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The Bag of Visual Words (BoW) model is one of the most popular and effective image classification frameworks in the recent
literature.The optimal formation of a visual vocabulary remains unclear, and the size of the vocabulary also affects the performance
of image classification. Empirically, larger vocabulary leads to higher classification accuracy.However, larger vocabulary needsmore
memory and intensive computational resources. In this paper, we propose a multiresolution feature coding (MFC) framework
via aggregating feature codings obtained from a set of small visual vocabularies with different sizes, where each vocabulary is
obtained by a clustering algorithm, and different clustering algorithm discovers different aspect of image features. In MFC, feature
codings from different visual vocabularies are aggregated adaptively by a modified Online Passive-Aggressive Algorithm under
the histogram intersection kernel, which lead to a closed-form solution. Experiments demonstrate that the proposed method (1)
obtains the same if not higher classification accuracy than the BoWmodel with a large visual vocabulary; and (2) needs much less
memory and computational resources.

1. Introduction

Image classification is one of the most fundamental problems
in computer vision and pattern recognition, which is to assign
one or more category labels to an image. With the develop-
ment of the Internet and multimedia technology nowadays,
image classification has a wide range of applications, such as
video surveillance, image and video retrieval, web content
analysis, human-computer interaction, and biometrics, just
to name a few. However, it is challenging on a number of
fronts [1, 2]: (1) image classification performance would be
affected by object viewpoint, illumination changes, partial
occlusion, background clutter, and visual similarity between
different classes; (2) large intraclass visual diversity and
different instances of objects from the same category that
exhibit significant variations in appearance also affect the per-
formance; (3) in many cases appearance alone is ambiguous
when considered in isolation, making it necessary to model
not just the object class itself, but also its relationship to the
scene context and priors on usual occurrences.

The Bag of Visual Words (BoW) image representation
[3, 4], which is analogous to the bag-of-words representation

of text documents [5] in terms of form and semantics, is
one of the most popular and effective image classification
framework in the recent literature. The essential idea behind
this type of representation is to characterize an image by the
histogram of its visual words, that is, vector-quantized local
features. Popular candidates for these local features are local
descriptors [6], such as SIFT [7] or SURF [8], that can be
extracted as specific interest points, densely sampled over
the image [9], or via a hybrid scheme called dense interest
points [10]. Generally, sampling in a dense manner helps
improve the image classification accuracy but requires more
computational resources and storage usage.

The local descriptors have to be quantized, and there
are very different clustering methods that can be used to
obtain the vocabulary or dictionary.𝐾-means and its variants
[11, 12] are currently the most common methods, especially
in large scale application. The visual “words” are the 𝑘

cluster centers. Sparse coding methods [13, 14] have demon-
strated the outstanding performance in image classification
and object recognition; however they need to solve a ℓ
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either an NP-hard problem or an alternative problem via
costly iterative optimisation [15].

After obtaining the vocabulary, each local feature in an
image is mapped to a “word” in order to represent any image
as a histogram over the vocabulary. The BoW representation
has been shown to characterize the images and objects within
them in a robust yet descriptive manner, in spite of the fact
that it ignores the spatial configuration between visual words
[16]. Moreover, this approach has inspired a lot of research
efforts, such as [17–19].

Notwithstanding its great success and wide adoption
in BoW representation, the optimal formation of a visual
vocabulary remains unclear; building one requires many
choices on the part of the algorithm designer. Besides, the
visual words will be affected by several factors, including the
corpus of features used, the number of words selected, the
quantization algorithm used, and the interest point or sam-
pling mechanism chosen for feature extraction. Empirically,
the larger the vocabulary, the more fine-gained the visual
words, and the more discriminately the BoW histogram,
leading to better performance. However, larger vocabulary
needs more memory and intensive computational resources.
Furthermore, with too large vocabularies, the quantization
distances might be smaller than the fluctuations of visual
descriptors under image distortions so that nearly identical
fragments can be assigned to different visual words. While
BoW model with small vocabulary usually lead to poor
performance for its weak discrimination. As a result, there
is a trade-off between the performance and computational
resources required.

Visual vocabularies are usually constructed by using a
single clustering algorithm (normally 𝐾-means algorithm).
However, different clustering algorithms (or even the same
clustering algorithm with different initialization) discover
different aspects of image features; it is true that one par-
ticular quantization approach shall obtain a better solution
than the others. If we were able to aggregate the BoW his-
tograms from visual vocabularies constructed by a clustering
algorithm with different initialization or even constructed by
different clustering algorithms, we could integrate a generally
more robust and more discriminative image representation.
Furthermore, if these visual vocabularies are with small
sizes, much memory usage and computational resources will
be reduced compared to BoW model that usually needs a
large visual vocabulary. How to reduce the computational
resources and memory usage is a significant consideration in
large scale image classification application.

