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The two-body interception problem with an upper-bounded tangent impulse for the interceptor on an elliptic parking orbit to
collide with a nonmaneuvering target on a hyperbolic orbit is studied. Firstly, four special initial true anomalies whose velocity
vectors are parallel to either of the lines of asymptotes for the target hyperbolic orbit are obtained by using Newton-Raphson
method. For different impulse points, the solution-existence ranges of the target true anomaly for any conic transfer are discussed
in detail. Then, the time-of-flight equation is solved by the secant method for a single-variable piecewise function about the target
true anomaly. Considering the sphere of influence of the Earth and the upper bound on the fuel, all feasible solutions are obtained
for different impulse points. Finally, a numerical example is provided to apply the proposed technique for all feasible solutions and
the global minimum-time solution with initial coasting time.

1. Introduction

The earth-crossing comets, asteroids, space debris, and other
spacecraft are potentially hazardous objects (PHOs) since
they may closely encounter with the Earth. Usually, an active
spacecraft is required to intercept, impact, or deflect the PHO
[1–4].The impact and deflectionmission ismainly usedwhen
the PHO is beyond the sphere of influence of the Earth. If this
mission is failed, the PHO will be on a hyperbolic trajectory
during the Earth flyby; thus the interception problem from a
parking orbit for a hyperbolic target needs to be solved.

Assume the nonmaneuvering target is subject only to a
Newtonian gravitational attraction and the Lambert app-
roach is the most fundamental and the simplest method to
accomplish the two-body interception problem with impulse
maneuvers [5–7]. If the impulse point and the interception
point are both assigned, the time of flight (TOF) for the target
can be obtained by solving Kepler’s equation of hyperbolic
orbit, and then the interception problem is equivalent to
Lambert’s problem [8–11]. The required velocity vector of
the transfer trajectory at the impulse point can be obtained
with the Lambert approach. It should be notified that the
transfer trajectory can be elliptic, parabolic, and hyperbolic.

When the initial coasting time is considered, the impulse
point may be not at the initial time, then interception
optimization problems to save time and fuel are studied by
many researchers [12–14].

However, no constraints are imposed on the impulse
direction for the Lambert approach when both impulse and
interception points are assigned. If two coplanar orbits are
tangent and the velocity vectors at their common point are
in the same direction, then the task of nulling the relative
velocity will be simple [8]. The cotangent transfer indicates
that the transfer orbit is tangent to both the initial orbit and
the final orbit. The classic Hohmann transfer [15] is a two-
impulse cotangent transfer between two coplanar circular
orbits, and it is the minimum-energy one among all the two-
impulse transfers.This result is also satisfied for two coplanar
elliptic orbits sharing the same apsidal line. For two coplanar
elliptic orbits with different apsidal lines, the numerical
solution [16] and the closed-form solution [17, 18] have been
obtained for the cotangent transfer problem. In addition,
Zhang et al. solved the two-impulse cotangent rendezvous
problem between two coplanar elliptic orbits [19] and bet-
ween elliptic and hyperbolic orbits [20], respectively. Dif-
ferent from two impulses are required for the rendezvous
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problem, a single impulse can fulfill the interceptionmission.
Thus, the tangent-impulse interception problem requires
the same TOF for two spacecraft and a transfer orbit tangent
to the initial orbit. Then, for a given impulse point, the
interception point is not arbitrary and needs to be solved.

This paper studies the coplanar tangent-impulse intercep-
tion problem from an interceptor on elliptic parking orbits to
a target on hyperbolic orbits. Based on four special initial true
anomalies, the solution-existence ranges of the target true
anomaly are obtained for different impulse points. Then the
one-tangent-impulse interception trajectories are obtained by
solving a single-variable piecewise function.

2. Problem Statement

Assume that the interceptor moves on the initial elliptic
parking orbit and the target moves on the target hyperbolic
orbit, and the initial and target orbits are coplanar with
different apsidal lines. At the initial time, the interceptor is
at 𝑃
10

and the target is at 𝑃
20

(see Figure 1). Let the motion
direction of both orbits be counterclockwise.The coasting arc
for the interceptor is from 𝑃

10
to 𝑃
1
, and the initial coasting

time before the tangent impulse is 𝑡
1
. The coasting arc for the

target is from 𝑃
20

to 𝑃
2
, and the coasting time of the target

is 𝑡
2
. The tangent impulse indicates that the transfer orbit

is tangent to the initial elliptic orbit at 𝑃
1
, and the transfer

time is 𝑡
3
. For the orbital interception problem, the flight time

of the interceptor and that of the target are the same. For
convenience, let

𝜂 ≜
1

𝑇
1

(𝑡
2
− 𝑡
1
− 𝑡
3
) , (1)

where 𝑡
𝑗
(𝑗 = 1, 2, 3) denotes the coasting time with zero

revolution and𝑇
𝑗
(𝑗 = 1, 3) denotes the orbital period, where

the subscripts “1”, “2,” and “3” denote the initial, target, and
transfer orbits, respectively. For the upper-bounded impulse
interception, the minimum-time solution is interesting; then
the revolutionnumber for the transfer orbit is set to be 0.Then
the orbital interception problem with a tangent impulse is to
solve the impulse point 𝑃

1
and the interception point 𝑃

2
such

that the following expression is satisfied:

𝜂 ∈ N = {0, 1, 2, . . .} (2)

in which 𝜂 is a positive integer indicates that the interceptor
moves multiple revolutions before the first tangent impulse
on point 𝑃

1
.

