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This paper proposes a modeling framework to study the day-to-day scheduling travel time adjustment behavior on the base
of past experiences. Scheduling travel time is defined as the difference between the requested arrival time and the departure
time. Mathematical equations are established to formulate every traveler’s dynamic adjustment on his/her departure time. In the
adjustment process, the last day’s scheduling time is an essential component, while the numbers of late arrivals, punctual arrivals,
and early arrivals in a previous day are used to reflect the past experiences. Simulation results are presented to illustrate the
effectiveness of the proposed modeling framework.

1. Introduction

Travel time has always been a fundamental component of
the transportation investigation and has been applied in
various forms. A large number of researches and literature
reviews are concerned with the formula and estimation of
travel time, which constitutes the essential work of studying
various traffic assignments based on the principles of user
equilibrium, system optimization, and their stochastic and/or
dynamic counterparts. Meanwhile, travel time is an impor-
tant index to evaluate the performance of a transportation
system and hence is regularly surveyed in almost all cities.
Travel time is also information widely used in the advanced
traffic management systems and in-vehicle route guidance
systems.

Travel time can be estimated by using different
approaches, depending upon the applications with different
purposes. The point delay models are commonly used to
estimate the travel times of signalized links (Webster [1];
Allsop [2]). In the Highway Capacity Manual [3], the average
travel time of a link is calculated as the sum of the link

running time and the intersection delay which is given
by a deterministic point delay model. Skabardonis and
Geroliminis [4] proposed an analytical model to estimate
the travel times of arterial streets, using the 15–30-second
flow and the occupancy data provided by loop detectors and
traffic signal settings. These studies mainly focused on the
estimation of average travel time.

Travel time is affected by some unknown factors and is
thus stochastic, especially in the complex urban environment.
This makes the investigation of travel time uncertainty
become a hot topic in recent years. Guo et al. [5] proposed
a multistate model which is employed to fit a mixture of
Gaussian distributions into travel time observations of an
expressway corridor. Each normal distribution is associated
with an underlying traffic state providing quantitative uncer-
tainty evaluation. The multistate mixture model leads to a
better fitting, revealing that travel time distribution usually
has more than one mode which is entirely dependent on the
time horizon of the study, the demand, the topology, and oth-
ers. Using multistate models, a recent work by Park et al. [6]
tried to quantify the impact of traffic incidents. Feng et al. [7]
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Figure 1: Day-to-day scheduling travel time when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 =

5 and 𝑅V = (𝑏 − 𝑎)/6.
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Figure 2: Day-to-day difference between scheduling travel time and
actual travel time when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 = 5 and 𝑅V = (𝑏 − 𝑎)/6.

conducted a similar investigation, utilizing mixtures of nor-
mal distributions to estimate mean travel times for arterial
routes.

As mentioned above, the actual travel time in an urban
traffic environment is highly stochastic and time-dependent
due to random fluctuations in interruptions caused by traffic
control devices, weather conditions, and day-to-day events,
such as vehicle stall, minor accident, traffic signal, bus
stop, merge and diverge bottleneck, truck and bus platoon,
and train-crossing. Considering these factors is essential
for improving the estimation accuracy and expanding the
relevant studies. It has been increasingly recognized that the
actual travel time should be assumed to be stochastic.

On the other hand, travelers, especially commuters, learn
the travel times based on the past experiences and then
determine their departure times. They realize that traffic
participants, vehicles, and such facilities as roads and signals
are the main components of traffic system. Various factors
which affect the operation of the componentswould influence
the final travel time. For instance, different drivers and road
conditions could result in large variation of travel times.
Even in the same time interval and on the same link,
different vehicles can have quite different travel times (Li and
McDonald [8]). Travelers recognize that the actual travel time
is stochastic and should adjust their departure time according
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Figure 3: Day-to-day scheduling travel time when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 =

10 and 𝑅V = (𝑏 − 𝑎)/6 (scenario 1).
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Figure 4: Day-to-day difference between scheduling travel time and
actual travel time when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 = 10 and 𝑅V = (𝑏 − 𝑎)/6 (scenario
1).

to their past experiences on late arrival, punctual arrival, and
early arrival. More importantly, due to the randomness of
human choices, these adjustments should not be in general
deterministic but random.

In Section 2 of this paper, we make a synthetic consider-
ation about the scheduling travel time and the actual travel
time. In Section 3, a model for formulating the day-to-day
scheduling travel time adjustment behavior is proposed. In
Section 4, simulation results are presented to illustrate the
effectiveness of the proposed model. Section 5 concludes the
paper.