In this paper, we propose a novel approach to aggregate
the BoW histograms (feature codings) from different visual
vocabularies in an adaptive manner. We first define the
feature codings (BoW histogram) obtained from a set of
visual vocabularies as multiresolution feature coding (MFC),
which are for the abuse use of Multiresolution Histograms
for image histogram in [20]. In MFC, feature codings from
different visual vocabularies areweighted aggregated bymod-
ified Online Passive-Aggressive Algorithms [21, 22] under
the histogram intersection kernel, which lead to a closed-
form solution. Via our proposed approach we can achieve the
state-of-the-art performance with a set of small vocabularies
compared with other BoW based methods with a single

large vocabulary, but with much lower memory usage and
computational resources required.

The rest of this paper is organized as follows. Section 2
contains a review of the related work. We give the details
of the proposed image representation approach in Section 3
and describe how to learn the weights for aggregating feature
codings in Section 4. Experiments are described in Section 5,
and Section 6 concludes this paper.

2. Related Work

Recognizing categories of objects and scenes is a fundamental
human ability and an important, yet elusive, goal for com-
puter vision research. One of the challenges is the semantic
gap between the low-level image feature and high-level visual
semantic [24]. Recently, more elaborated image representa-
tions, known as midlevel representations (i.e., richer repre-
sentations of intermediate complexity), have been proposed
to deal with the complexity of the image classification task, by
aggregating hundreds and even thousands of low-level local
descriptions about the image into a single feature vector.

The canonical midlevel model is the Bag of Visual Words
(BoW) model. The basic BoW representation has important
limitations; one of the notorious disadvantages of BoW is that
it ignores the spatial relationships, which are very important
in image representation. Several improvements have been
suggested. To overcome the loss of spatial information,
separate BoW can be computed in different subregions of
the image, as in the spatial pyramid matching (SPM) scheme
[17]. To attenuate the effect of coding errors induced by the
descriptor space quantization, one can rely on soft assignment
[18] or explicitly minimize reconstruction errors, such as
sparse coding [13] and Local Linear Coding [19]. Finally, aver-
aging local descriptor contributions (average pooling) can
be reconsidered by studying alternative (more biologically
plausible) pooling schemes, for example, max pooling [13].

The choice of dimension, selection, and weights of visual
words (vocabulary) in BoW representation is crucial to
the classification performance. Current prevailing dictionary
learning approaches for BoW representation can be roughly
categorized into three main types: universal learning, indi-
vidual learning, and both. Lazebnik et al. [17] have learnt
a universal vocabulary for spatial pyramid matching, and
obtained promising performance for image classification.
Because of diverse visual properties of images, such universal
vocabulary may not be optimum for all the object classes
and image concepts. With the increasing number of object
classes and image concepts (which may have huge diversity
of their visual properties), a universal vocabulary with larger
size is needed to retain the performance. In [25, 26], a set
of individual dictionaries have been learnt independently
and have obtained excellent performance. Recently, Zhou
and Fan [27] propose a new dictionary learning algorithm
which explicitly separate the commonly shared visual words
from the class-specific ones and jointly learn the common
dictionary and interclass related dictionaries to enhance the
discrimination.

Many works consider integrating multiple visual vocab-
ularies to form a single one. In [28], the authors combine



Mathematical Problems in Engineering 3

Feature
extraction

Density SIFTImages

Classifier

Layer 1 Layer 2 Layer 3

Online
aggregation

Weighted 

Feature coding

⌈⌊ ⌈⌊
...
...

...

...

· · ·

· · ·

Dictionary

Dictionary

Dictionary ⌈⌊ ⌈⌊
...
...

⌈⌊ ⌈⌊
...
...

⌈⌊ ⌈⌊
...
...

⌈⌊ ⌈⌊
...
...

...

...

· · ·

· · ·

⌈⌊ ⌈⌊
...
...

...

...

· · ·

· · ·

⌈⌊ ⌈⌊
...
...

...

...

· · ·

· · ·

Kernel matrix

kernel matrix

Figure 1: Overview of our proposed approach.

heterogeneous visual vocabularies via consensus clustering
[29] and achieve a superior performance compared to tra-
ditional BoW approaches. Zheng et al. [30] propose a Bayes
merging approach tomultiple vocabularies for scalable image
retrieval under the BoW model. Wang et al. [31] propose an
algorithm to merge the visual words in a large vocabulary by
maximally preserving class separability into a compact and
discriminative one.