For the two-impulse cotangent rendezvous problem, if
the final true anomaly 𝑓

2
is given, there is a single closed-

form solution for the initial true anomaly 𝑓
1
; then 𝜂 in (1) is

a function only of 𝑓
2
for zero revolution. However, for the

one-tangent-impulse interception problem, from the above
analysis, it is known that 𝜂 is a function of two variables, the
initial true anomaly 𝑓

1
of the impulse point,and the target

true anomaly 𝑓
2
of the interception point. Usually, there is an

upper-bound constraint on the fuel consumptionΔV; then the
interception problem is to solve all values of 𝑓

1
and 𝑓

2
such

that (2) is satisfied and the fuel consumption is less than a
given value. In this paper, firstly the interception problemwill
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Figure 1: Geometrical interpretation of tangent-impulse intercep-
tion for a hyperbolic target.

be solved at a given 𝑓
1
of the impulse point; then all feasible

solutions will be obtained at different 𝑓
1
within one initial

orbital period.

3. Time-of-Flight Equations

3.1. Coasting Time for the Initial/Target Orbit. For the initial
elliptic orbit, the coasting time from𝑃

10
to 𝑃
1
can be obtained

by Kepler’s equation. For the target hyperbolic orbit, the
coasting time from 𝑃

20
to 𝑃
2
is [16]

𝑡
2
=
𝑟
20
𝑟
2
sin (𝑓

2
− 𝑓
20
)

√𝜇𝑝2

+ √
−𝑎
3

2

𝜇
[sinh (𝐻

2
− 𝐻
20
) − (𝐻

2
− 𝐻
20
)]

= 𝑟
20√

𝑝
2

𝜇

sin (𝑓
2
− 𝑓
20
)

1 + 𝑒
2
cos𝑓
2

+ √
−𝑎
3

2

𝜇
[sinh (𝐻

2
− 𝐻
20
) − (𝐻

2
− 𝐻
20
)] ,

(3)

where 𝜇 is the gravitational parameter, 𝑟 is the radius of𝑃,𝑓 is
the true anomaly,𝑝 = 𝑎(1−𝑒

2
) is the semilatus rectum, 𝑎 is the

semimajor axis, 𝑒 is the eccentricity, and𝐻 is the hyperbolic
anomaly, which is related to the true anomaly by

sinh𝐻
2
=

√𝑒
2

2
− 1 sin𝑓

2

1 + 𝑒
2
cos𝑓
2

,

cosh𝐻
2
=

𝑒
2
+ cos𝑓

2

1 + 𝑒
2
cos𝑓
2

(4)
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from which it is known that
𝐻
2
= log (sinh𝐻

2
+ cosh𝐻

2
)

= log(
√𝑒
2

2
− 1 sin𝑓

2
+ 𝑒
2
+ cos𝑓

2

1 + 𝑒
2
cos𝑓
2

).

(5)

Then the derivative of𝐻
2
with respect to 𝑓

2
is

d𝐻
2

d𝑓
2

=

√𝑒
2

2
− 1

1 + 𝑒
2
cos𝑓
2

.
(6)

Furthermore, the derivative of 𝑡
2
with respect to 𝑓

2
is

d𝑡
2

d𝑓
2

= 𝑟
20√

𝑝
2

𝜇

cos (𝑓
2
− 𝑓
20
) + 𝑒
2
cos𝑓
20

(1 + 𝑒
2
cos𝑓
2
)
2

+ √
−𝑎
3

2

𝜇
[cosh (𝐻

2
− 𝐻
20
) − 1]

√𝑒
2

2
− 1

1 + 𝑒
2
cos𝑓
2

.

(7)

3.2. Transfer Time between the Initial and Target Orbits. The
initial flight-path angle at 𝑃

1
can be written as [8]

𝛾 = arctan(
𝑒
1
sin𝑓
1

1 + 𝑒
1
cos𝑓
1

) . (8)

Let the transfer angle be 𝜃, and [9]

𝜆 =
𝑟
2
(1 − cos 𝜃)

𝑟
1
cos2𝛾 − 𝑟

2
cos (𝜃 + 𝛾) cos 𝛾

, (9)

V
1𝑡
= √

𝜇𝜆

𝑟
1

, (10)

where V
1𝑡

denotes the magnitude of the velocity vector at
point 𝑃

1
on the transfer orbit. For different values of 𝜆, there

are three cases for the transfer time [9, 19].
(1) If 𝜆 ∈ (0, 2), the transfer trajectory is an elliptic orbit

and the transfer time is

𝑡
3
=

2

√𝜇
(

𝑟
1

2 − 𝜆
)

3/2

tan−1 (
√2/𝜆 − 1

cos 𝛾cot (𝜃/2) − sin 𝛾
)

+ 𝑟
2√

𝑟
1

𝜇𝜆

tan 𝛾 (1 − cos 𝜃) + (1 − 𝜆) sin 𝜃
(2 − 𝜆) cos 𝛾

.

(11)

(2) If 𝜆 > 2, the transfer trajectory is a hyperbolic orbit
and the transfer time is

𝑡
3
= 𝑟
2√

𝑟
1

𝜇𝜆

×
tan 𝛾 (1 − cos 𝜃) + (1 − 𝜆) sin 𝜃

(2 − 𝜆) cos 𝛾

−
1

√𝜇
(

𝑟
1

𝜆 − 2
)

3/2

× ln
sin 𝛾 − cos 𝛾cot (𝜃/2) − (1 − 2/𝜆)1/2

sin 𝛾 − cos 𝛾cot (𝜃/2) + (1 − 2/𝜆)1/2
.