2. Specifications of Scheduling Travel Time
and Actual Travel Time

We define the scheduling travel time, 𝑇𝑃
𝑡
, as the time

consumption on day 𝑡 required for traveling from an ori-
gin to a destination (e.g., from a commuter’s residence to
his/her working place) and exactly arriving at the requested
time. Thus, the scheduling travel time 𝑇𝑃

𝑡
is equal to the

requested arrival time minus the departure time. Obviously
the scheduling travel time should vary within a certain range
of time defined by an upper bound 𝑏 and a lower bound 𝑎 that
is corresponding to the free-flow travel time.
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Figure 5: Day-to-day scheduling travel time when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 =

10 and 𝑅V = (𝑏 − 𝑎)/6 (scenario 2).
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Figure 6: Day-to-day difference between scheduling and actual
travel times when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 = 10 and 𝑅V = (𝑏 − 𝑎)/6 (scenario 2).

In reality, it is easily observed that a commuter will
modify his departure time on day 𝑡 if he arrives lately or early
on day 𝑡 − 1. This modification should simultaneously take
into account his past experiences, such as the numbers of late
arrivals, punctual arrivals, and early arrivals in previous days.
A commuter is willing to retain his departure time on day 𝑡 if
he arrives on time on day 𝑡−1. In this regard, a commuter will
adjust his departure time whenever he arrived late or early.
The adjustment process and its magnitude should depend
on each commuter’s preferences and recallable experience.
However, the mechanism by which each individual handles
his experiences and carries out the adjustment is not known
(Chang and Mahmassani [9]). Therefore, it is reasonable to
assume this adjustment to be a random variant related to the
past experiences. Consequently, according to the preceding
analysis, the scheduling travel time on day 𝑡 can be defined
as the scheduling travel time on day 𝑡−1 plus a corresponding
random variable that grounds on the last situation.

The actual travel time, denoted as 𝑇𝑅
𝑡
, is the time a

commuter actually travels from his origin to the destination
on day 𝑡. Asmentioned at the foregoing paragraph, numerous
factors affect the actual travel time. The actual travel time is
highly stochastic. Thus, we can presume that the actual travel
time is a random variable which has a lower bound 𝑎 given
by the free-flow travel time but has no upper bound.
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Figure 7: Day-to-day scheduling travel time when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 =

15 and 𝑅V = (𝑏 − 𝑎)/6.
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Figure 8: Day-to-day difference between scheduling travel time and
actual travel time when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 = 15 and 𝑅V = (𝑏 − 𝑎)/6.

3. Day-to-Day Scheduling Travel Time
Adjustment Behavior

In this study, we propose a model that incorporates dynamic
and randomness into consumer choice of departure time. In
our day-to-day decision-making framework for scheduling
travel time (corresponding to departure time), a commuter
will adjust his scheduling travel time whenever he experi-
enced the difference between last scheduling travel time and
last actual travel time.Themodel allows for an increase and a
decrease of the scheduling travel time in a particular fashion
that is interrelated with the numbers of previous late arrivals,
punctual arrivals, and early arrivals. If the commuter arrives
late, he will be induced to increase the scheduling travel time
on the subsequent day. If the commuter arrives early, he
will be more likely to decrease the scheduling travel time.
Otherwise, the commuter will retain the scheduling travel
time on the subsequent day if he arrives on time at present
day.

An assumption is made that not only does the researcher
not observe all factors in the consumer’s adjustment, but
also, even in the same situation, the same commuter can
make quite different adjustment. Therefore, a random term
is supposed to incorporate into the adjustment to represent
this unobserved component. On the other hand, to reflect
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Figure 9: Day-to-day scheduling travel time when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 = 20
and 𝑅V = (𝑏 − 𝑎)/6.
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Figure 10: Day-to-day difference between scheduling travel time
and actual travel time when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 = 20 and 𝑅V = (𝑏 − 𝑎)/6.

the commuter’s past experiences more appropriately, the
approach considers the numbers of late arrivals, punctual
arrivals, and early arrivals on a previous day.