Khadem et al. [32] uses latent aspect models, such as
LSA and pLSA, to embed visual words into a rich semantic
space which named as concept space for action and scene
recognition application. In their work, visual words are also
weighted based on how they are present in the-same-category
images, but their focus on the semantic relationship by
constructing a discriminative and semantically meaningful
vocabulary not on multiple visual vocabularies of smaller
size. Śluzek [33] consider multiple features aggregated via
Cartesian product to detect near-duplicate patches in images,
and both visual and geometric characteristics of key point
neighborhoods are represented by visual words.

The most related work to ours is Jégou and Chum [34],
which emphasizes the benefit of PCA and feature whitening
for image retrieval. In their work, the effects of merging
vocabularies with different sizes on the performance of
image retrieval by joint feature decorrelation are considered.
Although image retrieval shares some techniques with image
classification, their aims are different. Images that show the
same scene with different objects may be considered similar
in image retrieval but belong to different categories in image
classification. At the same time, in [34] its main goal is to
reduce the long feature vector to a small one, which is called
small codes in [35]. The redundancy of feature vector should
be reduced, while in image classification domain, these
redundancies may be helpful. Regarding all the discussion
above, the most important difference is the weights, which
are fixed in their work and are learnt adaptively by amodified
Online Passive-Aggressive Algorithms in ours.

3. The Proposed Method

Our proposedmethod can be divided into three layers. In the
first layer, local image descriptors are extracted to generate

a set of small visual dictionaries with different sizes; this is
different from the traditional BoW model in which a single
but usually very large dictionary is constructed. The second
layer is the feature coding layer; each image is represented
as a number of low-dimensional histograms, yielding mul-
tiple histograms with different resolution, which we name
multiresolution feature coding. We use the hard-assignment
(hard coding) as our default feature coding method in this
paper, although it is to be easily extended to soft coding
or sparse coding. After that, a set of kernels (we use the
histogram intersection kernel in this paper, and 𝜒

2 kernel
can also be taken) are constructed by these low-dimensional
histograms. In the third layer, these kernels are weighted
aggregated to form a single kernel by a modified Online
Passive-Aggressive Algorithms, which lead to a closed-form
solution. Based on this image representation, image classi-
fication task can be easily done via using a simple classifier
with kernel, such as support vector machines (SVM). We
summarize our proposed image representation approach in
Figure 1.

3.1. The First Layer: Dictionaries Generation. We extract
dense-SIFT features in image 𝐼. For example, for every 3 pixels
in row and column, we extract a 16 × 16 image patch. To
describe every image patch, we build a histogram based on
gradient of pixels following the way in [7] and denote the
histograms by 𝐼 = {𝑥

1
; . . . ; 𝑥

𝑁
}. These dense-SIFT features

capture all local cues in image. To deal with variation of object
scale, we can extract image patches inmultiple scales through
Gaussian smoothing with different covariance matrices.

After extracting the dense-SIFT features, the visual
vocabularies are generated by 𝑘-means clustering algorithm.
We take 𝑘-means algorithm into our consideration for it has
several advantages [36]: (1) its time and storage complexity
are both linear with respect to the data points; (2) it is
guaranteed to converge at a quadratic rate; (3) it is invariant
to data ordering.The time and storage complexity is the most
fundamental factor that needs to be taken into consideration
in image classification because thousands to millions of
images are involved in the benchmark datasets or in the large
scale application circumstances.
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For dictionaries with different sizes, we can run the 𝐾-
means algorithmmultiple times, in each time, we set a differ-
ent value of the number clusters𝐾; and if the dictionarieswith
same size needed, we output the intermediate results of 𝐾-
means clustering at different stages in the clustering process.
In this paper, we construct dictionaries by running𝐾-means
algorithm multiple times with different values of𝐾.

After this layer, a set of dictionaries is generated by 𝐾-
means algorithm with different values of 𝐾; we call these
dictionaries with different sizes as multiresolution visual
dictionary for the abuse use of Multiresolution Histograms
[20] for image histogram.

3.2. The Second Layer: Feature Coding. Feature coding plays
a key role in image classification task; study in [37] has
shown that, in image classification, feature coding strategy
(vector quantization) is more important than learning amore
discriminative dictionary (even the dictionaries are learnt
by sparse coding) in large scale application. Although it
is considered under the BoW model in this paper, feature
coding is still a key factor.

Hard coding [3] assigns each local feature to its closest
visual “word'' in the visual dictionary, and the coding repre-
sentation of a local feature 𝑥 is

] (𝑖) = {
1, if 𝑖 = argmin

𝑗

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑏
𝑗

󵄩󵄩󵄩󵄩󵄩2

0, otherwise,
𝑖 = 1, 2, . . . ,𝑀,

(1)

where 𝑏
𝑗
is the 𝑗th “word” in visual dictionary and 𝑀 is the

size of visual dictionary. After mapping each local feature to
its closest visual “word,” sum-pooling is used to add all the
hard coding vectors to form a single histogram, where each
bin reflects the occurrence frequency of visual words. The
BoW histogram of an image is represented by normalizing
the above histogram to be 1 by ℓ

2
-norm.