(12)

(3) If 𝜆 = 2, the transfer trajectory is a parabolic orbit and
the transfer time is

𝑡
3
=

2

3

√
𝑟
3

1

𝜇𝜆
[

3 cos 𝛾cot (𝜃/2)
[cos 𝛾cot (𝜃/2) − sin 𝛾]2

+
1

[cos 𝛾cot (𝜃/2) − sin 𝛾]3
] .

(13)

It should be notified that ((11)–(13)) are functions indepen-
dent of V

1𝑡
.

The derivative of the transfer time 𝑡
3
with respect to the

true anomaly 𝑓
2
is

d𝑡
3

d𝑓
2

= (
𝜕𝑡
3

𝜕𝑟
2

+
𝜕𝑡
3

𝜕𝜆

𝜕𝜆

𝜕𝑟
2

)
d𝑟
2

d𝑓
2

+ (
𝜕𝑡
3

𝜕𝜃
+
𝜕𝑡
3

𝜕𝜆

𝜕𝜆

𝜕𝜃
)

d𝜃
d𝑓
2

, (14)

where the partial derivatives 𝜕𝑡
3
/𝜕𝑟
2
, 𝜕𝑡
3
/𝜕𝜆, 𝜕𝑡

3
/𝜕𝜃, 𝜕𝜆/𝜕𝑟

2
,

and 𝜕𝜆/𝜕𝜃 and the full derivative d𝑟
2
/d𝑓
2
are obtained in

[19, 20] andd𝜃/d𝑓
2
= 1.Thepartial derivatives 𝜕𝑡

3
/𝜕𝜆, 𝜕𝑡

3
/𝜕𝜃

are different for elliptic transfers and hyperbolic transfers,
but the partial derivatives 𝜕𝑡

3
/𝜕𝑟
2
, 𝜕𝜆/𝜕𝑟

2
, and 𝜕𝜆/𝜕𝜃 and

the full derivative d𝑟
2
/d𝑓
2
are the same for elliptic orbits

and hyperbolic orbits. Note that the target true anomalies 𝑓
2

for parabolic orbits are not continuous; thus the expression
d𝑡
3
/d𝑓
2
is not derived for 𝜆 = 2.

For a given impulse point, the initial coasting time 𝑡
1
for

the interceptor is independent of 𝑓
2
. Then the derivative of 𝜂

with respect to 𝑓
2
is

𝜂

≜

d𝜂
d𝑓
2

=
1

𝑇
1

(
d𝑡
2

d𝑓
2

−
d𝑡
3

d𝑓
2

) . (15)

4. Conditions of Solution Existence

The above section gives the transfer time for any conic orbit.
A necessary condition is 𝜆 > 0. Since the initial flight-path
angle 𝛾 ∈ (−𝜋/2, 𝜋/2), the initial flight-direction angle is

𝛾 =
𝜋

2
− 𝛾. (16)

For the coplanar orbits, the transfer angle is

𝜃 = 𝑓
2
+ 𝜒, where 𝜒 ≜ 𝜔

2
− 𝜔
1
− 𝑓
1
, (17)

where 𝜔 is the argument of perigee.
Let

𝑐
1
= sin (𝜒 − 𝛾) + 𝑒

2

𝑟
1

𝑝
2

sin 𝛾,

𝑐
2
= cos (𝜒 − 𝛾) ,

𝑐
3
= −

𝑟
1

𝑝
2

sin 𝛾,

(18)

where 𝑝 is the semilatus rectum. There are three cases for
𝜆 > 0 [18]: (1) if 𝑐

3
/√𝑐
2

1
+ 𝑐
2

2
< −1, 𝑓

2
∈ [0, 2𝜋); (2) if
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𝑐
3
/√𝑐
2

1
+ 𝑐
2

2
> 1, there is no solution for 𝑓

2
; (3) if −1 ≤

𝑐
3
/√𝑐
2

1
+ 𝑐
2

2
≤ 1, then the range of 𝑓

2
for 𝜆 > 0 is

arcsin(
𝑐
3

√𝑐
2

1
+ 𝑐
2

2

)− atan2 (𝑐
1
, 𝑐
2
)

< 𝑓
2
< 𝜋 − arcsin(

𝑐
3

√𝑐
2

1
+ 𝑐
2

2

)− atan2 (𝑐
1
, 𝑐
2
) ,

(19)

where the four-quadrant inverse tangent function 𝛼 =

atan2(𝑏
1
, 𝑏
2
) is defined as the angle satisfying both sin𝛼 =

𝑏
1
/√𝑏
2

1
+ 𝑏
2

2
and cos𝛼 = 𝑏

2
/√𝑏
2

1
+ 𝑏
2

2
.

For any elliptical transfer orbit, 0 < 𝜆 < 2 is required. Let

𝑐
4
=
𝑝
2

𝑟
1

cos (2𝛾) + 𝑒
2
(1 − cos (2𝛾)) cos𝜒,

𝑐
5
=
𝑝
2

𝑟
1

sin (2𝛾) + 𝑒
2
(1 − cos (2𝛾)) sin𝜒,

𝑐
6
=
𝑝
2

𝑟
1

+ cos (2𝛾) − 1.

