels. However, MOGA + SA achieved better Pareto fronts
than the MIP model for queues of incoming vessels greater
than or equal to 20 vessels. Thereby, the schedules obtained

by MOGA + SA were more efficient and robust than the
schedules obtained by the MIP model. Furthermore, the
MIP model was unable to find any solution with a given
timeout for a queue of 50 incoming vessels. Additionally,
differences between the MOGAs have been assessed by
means of nonparametric statistical tests. It turned out to be
that MOGA + SA obtained better Pareto fronts according
to the hypervolume measures. Furthermore, different sets of
incidences were simulated into the schedules obtained by the
NSGAII and the MOGA + SA. The results returned that the
schedules obtained by MOGA+SA were more robust due to
the fact that they could absorb more incidences.
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