The BoW model ignores the spatial relationships, which
are very important in image representation. Spatial pyramid
matching (SPM) [17], to some extent, makes up for the loss of
spatial information and has made a remarkable success on a
range of image classification benchmarks. The SPM strategy
partitions an image into 2ℓ × 2

ℓ subregions in different scales
ℓ = 0, 1, 2, computes the BoW histograms within each of
the 21 subregions, and finally concatenates all the histograms
to form a vector representation of the image. In case where
only the scale ℓ = 0 is used, SPM reduces to traditional BoW
model. We take the SPM strategy in our feature coding layer.

Suppose {h𝑡}𝑑
𝑡=1

is the histogram of an image set, where
𝑑 is the number of dictionaries constructed in the first layer
and {h𝑡

𝑖
}
𝑑

𝑡=1
and {h𝑡

𝑗
}
𝑑

𝑡=1
are the BoW histograms of image 𝐼

𝑖

and image 𝐼
𝑗
. We construct the histogram intersection kernel

based on the BoW histogram obtained by the 𝑡th dictionary
as

K𝑡 (𝑖, 𝑗) =
𝑚
𝑡

∑

𝑘=1

min (ℎ𝑡
𝑖𝑘
, ℎ
𝑡

𝑗𝑘
) , (2)

where 𝑚
𝑡
is the size of the 𝑡th dictionary. Any other kernels

based on histogram, such as the 𝜒
2 kernel, can also be

constructed in a similar manner.
As discussed above, the output of the feature coding layer

can be either the BoW histograms {h𝑡}𝑑
𝑡=1

or the constructed
kernels K = {K𝑡}𝑑

𝑡=1
, where 𝑑 is the number of dictionaries.

We call this representation as multiresolution feature coding.
In this paper, the constructed kernels are used as the output
for this layer.

3.3. The Third Layer: Weighted Aggregation. As discussed
in latest subsection, a set of constructed kernels K =

{K𝑡}𝑑
𝑡=1

have been obtained. As different clustering algorithms
discover different aspects of image features, each constructed
kernel makes different contributions to the image classifica-
tion task at hand, which leads to a weighted aggregation for
the constructed kernelsK = {K𝑡}𝑑

𝑡=1
:

K
𝜂
(𝑖, 𝑗) =

𝑑

∑

𝑡=1

𝜂
𝑡
K𝑡 (𝑖, 𝑗) =

𝑑

∑

𝑡=1

𝜂
𝑡

𝑚
𝑡

∑

𝑘=1

min (ℎ
𝑖𝑘
, ℎ
𝑗𝑘
) , (3)

where ∑𝑑
𝑡=1

𝜂
𝑡
= 1, 𝑑 is the number of dictionaries and 𝑚

𝑡

is the size of the 𝑡th dictionary. K
𝜂
(𝑖, 𝑗) is a similarity metric

according to the definition in [38].
Our aims are to make sure the weighted similarity (3) of

same labeled images is larger than that of different labeled
images. Ideally, the learnt weight vector 𝜂 ∈ R𝑑 satisfies the
constraint:

K
𝜂
(𝑖, 𝑝) ≥ K

𝜂
(𝑖, 𝑛) , ∀ (𝑖, 𝑝, 𝑛) ∈ Γ; (4)

that is
𝑑

∑

𝑡=1

𝜂
𝑡
K𝑡 (𝑖, 𝑝) ≥

𝑑

∑

𝑡=1

𝜂
𝑡
K𝑡 (𝑖, 𝑛) , ∀ (𝑖, 𝑝, 𝑛) ∈ Γ, (5)

where Γ = {(𝑖, 𝑝, 𝑛) | 𝑦
𝑖
= 𝑦
𝑝
, 𝑦
𝑖

̸= 𝑦
𝑛
} and 𝑦

𝑖
denotes the

class label for image 𝐼
𝑖
.