(20)

Then there are also three cases to be discussed [18]: (1) if
𝑐
6
/√𝑐
2

4
+ 𝑐
2

5
< −1, 𝑓

2
∈ [0, 2𝜋); (2) if 𝑐

6
/√𝑐
2

4
+ 𝑐
2

5
> 1, there is

no solution for 𝑓
2
; (3) if −1 ≤ 𝑐

6
/√𝑐
2

4
+ 𝑐
2

5
≤ 1, then the range

of 𝑓
2
for 0 < 𝜆 < 2 can be expressed as

− 𝜒 − atan2 (𝑐
4
, 𝑐
5
) + arcsin(

𝑐
6

√𝑐
2

4
+ 𝑐
2

5

)

< 𝑓
2
< 𝜋 − 𝜒 − atan2 (𝑐

4
, 𝑐
5
) − arcsin(

𝑐
6

√𝑐
2

4
+ 𝑐
2

5

).

(21)

In addition, the range of 𝑓
1
for existing elliptic transfers

needs to be solved. If there exists some range of 𝑓
2
, for 0 <

𝜆 < 2, the following inequality must be satisfied:

𝑐
2

4
+ 𝑐
2

5
− 𝑐
2

6
≥ 0. (22)

Substituting (20) into (22) yields

[1 − cos (2𝛾)]

× {(𝑒
2

2
− 1) [1 − cos (2𝛾)] + 2

𝑝
2

𝑝
1

(1 + 𝑒
1
cos𝑓
1
)

× [1 + 𝑒
2
cos (2𝛾 − 𝜒)]} ≥ 0.

(23)

Note that the flight-direction angle 𝛾 ∈ (0, 𝜋/2); then
cos(2𝛾) < 1 is satisfied for any 𝑓

1
; thus (23) can be rewritten

as

𝐹 ≜ (𝑒
2

2
− 1) [1 − cos (2𝛾)]

+ 2
𝑝
2

𝑝
1

(1 + 𝑒
1
cos𝑓
1
) [1 + 𝑒

2
cos (2𝛾 − 𝜒)] ≥ 0.

(24)

From ((16), (17)) it is known that 𝛾 and 𝜒 are functions only
of 𝑓
1
, then 𝐹 is a function only of 𝑓

1
. The values of 𝑓

1
for the

equality 𝐹 = 0 can be obtained by numerical methods; finally
the range for inequality 𝐹 > 0 in (24) is obtained.

5. Special Initial True Anomalies and
the Solution-Existence Range

There are four special points on the initial orbit, whose
directions of velocity vectors are parallel to either of the lines
of asymptotes for the target hyperbolic orbit. These initial
true anomalies 𝑓

1,𝑠𝑗
(𝑗 = 1, 2, 3, 4) are solved in the following

paragraphs. Let 𝑢
𝑠𝑗

= 𝑓
1,𝑠𝑗

+ 𝜔
1
, (𝑗 = 1, 2, 3, 4), 𝑢

2max =

𝑓
2max + 𝜔2 = arccos(−1/𝑒

2
) + 𝜔
2
, and 𝑢

2 min = arccos(1/𝑒
2
) +

𝜔
2
. From the geometry of Figure 2(a) it is known that

𝑢
𝑠1
+ 𝛾
𝑠1
= 𝑢
2max ⇒ 𝑓

1,𝑠1
+ 𝜔
1
+ 𝛾
𝑠1

= arccos(− 1

𝑒
2

) + 𝜔
2
.

(25)

Note that the flight-direction angle is a function only of the
true anomaly; then the above equation can be rewritten as

𝑓
1,𝑠1

+ 𝜔
1
+
𝜋

2
− arctan(

𝑒
1
sin𝑓
1,𝑠1

1 + 𝑒
1
cos𝑓
1,𝑠1

)

= arccos(− 1

𝑒
2

) + 𝜔
2

(26)

which is a function only of 𝑓
1,𝑠1

. Thus, the classic Newton-
Raphson iterative algorithm can be used to obtain the
numerical solution for (26).

From the geometry of Figure 2(b), it is known that

𝑓
1,𝑠2

+ 𝜔
1
+ 𝛾
𝑠2
− [arccos( 1

𝑒
2

) + 𝜔
2
] = 𝜋 (27)

which can be rewritten in a function only of 𝑓
1,𝑠2

as

𝑓
1,𝑠2

+ 𝜔
1
−
𝜋

2
− arctan(

𝑒
1
sin𝑓
1,𝑠2

1 + 𝑒
1
cos𝑓
1,𝑠2

)

= arccos( 1

𝑒
2

) + 𝜔
2
.

(28)

Similarly, from the geometries of Figures 2(c) and 2(d), it
is known that the function only of 𝑓

1,𝑠3
is

𝑓
1,𝑠3

+ 𝜔
1
−
𝜋

2
− arctan(

𝑒
1
sin𝑓
1,𝑠3

1 + 𝑒
1
cos𝑓
1,𝑠3

)

= arccos(− 1

𝑒
2

) + 𝜔
2

(29)
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Figure 2: Geometry interpretation for special initial true anomalies.

and the function only of 𝑓
1,𝑠4

is

𝑓
1,𝑠4

+ 𝜔
1
−
3𝜋

2
− arctan(

𝑒
1
sin𝑓
1,𝑠4

1 + 𝑒
1
cos𝑓
1,𝑠4

)

= arccos( 1

𝑒
2

) + 𝜔
2
.

(30)

All the values of 𝑓
1,𝑠𝑗

, (𝑗 = 1, 2, 3, 4) are obtained by Newton-
Raphson iterative algorithm.