Summing up the above description and analysis to math-
ematical formulation, the scheduling travel time of day 𝑡 is
given by

𝑇𝑃
𝑡
= 𝐼
𝐿,𝑡−1

⋅min(𝑇𝑃
𝑡−1
+ (1 +

𝑒
𝑁𝐿𝑡

𝑒𝑁𝐿𝑡 + 𝑒𝑁𝐸𝑡 + 𝑒𝑁𝑃𝑡
)

⋅ [(𝑏 − 𝑎) ⋅ (1 − √2 (1 − 𝜇
1
))] , 𝑏)

+ 𝐼
𝐸,𝑡−1

⋅max(𝑇𝑃
𝑡−1
+

𝑒
𝑁𝐸𝑡

𝑒𝑁𝐿𝑡 + 𝑒𝑁𝐸𝑡 + 𝑒𝑁𝑃𝑡

⋅ [(𝑇𝑃
𝑡−1
− TR
𝑡−1
) ⋅ (√2𝜇

2
− 1)] , 𝑎)

+ 𝐼
𝑃,𝑡−1

⋅ 𝑇𝑃
𝑡−1
,

(1)

where 𝑇𝑃
𝑡
is the scheduling travel time selected by the

commuter on day 𝑡, 𝑇𝑅
𝑡
is the actual travel time experienced
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Figure 11: Day-to-day scheduling travel time, when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 =
15 and 𝑅V = (𝑏 − 𝑎)/3.
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Figure 12: Day-to-day difference between scheduling travel time
and actual travel time when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 = 15 and 𝑅V = (𝑏 − 𝑎)/3.

by the commuter on day 𝑡, 𝐼
𝐿,𝑡

is an indicator parameter
whose value is one if the commuter is late for his commute
on day 𝑡 (i.e., 𝑇𝑃

𝑡
< 𝑇𝑅
𝑡
), otherwise zero, and 𝐼

𝑃,𝑡
is another

indicator parameter whose value is one if the commuter
arrives at destination punctually on day 𝑡, otherwise zero.
Note that the punctuality here means that the commuter
arrives before the requested arrival time within a tolerable
time range. This says that 0 ≤ 𝑇𝑃

𝑡
− 𝑇𝑅

𝑡
≤ 𝑇𝑜𝑙𝑡𝑖𝑚𝑒,

where 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 is the longest time that is acceptable for
the commuter to arrive early, that is, the maximum time
the commuter can tolerate if he arrives earlier than the
requested time. 𝐼

𝐸,𝑡
is an indicator parameter whose value

is one if the commuter arrives early on day 𝑡; that is, 𝑇𝑃
𝑡
−

𝑇𝑅
𝑡
≥ 𝑇𝑜𝑙𝑡𝑖𝑚𝑒. 𝑁

𝐿𝑡
, 𝑁
𝑃𝑡
, and 𝑁

𝐸𝑡
are the numbers of late

arrivals, punctual arrivals, and early arrivals before the day 𝑡,
respectively. 𝜇

1
is a random parameter following a uniform

distribution between 0.5 and 1; 𝜇
2
is also a random param-

eter distributed uniformly between 0 and 0.5. 𝑎 and 𝑏 are,
respectively, the lower and upper bounds of the scheduling
travel time. Note again that the actual travel time 𝑇𝑅

𝑡
is

assumed to be a random variable that ranges from 𝑎 to
infinity governed by a normal density distribution with
mean 𝑅𝑚 and standard deviation 𝑅V.

Model (1) is explained as follows. If the commuter arrives
punctually on day 𝑡 − 1, he spontaneously remains with
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Figure 13: Day-to-day scheduling travel time when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 = 20
and 𝑅V = (𝑏 − 𝑎)/3.
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Figure 14: Day-to-day difference between scheduling travel time
and actual travel time when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 = 20 and 𝑅V = (𝑏 − 𝑎)/3.

the same scheduling travel time on day 𝑡. If the commuter
arrives late on day 𝑡 − 1, he naturally intends to depart earlier
on day 𝑡 than on day 𝑡 − 1. So, the scheduling travel time
should increase on day 𝑡, which is reflected by

𝑇𝑃
𝑡−1
+ (1 +

𝑒
𝑁𝐿𝑡

𝑒𝑁𝐿𝑡 + 𝑒𝑁𝐸𝑡 + 𝑒𝑁𝑃𝑡
)

⋅ [(𝑏 − 𝑎) ⋅ (1 − √2 (1 − 𝜇
1
))] .