It is impossible to fulfil these constraints for all triplets
simultaneously. Hence, slack variables 𝜉

𝑖𝑝𝑛
≥ 0 are intro-

duced, which is used to allow a small portion of images to
violate the conditions, resulting in a soft constraint:

K
𝜂
(𝑖, 𝑝) − K

𝜂
(𝑖, 𝑛) ≥ 1 − 𝜉

𝑖𝑝𝑛
, ∀ (𝑖, 𝑝, 𝑛) ∈ Γ. (6)

The 𝜉
𝑖𝑝𝑛

in (6) can be thought as a penalty or a loss
for triplets violating the hard-constraints (4). Under the soft
constraint (6), our aim is minimizing the loss over all triplets,
which can be formulated as ∑

𝑖,𝑝,𝑛
𝜉
𝑖𝑝𝑛
. So, similar to the

formulation in SVM, we formulate the above loss function
and its constraints as a quadratic optimization problem:

minimize 1

2

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

+ 𝐶 ∑

𝑖,𝑝,𝑛

𝜉
𝑖𝑝𝑛

subject to

{{{{{{{

{{{{{{{

{

K
𝜂
(𝑖, 𝑝) − K

𝜂
(𝑖, 𝑛) ≥ 1 − 𝜉

𝑖𝑝𝑛
,

∀ (𝑖, 𝑝, 𝑛) ∈ Γ,

𝑑

∑

ℓ=1

𝜂
ℓ
= 1, 𝜉

𝑖𝑝𝑛
≥ 0, ∀ (𝑖, 𝑝, 𝑛) ∈ Γ,

Γ = {(𝑖, 𝑝, 𝑛) | 𝑦
𝑖
= 𝑦
𝑝
, 𝑦
𝑖

̸= 𝑦
𝑛
} ,

(7)
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where ‖𝜂‖2 is the regularization term, which is used to avoid
the overfitting of the loss function, and 𝐶 is a trade-off
between the loss function and the regularization term.

The quadratic optimization problem (7) can be solved
directly by mathematical softwares, such as LIBSVM [39]
and MOSEK ApS [40]. However, the quadratic optimization
problem (7) has to pay a computational complexity 𝑂(𝑛

3
),

where 𝑛 is the number of images. This is not appropriate
for image classification applications when 𝑛 is large. In the
next section, we give a modified Online Passive-Aggressive
Algorithms to learn the weights in an online manner.

4. Learning the Weights

To solve the quadratic optimization problem (7) efficiently
with some standard optimization software, especially when
the number of images or categories is large, and how to
optimize the speed and memory usage have to be addressed.
We tackle this issue by using the Online Passive-Aggressive
Algorithms, which were proposed in [21]. The family of
online Passive-Aggressive (PA) learning is formulated to
trade off the objective ofminimizing the distance between the
learnt classifier and the previous classifier, and the objective
of minimizing the loss of the learnt classifier suffered on the
current instance. We define the following hinge loss function
for the triplet (𝑖, 𝑝, 𝑛):

𝐿 (𝜂) = max (0, 1 − K
𝜂
(𝑖, 𝑝) + K

𝜂
(𝑖, 𝑛)) . (8)

Our goal is to minimize the global loss ∑
(𝑖,𝑝,𝑛)∈Γ

𝐿(𝜂) over
all possible triplets in the training set. However, as discussed
above, solving problem (7) is intractable when the number of
images is large. Considering the complexity of exact solution,
we give an approximate solution, byminimizing 𝐿(𝜂) for each
triplet (𝑖, 𝑝, 𝑛) ∈ Γ instead of the global loss ∑

(𝑖,𝑝,𝑛)∈Γ
𝐿(𝜂).

In order to minimize this loss, we apply the Online Passive-
Aggressive Algorithm iteratively over triplets to optimize 𝜂.
Similar to the work in [22], we can rewrite (7) as

minimize 1

2

󵄩󵄩󵄩󵄩󵄩
𝜂 − 𝜂
𝑖−1󵄩󵄩󵄩󵄩󵄩

2

+ 𝐶𝜉
𝑖𝑝𝑛

subject to {
𝐿 (𝜂) ≤ 𝜉

𝑖𝑝𝑛
,

𝜉
𝑖𝑝𝑛

≥ 0.
(𝑖, 𝑝, 𝑛) ∈ Γ.

(9)

Therefore, at each iteration 𝑖, 𝜂𝑖 is selected to optimize a trade-
off between remaining close to the previous parameters 𝜂𝑖−1
and minimizing the loss on the current triplet 𝐿(𝜂).

We follow Crammer et al. [21] to solve the problem in (9).
When 𝐿(𝜂) = 0, it is clear that 𝜂 = 𝜂

𝑖−1 satisfies the constrains
directly. Otherwise, the Lagrangian is defined as

L (𝜂, 𝜏, 𝜉
𝑖𝑝𝑛
, 𝜆) =

1

2

󵄩󵄩󵄩󵄩󵄩
𝜂 − 𝜂
𝑖−1󵄩󵄩󵄩󵄩󵄩

2

+ 𝐶𝜉
𝑖𝑝𝑛

+ 𝜏 (1 − K
𝜂
(𝑖, 𝑝) + K

𝜂
(𝑖, 𝑛) − 𝜉

𝑖𝑝𝑛
)