Once the special initial true anomalies are obtained, the
solution-existence range of target true anomaly 𝑓

2
can be

discussed and obtained as follows.

(1) If 𝑓
1
∈ [𝑓
1,𝑠1

, 𝑓
1,𝑠2

], there is only one intersection
point for the velocity-vector line and the target
hyperbolic orbit. Assume that the true anomaly of

the intersection point on the target hyperbolic orbit
is 𝑓
2𝑞
, which can be obtained by (19); then the

target true anomaly is in the range (−𝑓
2max, 𝑓2𝑞).

The solution-existence range for any conic transfer
orbit is obtained as follows. (a) If there is no range
for elliptic transfer orbits, there is also no range for
any conic transfer orbit. (b) If there exists a range
(𝑓
2𝑎
, 𝑓
2𝑏
) ⊂ (−𝑓

2max, 𝑓2𝑞) for elliptic transfer orbits,
which is obtained by (21), then the range for any conic
transfer orbit can be (𝑓

2𝑎
, 𝑓
2𝑏
) or (−𝑓

2max, 𝑓2𝑏). When
𝑡
3
by (11)–(13) is positive for an arbitrarily selected

𝑓
2
∈ (−𝑓

2max, 𝑓2𝑎), for example, 𝑓
2
= (−𝑓

2max +
𝑓
2𝑎
)/2, the solution-existence range is (−𝑓

2max, 𝑓2𝑏);
otherwise, the range is (𝑓

2𝑎
, 𝑓
2𝑏
).

(2) If 𝑓
1

∈ (𝑓
1,𝑠2

, 𝑓
1,𝑠3

), there are two intersection
points for the velocity-vector line and the target
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hyperbolic orbit. Assume that the true anomalies of
the intersection points on the target hyperbolic orbit
are 𝑓
2𝑝

and 𝑓
2𝑞
; then the solution-existence range for

any conic transfer orbit is in the range (𝑓
2𝑝
, 𝑓
2𝑞
). The

solution-existence range for elliptic transfer orbits is
obtained as (𝑓

2𝑎
, 𝑓
2𝑏
) ⊂ (𝑓

2𝑝
, 𝑓
2𝑞
) by (21). Then the

solution-existence range for any conic transfer orbit
is (𝑓
2𝑝
, 𝑓
2𝑏
).

(3) If 𝑓
1
∈ [𝑓
1,𝑠3

, 𝑓
1,𝑠4

], there is only one intersection
point for the velocity-vector line and the target
hyperbolic orbit. Assume that the true anomaly of
the intersection point on the target hyperbolic orbit
is 𝑓
2𝑝
, which is obtained by (19); then the target true

anomaly is in the range (𝑓
2𝑝
, 𝑓
2max). The solution-

existence range for any conic transfer orbit is obtained
as follows. (a) If there is no range for elliptic transfer
orbits, then the solution-existence range for any conic
transfer orbit is (𝑓

2𝑝
, 𝑓
2max). (b) If there exists a range

(𝑓
2𝑎
, 𝑓
2𝑏
) ⊂ (𝑓

2𝑝
, 𝑓
2max), for elliptic transfer orbits,

then the range for any conic transfer orbit can be
(𝑓
2𝑝
, 𝑓
2𝑏
) or (𝑓

2𝑝
, 𝑓
2max). When 𝑡

3
by ((11)–(13)) is

positive for an arbitrarily selected 𝑓
2
∈ (𝑓
2𝑏
, 𝑓
2max),

for example, 𝑓
2

= (𝑓
2𝑏

+ 𝑓
2max)/2, the solution-

existence range is (𝑓
2𝑝
, 𝑓
2max); otherwise, the range is

(𝑓
2𝑝
, 𝑓
2𝑏
).

(4) If 𝑓
1

∈ (𝑓
1,𝑠4

, 𝑓
1,𝑠1

), there are two intersection
points for the velocity-vector line and the target
hyperbolic orbit. Assume that the true anomalies of
the intersection points on the target hyperbolic orbit
are 𝑓
2𝑝

and 𝑓
2𝑞
; then the target true anomaly must be

in the range (𝑓
2𝑞
, 𝑓
2max). There is no range for elliptic

transfer orbits, and the solution-existence range for
any conic (hyperbolic) transfer orbit is (𝑓

2𝑞
, 𝑓
2max).

From the above discussions it is known that there may
be no solution-existence range for any conic transfer orbit
only when 𝑓

1
∈ [𝑓

1,𝑠1
, 𝑓
1,𝑠2

], and there is certainly no
solution-existence range for elliptic transfer orbits when 𝑓

1
∈

[𝑓
1,𝑠4

, 𝑓
1,𝑠1

].
Let the solution-existence range for any conic transfer

by the above method be (𝑓
2𝑚
, 𝑓
2𝑛
). The target true anomaly

𝑓
2𝑖
at the impulse time is obtained by the hyperbolic orbit

propagation.Then there are three cases. (1) If 𝑓
2𝑖
< 𝑓
2𝑚
, then

the final solution should be obtained in the range (𝑓
2𝑚
, 𝑓
2𝑛
).

(2) If 𝑓
2𝑖

∈ [𝑓
2𝑚
, 𝑓
2𝑛
], then the final solution should be

obtained in the range (𝑓
2𝑖
, 𝑓
2𝑛
). (3) If 𝑓

2𝑖
> 𝑓
2𝑛
, then there

is no solution.