(2)

In the above, the second item represents the extension of the
scheduling travel time for considering the commuter’s past
experiences and randomness. (1 + (𝑒𝑁𝐿𝑡/(𝑒𝑁𝐿𝑡 + 𝑒𝑁𝐸𝑡 + 𝑒𝑁𝑃𝑡)))
states that the numbers of late arrivals, punctual arrivals, and
early arrivals are involved into the adjustment. (𝑏−𝑎) denotes
the potential interval of the adjustment and (1 − √2(1 − 𝜇

1
))

displays the randomness characteristics of human choices.
On the other hand, it is impossible for a commuter to leave
home too early. For instance, if a commuter is required to
arrive at a destination at 8:00 am, he or she certainly will
not leave home before 1:00 am. Then, 𝑇𝑃

𝑡
should logically

have an upper bound.Therefore, when the commuter arrives
late on day 𝑡 − 1, min(𝑇𝑃

𝑡−1
+ (1 + (𝑒

𝑁𝐿𝑡/(𝑒
𝑁𝐿𝑡 + 𝑒

𝑁𝐸𝑡 +

𝑒
𝑁𝑃𝑡))) ⋅ [(𝑏 − 𝑎) ⋅ (1 − √2(1 − 𝜇

1
))], 𝑏) can correctly depict

the adjustment of scheduling travel time on day 𝑡. If the
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Figure 15: Day-to-day scheduling travel time when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 = 10
and 𝑅V = (𝑏 − 𝑎)/12.
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Figure 16: Day-to-day difference between scheduling travel time
and actual travel time when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 = 10 and 𝑅V = (𝑏 − 𝑎)/12.

commuter arrives early, the second item in (1) gives the
adjustment on scheduling travel time. The major difference
between the first and the second items of the equation is
that the adjustment of scheduling travel time in the case of
arriving late mainly considers (𝑏−𝑎) for avoiding penalty but
𝑇𝑃
𝑡−1
− 𝑇𝑅
𝑡−1

in the case of arriving early.
Equation (1) can be rewritten as

𝑇𝑃
𝑡
= 𝐼 (𝑇𝑃

𝑡−1
< 𝑇𝑅
𝑡−1
)

⋅min(𝑇𝑃
𝑡−1
+ (1 +

𝑒
𝑁𝐿𝑡

𝑒𝑁𝐿𝑡 + 𝑒𝑁𝐸𝑡 + 𝑒𝑁𝑃𝑡
)

⋅ [(𝑏 − 𝑎) ⋅ (1 − √2 (1 − 𝜇
1
))] , 𝑏)

+ 𝐼 (𝑇𝑃
𝑡−1
− 𝑇𝑅
𝑡−1
≥ 𝑇𝑜𝑙𝑡𝑖𝑚𝑒)

⋅max(𝑇𝑃
𝑡−1
+

𝑒
𝑁𝐸𝑡

𝑒𝑁𝐿𝑡 + 𝑒𝑁𝐸𝑡 + 𝑒𝑁𝑃𝑡

⋅ [(𝑇𝑃
𝑡−1
− 𝑇𝑅
𝑡−1
) ⋅ (√2𝜇

2
− 1)] , 𝑎)

+ 𝐼 (0 ≤ 𝑇𝑃
𝑡−1
− 𝑇𝑅
𝑡−1
≤ 𝑇𝑜𝑙𝑡𝑖𝑚𝑒) ⋅ 𝑇𝑃

𝑡−1
,

(3)
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where 𝐼(⋅) is a step function whose value is one if the event in
the parenthesis occurs, zero otherwise.

4. Simulation

This section aims at illustrating the model’s capability of
depicting the commuters’ scheduling travel time adjustment
behavior and revealing some properties of the adjustment
behavior by changing the parameter values. The evolution of
the day-to-day scheduling travel times and the trend of the
day-to-day departure times will be presented. The maximum
value of the time index 𝑡 is set to be 260 (basically the number
of working days in one year).

Suppose the lower bound of the scheduling travel time 𝑎
is 35 minutes and the upper bound 𝑏 is 65 minutes. The
actual travel time is assumed to be a random variable that
ranges from 35 to infinity with density the same as the normal
density, with mean 𝑅𝑚 and standard deviation 𝑅V within
this range. Because there exist differences between actual
travel time distribution and perceived travel time distribution
(Chen et al. [10]), the mean of the actual travel time distribu-
tion is generally less than the mean of the perceived travel
time distribution. Consequently, if the scheduling travel time
and the actual travel time are both considered to be random
variables, the mean of the actual travel time should be less
than the mean of the scheduling travel time distribution. For
simplicity, 𝑅𝑚 is assumed to be less than 0.5(𝑎 + 𝑏) − 5 in
this study. Furthermore, some events (e.g., wide geographical
bumper-to-bumper traffic jams) are with small probability
and can be handled by the three-sigma rule or an empirical
rule which states that nearly all values of a random variable
are in a range covering 3 standard deviations from the mean.
So, 𝑅V can be logically presumed to take (𝑏 − 𝑎)/6 (this is
from 0.5(𝑎 + 𝑏) − 𝑎 = 3𝑅V).