− 𝜆𝜉
𝑖𝑝𝑛
,

(10)

where 𝜏 ≥ 0 and 𝜆 ≥ 0 are Lagrange multipliers.
The optimal solution is such that the gradient vanishes
(𝜕L(𝜂, 𝜏, 𝜉

𝑖𝑝𝑛
, 𝜆))/𝜕𝜂 = 0; hence

𝜕L (𝜂, 𝜏, 𝜉
𝑖𝑝𝑛
, 𝜆)

𝜕𝜂
= 𝜂 − 𝜂

𝑖−1
− 𝜏 (𝜅 (𝑖, 𝑝) − 𝜅 (𝑖, 𝑛)) = 0,

(11)

where 𝜅(𝑖, 𝑝) = [K1(𝑖, 𝑝), . . . ,K𝑑(𝑖, 𝑝)]𝑇 ∈ 𝑅
𝑑 is a vector of

corresponding elements of kernels.
The optimal new 𝜂 is therefore

𝜂 = 𝜂
𝑖−1

− 𝜏 (𝜅 (𝑖, 𝑝) − 𝜅 (𝑖, 𝑛)) . (12)

We still need to estimate 𝜏. Differentiating the Lagrangian
with respect to 𝜉

𝑖𝑝𝑛
and setting it to zero also yield

𝜕L (𝜂, 𝜏, 𝜉
𝑖𝑝𝑛
, 𝜆)

𝜕𝜉
𝑖𝑝𝑛

= 𝐶 − 𝜏 − 𝜆 = 0, (13)

which, knowing that 𝜆 ≥ 0, means that 𝜏 ≤ 𝐶. Plugging (12)
and (13) back into the Lagrangian (10), we obtain

L (𝜏) = −
1

2
𝜏
2󵄩󵄩󵄩󵄩𝜅(𝑖, 𝑝) − 𝜅(𝑖, 𝑛)

󵄩󵄩󵄩󵄩

2

+ 𝜏 (1 − (K
𝜂
𝑖−1 (𝑖, 𝑝) − K

𝜂
𝑖−1 (𝑖, 𝑛))) .

(14)

Taking the derivative of the second Lagrangian (14) with
respect to 𝜏 and setting it to zero, we have

𝜕L (𝜏)

𝜕𝜏
= −𝜏

󵄩󵄩󵄩󵄩𝜅 (𝑖, 𝑝) − 𝜅 (𝑖, 𝑛)
󵄩󵄩󵄩󵄩

2

+ (1 − (K
𝜂
𝑖−1 (𝑖, 𝑝) − K

𝜂
𝑖−1 (𝑖, 𝑛))) = 0,

(15)

which yields

𝜏 =

1 − (K
𝜂
𝑖−1 (𝑖, 𝑝) − K

𝜂
𝑖−1 (𝑖, 𝑛))

󵄩󵄩󵄩󵄩𝜅 (𝑖, 𝑝) − 𝜅 (𝑖, 𝑛)
󵄩󵄩󵄩󵄩

2
=

𝐿 (𝜂
𝑖−1

)

󵄩󵄩󵄩󵄩𝜅 (𝑖, 𝑝) − 𝜅 (𝑖, 𝑛)
󵄩󵄩󵄩󵄩

2
.

(16)

Finally, since 𝜏 ≤ 𝐶, we obtain

𝜏 = min{𝐶,
𝐿 (𝜂
𝑖−1

)

󵄩󵄩󵄩󵄩𝜅 (𝑖, 𝑝) − 𝜅 (𝑖, 𝑛)
󵄩󵄩󵄩󵄩

2
} . (17)

We summarize the discussion above and demonstrate
the algorithm of optimizing (9) as follows (Algorithm 1). It
should be noted thatAlgorithm 1 gives a closed-form solution
for updating the weights, which is very efficient for image
classification application as shown in our experiments.

5. Experiments

In this section, we evaluate our proposed approach for image
classification on two public datasets: the Caltech-101 [41] and
The Scene-15 dataset [17]. As for feature extraction for all



6 Mathematical Problems in Engineering

Initialize 𝜂 = [1, . . . , 1]
𝑇.

repeat
(1) Sample a triplet (𝑖, 𝑝, 𝑛).
(2) Update 𝜂 = 𝜂

𝑖−1
− 𝜏
𝑖
(𝜅 (𝑖, 𝑝) − 𝜅 (𝑖, 𝑛)),

where 𝜏
𝑖
= min {𝐶, 𝐿 (𝜂𝑖−1) /󵄩󵄩󵄩󵄩𝜅 (𝑖, 𝑝) − 𝜅 (𝑖, 𝑛)

󵄩󵄩󵄩󵄩

2

}, and 𝜅 (𝑖, 𝑝) = [K1 (𝑖, 𝑝) , . . . ,K𝑑 (𝑖, 𝑝)]
𝑇

.
Until stopping criterion is satisfied.