6. Solving the Problem

For a given impulse point, the solution-existence range for
any conic transfer and that for elliptic transfers are obtained
in Section 5. Assume that the final solution-existence range
for any conic transfer considering the target true anomaly
at the impulse time is (𝑓

2,𝑔1
, 𝑓
2,𝑔2

). The interception problem
can be solved by numerical methods.

Thevalue of 𝜂 can be calculated by (15); then the solutions
of 𝑓
2
for 𝜂(𝑓

2
) = 0 can be obtained by a numerical iterative

algorithm, for example, the golden section search. If there
is no solution for 𝜂(𝑓

2
) = 0, then 𝜂 decreases or increases

monotonically. Then for the range (𝑓
2,𝑔1

, 𝑓
2,𝑔2

), if ⌊𝜂(𝑓
𝑔1

+

𝛿)⌋ = ⌊𝜂(𝑓
𝑔2
− 𝛿)⌋ or max(⌊𝜂(𝑓

𝑔1
+ 𝛿)⌋, ⌊𝜂(𝑓

𝑔2
− 𝛿)⌋) < 0,

where the function ⌊𝑦⌋ denotes the nearest integer less than
or equal to 𝑦, and 𝛿 is a small positive number, then there is
no solution for (2). Otherwise, there are two cases.

(1) If min(⌊𝜂(𝑓
𝑔1

+ 𝛿)⌋, ⌊𝜂(𝑓
𝑔2

− 𝛿)⌋) ≥ 0, there are
|⌊𝜂(𝑓
𝑔2
− 𝛿)⌋ − ⌊𝜂(𝑓

𝑔1
+ 𝛿)⌋| solutions, which can be

obtained by the secant method as

𝑓
2,𝑛+2

= 𝑓
2,𝑛+1

− (𝑓
2,𝑛+1

− 𝑓
2,𝑛
)

𝜂 (𝑓
2,𝑛+1

) − 𝑁
1

𝜂 (𝑓
2,𝑛+1

) − 𝜂 (𝑓
2,𝑛
)
,

𝑛 ∈ N,

(31)

where the initial guesses are𝑓
2,0

= 𝑓
𝑔1
+𝛿,𝑓
2,1

= 𝑓
𝑔2
−

𝛿,𝑁
1
= ⌊𝜂(𝑓

𝑔1
+𝛿)⌋+1, ⌊𝜂(𝑓

𝑔1
+𝛿)⌋+2, . . . , ⌊𝜂(𝑓

𝑔2
−𝛿)⌋

if ⌊𝜂(𝑓
𝑔1
+𝛿)⌋ < ⌊𝜂(𝑓

𝑔2
−𝛿)⌋ and𝑁

1
= ⌊𝜂(𝑓

𝑔2
−𝛿)⌋+1,

⌊𝜂(𝑓
𝑔2
− 𝛿)⌋ + 2, . . . , ⌊𝜂(𝑓

𝑔1
+ 𝛿)⌋ if ⌊𝜂(𝑓

𝑔1
+ 𝛿)⌋ >

⌊𝜂(𝑓
𝑔2
− 𝛿)⌋.

(2) If min(⌊𝜂(𝑓
𝑔1

+ 𝛿)⌋, ⌊𝜂(𝑓
𝑔2

− 𝛿)⌋) < 0, there are
[max(⌊𝜂(𝑓

𝑔1
+ 𝛿)⌋, ⌊𝜂(𝑓

𝑔2
− 𝛿)⌋) + 1] solutions,

which can be obtained by (31) with 𝑁
1
= 0, 1, . . . ,

max(⌊𝜂(𝑓
𝑔1

+ 𝛿)⌋, ⌊𝜂(𝑓
𝑔2

− 𝛿)⌋). Note that 𝜂(𝑓
𝑔1
)

instead of 𝜂(𝑓
𝑔1

+ 𝛿) should be used for the range
[𝑓
𝑔1
, 𝑓
𝑔2
).

If there exist 𝑘
𝑛
≥ 1 solutions for 𝜂(𝑓

2
) = 0 and these

𝑘
𝑛
extreme points for 𝜂(𝑓

2
) are obtained as 𝑓

2,𝑘1
< 𝑓
2,𝑘2

<

⋅ ⋅ ⋅ < 𝑓
2,𝑘𝑛

, then there are 𝑘
𝑛
+ 1 piecewise ranges, that is,

(𝑓
2,𝑔1

, 𝑓
2,𝑘1

), [𝑓
2,𝑘1

, 𝑓
2,𝑘2

), . . . , [𝑓
2,𝑘𝑛

, 𝑓
2,𝑔2

). For each piecewise
range, the function of 𝜂 decreases or increasesmonotonically.
Then the solution for each piecewise range can be obtained
by (31) with different initial guesses. If lim

(𝑓
2
→𝑓
2,𝑔2
)
𝜂 = +∞

(see Figure 3(d)), there are infinite solutions in the range
[𝑓
2,𝑘𝑛

, 𝑓
2,𝑔2

), and the minimum-time solution (or with the
minimum 𝑓

2
) will be obtained.

In the patched-conic approximation method, the radius
of the Earth’s sphere of influence is 𝑅SOI = 925, 000 km; then
the true anomaly range of the solution is 𝑓

2
∈ (−𝑓SOI, 𝑓SOI),

where 𝑓SOI = arccos([𝑝
2
/𝑅SOI − 1]/𝑒

2
). Thus, the solutions

beyond this range should be removed.
The above section gives a method to obtain all solutions

for a given initial impulse point 𝑓
1
. For each solution, the

corresponding fuel consumption is

ΔV = V1𝑡 − V
1



=



√
𝜇

𝑝
1

𝜆 (1 + 𝑒
1
cos𝑓
1
) − √

𝜇

𝑝
1

(1 + 𝑒
2

1
+ 2𝑒
1
cos𝑓
1
)



.