First, let 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 be equal to 5. Figure 1 displays the
scheduling travel time and Figure 2 the difference between
scheduling travel time and actual travel times. It can be seen
that there are wide variations concerning the changes of
scheduling travel time against day index. This implies that
the departure time is selected nearly at random. Simulation
results show that the numbers of late arrivals, punctual
arrivals, and early arrivals in these 260 days are 56, 73,
and 131, respectively. So, wide variations indeed occur. The
reason is that the value of 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 is too small, which makes
commuters obligated to arrive punctually. Therefore, small
tolerance leads to big variations in departure time.

Second, let 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 be 10. Figures 3 to 6, respectively,
exhibit two scenarios that are mostly likely to occur under
the assumptions; 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 = 10 and 𝑅V = (𝑏 − 𝑎)/6. Because
the tolerable time, 𝑇𝑜𝑙𝑡𝑖𝑚𝑒, is increased, there are relatively
small variations in the scheduling travel time and a relatively
narrow range of the difference between scheduling travel time
and actual travel time, compared to the results shown in
Figures 1 and 2. As shown in Figures 3 and 4, the scheduling
times are established in a relatively consistent daily schedule
but still disrupted by small events due to the randomness of
actual travel time. Accordingly, the numbers of late arrivals,
punctual arrivals, and early arrivals are around 19, 121, and

120, respectively. Nevertheless, the similar result shown in
Figures 1 and 2 likely occurs in Figures 5 and 6, where the
numbers of late arrivals, punctual arrivals, and early arrivals
are around 30, 122, and 108, respectively. Both scenarios may
occur, which depends on the actual travel time sourced from
reality.

Third, further enlarge 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 to 15. As shown in Figures
7 and 8, the scheduling travel time is likely to be fixed
and be disrupted occasionally, and the difference between
scheduling travel time and actual travel time is not as large
as that when 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 is small. In addition, the number of
late arrivals is only around 6; the number of punctual arrivals
stands at more than 150.

Fourth, let 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 be 20. Figures 9 and 10 show the
simulation results. It can be seen that the scheduling travel
time is almost fixed and hardly disrupted. Due to the use of
a large 𝑇𝑜𝑙𝑡𝑖𝑚𝑒, the number of late arrivals is very small, but
the number of punctual arrivals is almost up to 244.

In the previous analyses, we set 𝑅V as (𝑏 − 𝑎)/6. When
𝑅V is changed to (𝑏 − 𝑎)/3, there are two representative
scenarios. Let 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 be equal to 15 and 20, respectively.
As the standard deviation of actual travel time distribution
increases, the results shown in Figures 11 and 12 are analogues
to those in Figures 5 and 6 (where 𝑇𝑜𝑙𝑡𝑖𝑚𝑒 = 10 and 𝑅V =
(𝑏−𝑎)/6), respectively.The numbers of late arrivals, punctual
arrivals, and early arrivals in these two cases are likely to be
equal, respectively. The appearance exhibited in Figure 13 is
like that in Figure 9, but the scheduling travel time in the
former approaches 65 while 58 in the later, and there exist
significant differences between the numbers of late arrivals,
punctual arrivals, and early arrivals in these two cases (in the
case of Figures 13 and 14, the number of punctual arrivals is
about 144).

Finally, let 𝑅V be (𝑏 − 𝑎)/12, which means that the
actual travel time varies a little. The scheduling travel time
approaches 53 even if𝑇𝑜𝑙𝑡𝑖𝑚𝑒 is 10, as shown in Figure 15.The
difference between scheduling travel time and actual travel
time varies within a narrow range, as exhibited in Figure 16.
The reason is that the actual travel time remains at a stable
state, so that commuters easily adjust their scheduling travel
times tomatch the actual travel time.The number of punctual
arrivals is about 209.

5. Conclusions

In this paper, the day-to-day scheduling travel time adjust-
ment behavior (also, the day-to-day departure time adjust-
ment behavior) is studied. A modeling framework is con-
structed to formulate the adjustment. The experiences of the
last day’s arrival (late arrival, punctual arrival, or early arrival)
are used to influence today’s behavior.The randomness of the
commuters’ behavior is also considered. Simulation results
support the effectiveness of the modeling framework. Two
parameters, that is, the maximum time that a commuter can
tolerate if he or she arrives earlier than the requested time and
the standard deviation of the actual travel time distribution,
are numerically investigated. Results show that they have big
impacts on scheduling travel time adjustment behavior.
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