Algorithm 1: Learning weights via Online Passive-Aggressive Algorithim.

Table 1: Classification accuracy (%) comparison on Caltech-101.

Algorithms 15 training 30 training
BoW (400) 58.40 ± 0.34 72.02 ± 0.26

BoW (1000) 58.57 ± 0.35 70.11 ± 0.33

BoW (4000) 61.12 ± 0.33 71.24 ± 0.26

SPM [17] 56.4 64.4 ± 0.8

Soft-coding [18] — 64.1 ± 1.2

LLC [23] — 71.25 ± 0.98

Ours 61.90 ± 0.40 72.78 ± 0.32

The bold font refers to the highest score of the compared methods.

datasets, we use theVLFeat [42] toolbox and LIBSVM[39] for
training and testing the SVM classifier. We densely compute
SIFT descriptors on overlapping 16 × 16 pixels with a step of
3 pixels. All images are processed in gray scale, and SPM [17]
with 2

ℓ
× 2
ℓ, ℓ = 0, 1, 2, are used for each image. The number

of dictionaries (Section 3.1) is set to 3; that is, for each dataset,
we generate three small dictionaries with different sizes, and
the sizes of these dictionaries are set to 50, 100, and 150. The
number of triplets sampled to update the weights is set to 105.
The size of dictionary in traditional BoW model [3, 4] with
SPM [17] is set to 400, 1000, and 4000 for comparison. For
fair comparison, all datasets are repeated for ten times and
the mean and the variance are collected. We also compared
our approach with original SPM method [17], soft-coding
method [18], and LLCmethod [23], and results of these three
methods are quoted directly from their papers.

5.1. Caltech-101 Dataset. The Caltech-101 dataset contains
101 classes (not including the background class) with high
intraclass appearance shape variability.Thenumber of images
per category varies from 31 to 800 images and most of these
images are medium resolution, that is, 300 × 300 pixels. The
total number of images are 8,677.We randomly choose 15 and
30 images per category for training and the rest for testing.
Detailed comparison results are shown in Table 1. As shown,
our proposed method achieves the highest performance.
Compared to the BoW method with a dictionary of size
4000, which achieves the classification rate of 71.24 percent
for 30 training per category and 61.12 percent for 15 training
per category, our proposed method just needs 50 + 100 +
150 = 300 visual “words” and achieves 72.78 percent for 30
training per category and 61.90 percent for 15 training per
category. The memory has reduced more than 13 times, and
computational complexity also reduces as shown in Table 1.

Table 2: Classification accuracy (%) comparison on Scene-15.

Algorithms Classification rate (%)
BoW (400) 81.31 ± 0.43

BoW (1000) 80.91 ± 0.38

BoW (4000) 82.53 ± 0.34

SPM [17] 81.4 ± 0.49

Soft-coding [18] 76.67 ± 0.39

LLC [23] 81.09 ± 0.43

Ours 82.33 ± 0.64

The bold font refers to the highest score of the compared methods.

For BoW model, as shown, with the increase in the size
of dictionary, the classification accuracy also increases. How-
ever, when the dictionary is with size 400, its performance is
higher than that of dictionary with sizes 1000 and 4000 for 30
training per category; this may be due to the random choice
of the initialization for 𝐾-means algorithm when we obtain
the dictionaries.

Figure 2 shows a comparison of the average confusion
matrix in the Caltech-101 dataset for 30 training per cat-
egory. Figure 2(a) denotes the average confusion matrix
by our proposed method, Figure 2(b) denotes the average
confusion matrix by BoW model with dictionary size set
to 4000, and Figure 2(c) shows the residual of confusion
matrix in Figure 2(a) minus that in Figure 2(b). As shown
in Figure 2(c), the number of elements on the diagonal that
are larger than zero is 52 and their values are summed up to
1.5, which implies that our method classifies the images more
accurately than BoW model with dictionary size set to 4000
in most image categories.

5.2. Scene-15 Dataset. The major sources of pictures in the
Scene-15 dataset include the COREL collection, personal
photographs, and Google Image Search. Each category has
200 to 400 images with the average image size of 300 × 250
pixels. The total image number is 4,485. The 15 scene cate-
gories are CALsuburb, kitchen, living room, bedroom, store,
industrial, MITcoast, MITforest, MIThighway, MITinsidecity,
MITmountain, MITopencountry, MITstreet, MITtallbuilding,
and PARoffice. We followed the common experiment setup
for Scene-15 dataset and randomly chose 100 images per
category for training and the rest for testing.