(32)

The solution whose cost is greater than the given maxi-
mal value should be removed. Thus, the feasible solution
needs to satisfy two conditions, including the radius of the
Earth’s sphere of influence and the given maximal value
of fuel. When considering the initial coasting time before
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Figure 3: The curves of 𝜂 versus 𝑓
2
for different 𝑓

1
.

the impulse, the impulse point is free, then for each initial
impulse point, all feasible solutions can be obtained and the
minimum-time one is with the minimum value of 𝑓

2
.

Reference [20] dealt with the cotangent rendezvous
between two coplanar elliptic and hyperbolic orbits (Problem
1), whereas this paper is for the tangent-impulse interception
problem from an interceptor on elliptic parking orbits to
a target on hyperbolic orbits (Problem 2). Three main
differences between these two problems are listed as follows.

(1) For Problem 1, there is a single closed-form solution
for an arbitrary point on the target hyperbolic orbit;
that is, 𝑓

2
∈ (−𝑓

2max, 𝑓2max), where 𝑓
2max =

arccos(−1/𝑒
2
); thus there is only one degree of

freedom in (2) for zero revolution; however, in a
specified (e.g., counterclockwise) motion direction,
the solution-existence range is not the whole range
of target true anomaly. For Problem 2, there is
no certain relationship between the tangent-impulse

point𝑓
1
and the interception point𝑓

2
. In other words,

there are two degrees of freedom in (2) with zero
revolutions.

(2) For Problem 1, with nonintersecting case (counter-
clockwise), the solution-existence range for cotangent
rendezvous is 𝑓

2
∈ (𝑓
2𝑎
, 𝑓
2max), where (𝑓2𝑎, 𝑓2𝑏) is

obtained by the solution-existence range for elliptic
transfers [20]. But for Problem 2with nonintersecting
case (counterclockwise), the solution-existence range
of 𝑓
2
can be obtained by the proposed method for

different𝑓
1
, which is dependent on four special initial

true anomalies whose velocity vectors are parallel to
the lines of asymptotes for the target hyperbolic orbit.
Moreover, there may be no solution-existence range
for any conic transfer orbit when 𝑓

1
∈ [𝑓
1,𝑠1

, 𝑓
1,𝑠2

].
(3) For Problem 1, with a given revolution number 𝑁

3

of the transfer orbit, usually there is only one orbit
solution (see the examples in [20]). However, for
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Problem 2, with an upper-bounded impulse, the
minimum-time solution is interesting; then 𝑁

3
is set

to be 0. For a given impulse point 𝑓
1
, there may exist

multiple solutions of 𝑓
2
(see Figures 3(a) and 3(b)).

With the initial coasting time, all feasible solutions
for different impulse points are obtained and the
minimum-time one is with the minimum value of 𝑓

2
.

7. Numerical Examples

Assume that the interceptor’s orbit elements are 𝑎
1
= 2𝑅
𝐸
+

4,000 km, 𝑒
1
= 0.6, 𝜔

1
= 10
∘, and 𝑓

10
= 60
∘ and the target’s

orbit elements are 𝑎
2
= −2𝑅

𝐸
− 10, 000 km, 𝑒

2
= 1.6, 𝜔

2
= 0
∘,

and 𝑓
20

= −120
∘, where 𝑅

𝐸
= 6378.13 km is the Earth’s

radius. The gravitational parameter used for the example is
𝜇 = 398,600.4415 km3/s2. The upper bound of the tangent
impulse is set to be 5 km/s. Four special initial true anomalies
are obtained as 𝑓

1,𝑠1
= 45.4187

∘, 𝑓
1,𝑠2

= 158.1023
∘, 𝑓
1,𝑠3

=

191.9457
∘, and 𝑓

1,𝑠4
= 284.5334

∘ via (26), (28), (29), and
(30). To obtain elliptic transfers, the range of the initial true
anomaly of the impulse point is𝑓

1
∈ (79.9244

∘
, 249.9268

∘
) via

(24). In addition, considering the radius of the Earth’s sphere
of influence, that is, 925,000 km, the range of true anomaly is
𝑓
2
∈ (−126.9425

∘
, 126.9425

∘
).

If the impulse is imposed at the initial time, that is, 𝑓
1
=

𝑓
10

= 60
∘, then 𝑓

1
∈ [𝑓
1,𝑠1

, 𝑓
1,𝑠2

] is satisfied, and there is no
range for elliptic transfers; thus no solution-existence range
exists for 𝑓

2
.

If the impulse is imposed at 𝑓
1

= 160
∘, the target

true anomaly at the impulse time is 𝑓
2

= −118.3547
∘

by solving Kepler’s equation for hyperbolic orbits, and
the plots of 𝜂 versus 𝑓

2
can be obtained in Figure 3(a).

The final solution-existence range for any conic transfer
considering the target true anomaly at the impulse time
is (𝑓
2,𝑔1

, 𝑓
2,𝑔2

) = (−118.3547
∘
, 72.4802

∘
). There are two

solutions, that is, −92.8589∘ and 20.7296∘; the corresponding
revolution numbers are both 0 and the corresponding costs
are 1.3182 km/s and 1.0211 km/s, respectively. The minimum-
time solution is −92.8589∘, the corresponding transfer time is
21972.4 s, and the total interception time 𝑡

2
is 28310.4 s via (3).