Table 2 shows the comparison results in detail. In Scene-
15 dataset, BoW model with dictionary size set to 4000
achieves the highest classification accuracy 82.53%, while our
proposed method obtains the second highest score 82.33%.
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Figure 2: The average confusion matrices of the Caltech-101 dataset for 30 training per category. (a) Average confusion matrix by ours. (b)
Average confusion matrix by BoW with dictionary size 4000. (c) Residual of (a) minus (b).

As similar to the Caltech-101 dataset, the memory usage in
our method has reduced more than 13 times compared to
BoWmodel with dictionary size set to 4000.

Figure 3 shows a comparison of the average confusion
matrix in the Scene-15 dataset for 100 training per cate-
gory. Figure 3(a) denotes the average confusion matrix by
our proposed method, and Figure 3(b) denotes the average
confusion matrix by BoW model with dictionary size set to
4000. In our results, the highest classification accuracy is
99.81% for CALsuburb, and the lowest is 72.62% compared to
61.61% in BoWwith dictionary size set to 4000 for industrial.

5.3. Complexity Analysis. The computational complexity of
BoW model can be decomposed into feature extraction,
dictionary generation, feature coding, SVM training, and
testing. Compared with BoW model, our method needs
to run the 𝐾-means clustering algorithm multiple times
for generating multiple dictionaries. As discussed in [36],

the computational and storage complexity for𝐾-means algo-
rithm are both linear to the data samples; the computational
complexity is 𝑂(𝑘𝑛𝑑), where 𝑘 is the number of clusters, 𝑛 is
the number of data samples, and 𝑑 is the dimension of each
data sample. In this paper, both BoWmodel and our method
make use of the SIFT feature, so 𝑑 = 128. If 𝑛 and 𝑑 are
fixed, larger 𝑘 needs more computational complexity, and the
number of clusters in BoW model with dictionary size set to
4000 is 13 times larger than that of ourmethod, so its running
time for𝐾-means is much longer than ours.

In feature coding stage, taking the hard-coding as the
default coding strategy, the major computational complexity
is to find the closest visual “word”, where the Nearest
Neighborhood (NN) method is used, makes the complexity
be 𝑂(𝑘𝑛𝑑).

We show the running time of dictionary generation
(DG), feature coding (FC), and our modified Online Passive-
Aggressive (OPA) Algorithms in Table 3 on Caltech-101
dataset. All results are obtained under a PC machine with
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Figure 3: The average confusion matrices of the Scene-15 dataset for 100 training per category. (a) Average confusion matrix by ours. (b)
Average confusion matrix by BoW with dictionary size 4000.

Table 3: Running time (second) comparison on Caltech-101.

Algorithms DG FC OPA
BoW (400) 117.6 1774.0 —
BoW (1000) 333.9 2669.3 —
BoW (4000) 1050.4 8602.1 —
Ours 129.4 1916.6 13.58

single thread, the configurations of the PC are Intel Core
i5 quad core CPU, and frequency is 3.4GHZ, 8GB RAM,
Windows 7 64-bit operating system. All codes are written in
Matlab.

As shown in Table 3, the running time of our method is
slightly longer than that of BoW with dictionary size set to
400; this is because our method needs to run the 𝐾-means
algorithm 3 times. And in feature coding, the time of our
method is also longer than that of BoW with dictionary size
set to 400; this may be because our method searches three
times for each feature of an image. For BoW with dictionary
size set to 4000, its running time is much longer than that
of ours. It should be noticed that the running time of OPA
only takes 13.58 s, which is less than 1% of feature coding time
of our method (1916.6 s). This implies our modified Online
Passive-Aggressive Algorithms is efficient and can be used
in large scale application for learning the similarity between
objects.

We ignore the analysis of memory usage of our method
and BoW model; since the memory usage is also linear to
the size of dictionary and feature dimension, larger dictionary
needs more memory for storage.

6. Conclusion

Generally speaking, in image classification algorithm based
on BoW model, the larger the dictionary, the more fine-
gained the visual words, and the more discriminately

the BoWhistogram, leading to better performance. However,
larger dictionary needs more memory usage and inten-
sive computational resources. In this paper, we proposed a
method to aggregate multiple feature coding adaptively in
a weighted manner. The weights are learned by modified
Online Passive-Aggressive Algorithms under the histogram
intersection kernel, which lead to a closed-form solution.
Extensive experimental results show that our proposed
method obtains the same if not higher classification accuracy
than the state-of-the-art method, but needs less memory
and computing time, which verifies the effectiveness of our
method. In the future, we will extend our method to soft-
coding and sparse coding in the feature coding stage. Further,
we would like to intergrate multiple features in order to
improve the performance for image classification.
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