The value of 𝜆 is obtained as 1.1178 by (9); thus the trajectory
is elliptic and it is plotted in Figure 4.

If the impulse is imposed at 𝑓
1
= 170

∘, the target true
anomaly at the impulse time is 𝑓

2
= −117.7828

∘, the plots of
𝜂 versus 𝑓

2
can be obtained in Figure 3(b).The final solution-

existence range is (𝑓
2,𝑔1

, 𝑓
2,𝑔2

) = (−116.3047
∘
, 88.3112

∘
).

There are three solutions, −115.8579
∘, −109.2932

∘, and
53.2432

∘, all the corresponding revolution numbers are 0,
and the corresponding costs are 21.1998 km/s, 3.9088 km/s,
and 1.1770 km/s, respectively.The energy cost of−115.8579∘ is
much greater than 5 km/s; thus it cannot be used.The feasible
minimum-time solution is −109.2932∘, the corresponding
transfer time is 13188.3 s, and the total interception time is
21258.8 s. The value of 𝜆 is 2.7636; thus the trajectory is
hyperbolic and it is plotted in Figure 5.

If the impulse is imposed at 𝑓
1
= 240

∘, the target true
anomaly at the impulse time is 𝑓

2
= −112.5985

∘; the plots of
𝜂 versus 𝑓

2
can be obtained in Figure 3(c). There is a single
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Figure 4: Tangent-impulse interception with elliptic transfer trajec-
tory.
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Figure 5: Tangent-impulse interception with hyperbolic transfer
trajectory.

solution 115.2336∘, the corresponding revolution number is
0, the cost is 1.7743 km/s, the transfer time is 36318.2 s, and
the total interception time is 54208.1 s.The value of 𝜆 is 1.9316;
thus the trajectory is elliptic.

If the impulse is imposed at 𝑓
1
= 330

∘, the target true
anomaly at the impulse time is𝑓

2
= −110.2890

∘, the plots of 𝜂
versus𝑓

2
can be obtained in Figure 3(d), and there are infinite

solutions. However, when considering the sphere of influence
of the Earth, there are three solutions. The minimum-time
solution is 118.6911∘, the corresponding revolution number
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Table 1: Feasible solutions of𝑓
2
for different𝑓

1
and the correspond-

ing interception time 𝑡
2
and ΔV.

𝑓
1
(∘) Solutions of

(𝑓
2
(∘),𝑁

1
) 𝑡

2
(s) ΔV (km/s)

150 (−56.6897, 0) 32108.4 0.9035
(−39.9134, 0) 32844.3 0.8897

170 (−109.2932, 0) 21258.8 3.9088
(53.2432, 1) 35834.5 1.1770

190 (89.1630, 0) 39080.1 1.4596
210 (104.3983, 0) 43665.1 1.6333
230 (112.3591, 0) 49932.6 1.7338
250 (117.7130, 0) 59847.2 1.8148
270 (121.9959, 0) 80249.5 1.9082
290 (125.9555, 0) 160241.3 2.0322
310 (124.4383, 1) 111489.9 2.2976
330 (118.6911, 1) 62895.4 2.9698

(125.7512, 2) 150667.5 2.6872
(126.9266, 3) 236873.8 2.6464

350 (114.2511, 1) 52541.0 4.4692
(124.2882, 2) 108532.2 3.5407
(126.0145, 3) 163286.2 3.4192
(126.7542, 4) 217544.3 3.3698

10 (126.1114, 4) 168589.6 4.9766
(126.6609, 5) 208476.8 4.8911

is 1, the corresponding costs is 2.9698 km/s, the correspond-
ing transfer time is 20927.9 s, and the total interception time
is 62895.4 s. The value of 𝜆 is 2.7280; thus the trajectory is
hyperbolic.

For different impulse points, all feasible solutions satisfy-
ing 𝑓
2
∈ (−126.9425

∘
, 126.9425

∘
) and the fuel constraint and

the corresponding value of 𝑁
2
= 𝜂 for (2) can be obtained

by (31) and are listed in Table 1. The total interception time is
𝑡
2
= 𝑡
1
+ 𝑡
3
; the corresponding costs are also listed in Table 1.

It should be notified that there is no feasible solution when
𝑓
1
= 30
∘
+ 𝑘
𝑗
⋅ 20
∘, 𝑘
𝑗
= 1, 2, 3, 4, 5. By using the numerical

optimization algorithm, the minimum-time impulse point is
at 𝑓
1
= 170.5235

∘, the solution is 𝑓
2
= −110.8795

∘, the cost is
4.9999 km/s, and the total interception time is 19810.6 s. The
minimum-time interception trajectory is hyperbolic and it is
near to that in Figure 5.

8. Conclusions

This paper studies the interception problem for a hyperbolic
target with an upper-bounded tangent impulse. Based on
four special initial true anomalies, the solution-existence
range of the target true anomaly for any conic transfer is
obtained. Then the problem is solved by the secant method
for a time-of-flight equation. For a given impulse point,
there may be zero, one, many, or infinite solutions; however,
when considering the sphere of influence of the Earth, there
are always finite solutions. For different impulse points, all
feasible solutions and the global minimum-time solution are

obtained. This proposed method is valid for an assigned
impulse point and the time optimization with the initial
coasting time. The interception with a tangent-impulse tech-
nique can be used in orbital interception task for potentially
hazardous objects during the Earth flyby with simple control.
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