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This paper discusses the nonconforming rotated 𝑄
1
finite element computable upper bound a posteriori error estimate of the

boundary value problem established by M. Ainsworth and obtains efficient computable upper bound a posteriori error indicators
for the eigenvalue problem associated with the boundary value problem. We extend the a posteriori error estimate to the Steklov
eigenvalue problem and also derive efficient computable upper bound a posteriori error indicators. Finally, through numerical
experiments, we verify the validity of the a posteriori error estimate of the boundary value problem; meanwhile, the numerical
results show that the a posteriori error indicators of the eigenvalue problem and the Steklov eigenvalue problem are effective.

1. Introduction

A posteriori error estimates and adaptive algorithms are the
mainstreamdirections in the study of finite elementmethods;
however, a posteriori error estimates are the theoretical basis
of adaptive finite element method. Under these reasons, it is
verymeaningful to study the a posteriori error estimates. Par-
ticularly, it is well known that the residual type a posteriori
error estimates usually contain a general constant 𝐶, which
often affects the validity of the error estimates. Then, it is sig-
nificant that exploring a computable upper bound a posteri-
ori error estimate does not include constant 𝐶.

The residual type a posteriori error estimate of finite ele-
ment was first proposed by Babushka and Rheinboldt [1] in
1978 and has been studied and applied tomany problems. For
example, in 2005, Ainsworth [2] gave the a posteriori error
estimate of residual type which can provide a computable
upper bound for elliptic boundary value problem. In 2007,
based on what Ainsworth researched in [2], Carstensen et al.
[3] established a framework of a posteriori error estimates of
residual type of a class of nonconforming finite element,

which includes the nonconforming 𝐶-𝑅 element, the non-
conforming rotated 𝑄

1
element, and Han element, and so

forth. In 2010, using the a posteriori error estimates of non-
conforming finite element established by Carstensen, Yang
[4] founded the a posteriori error indicators for elliptic dif-
ferential operator eigenvalue problem. Recently, Han and
Yang [5] gave a class of a posteriori error estimates of spectral
element methods for 2nd-order elliptic eigenvalue problems.

The finite element method is an important approach to
solve the Steklov eigenvalue problem (see [6–10]). A posteri-
ori error estimates of finite element for the Steklov eigenvalue
problem has attracted attention from mathematical commu-
nity in recent years. In 2008, Armentano and Padra [11] pro-
posed and analyzed the a posteriori error estimate of the
linear finite element approximation for the Steklov eigenvalue
problem, and their residual type error estimate can be
obtained by the local computation of approximate eigenpairs.
In 2011, Ma et al. [12] studied a posteriori error estimate of the
nonconforming 𝐸𝑄rot

1
element for Steklov eigenvalue prob-

lem. For the Steklov eigenvalue problems, Yang and Bi [13]
have lately obtained the local a priori/a posteriori error
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Table 1: The numerical results of Example 1.

𝑛1 × 𝑛2 32 × 32 64 × 64 128 × 128 256 × 256

𝑤1
− 𝑤

1,ℎ

ℎ
0.0062 0.0031 0.0015 7.703𝑒 − 004

𝑤2
− 𝑤

2,ℎ

ℎ
0.0224 0.0112 0.0056 0.0028

𝑤3
− 𝑤

3,ℎ

ℎ
8.215𝑒 − 004 4.110𝑒 − 004 2.055𝑒 − 004 1.028𝑒 − 004

𝜂com/
𝑤1

− 𝑤
1,ℎ

ℎ
1.0038 1.0030 1.0028 1.0027

𝜂com/
𝑤2

− 𝑤
2,ℎ

ℎ
1.0007 1.0004 1.0003 1.0003

𝜂com/
𝑤3

− 𝑤
3,ℎ

ℎ
1.0106 1.0071 1.0060 1.0056

Table 2: The numerical results of the eigenvalues 𝜆
1
, 𝜆

2
, and 𝜆

3
.

𝑛1 × 𝑛2 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

𝜆
1,ℎ

38.47534 38.52266 38.54373 38.55268 38.55638
𝜆

2,ℎ
60.83608 60.80069 60.79191 60.78973 60.78919

𝜆
3,ℎ

78.95635 78.95680 78.95683 78.95683 78.95683
𝜆1,ℎ

− 𝜆
1

 0.08354 0.03622 0.01515 0.00620 0.00250
𝜆2,ℎ

− 𝜆
2

 0.04708 0.01169 0.00291 0.00073 0.00019
𝜆3,ℎ

− 𝜆
3

 0.00050 0.00003 0.00000 0.00000 0.00000
𝜂

2

com/
𝜆1,ℎ

− 𝜆
1

 3.55176 02.63591 2.13593 1.84850 1.68088
𝜂

2

com/
𝜆2,ℎ

− 𝜆
2

 8.08495 8.12050 8.14971 8.11889 7.89114
𝜂

2

com/
𝜆3,ℎ

− 𝜆
3

 1442.526 5026.540 6625.932 2260.119 578.1650

estimates of conforming finite elements approximation and
Zhang et al. [14] gave certain results of spectral method.

The nonconforming rotated𝑄
1
element was proposed by

Rannacher and Turek [15]. Based on the existing research
results, we discuss further a computable upper bound a pos-
teriori error estimate of the boundary value problem estab-
lished byAinsworth and discover that this error estimate does
not include a general constant 𝐶. So, we use the a posteriori
error estimate to establish a computable upper bound a pos-
teriori error indicators for the eigenvalue problem associated
with the boundary value problem. In addition, we extend the
error estimate to the Steklov eigenvalue problem, and obtain
an efficient computable upper bound a posteriori error indi-
cators. Finally, we verify that the computable upper bound
a posteriori error estimate of the boundary value problem is
effective (see Table 1). Through calculating the validity of the
computable upper bound a posteriori error indicators on L-
shaped domain, we can ascertain that the indicators of the
eigenvalue problem and the Steklov eigenvalue problem are
effective (see Tables 2 and 3).

2. Model Problem and Preliminaries

2.1. Model Problem. Consider the following eigenvalue prob-
lem:

−dik (𝛼 grad 𝑢) = 𝜆𝑢, in Ω

n ⋅ 𝛼 grad 𝑢 = 0, on Γ
𝑁

𝑢 = 0, on Γ
𝐷
,

(1)

where Ω ⊂ 𝑅
2 is a planar polygonal domain with boundary

Γ := 𝜕Ω, the disjoint sets Γ
𝐷
and Γ

𝑁
form a partition of

the boundary of Ω, and 𝛼 ∈ 𝐿
∞
(Ω) is assumed to be non-

negative. For simplicity, we assume that 𝛼 is piecewise con-
stant on the finite element mesh.

Then (1) can be written in a weak form: to seek (𝜆, 𝑢) ∈
R × 𝐻

1

𝐸
(Ω) with ‖𝑢‖

0
= 1 such that

𝑎 (𝑢, V) = 𝜆𝑏 (𝑢, V) , ∀V ∈ 𝐻1

𝐸
(Ω) , (2)

where 𝐻1

𝐸
(Ω) = {V ∈ 𝐻

1
(Ω) : V = 0, on Γ

𝐷
}, and 𝑎(𝑢, V) =

∫
Ω
𝛼∇𝑢∇V 𝑑𝑥 𝑑𝑦, 𝑏(𝑢, V) = ∫

Ω
𝑢V 𝑑𝑥 𝑑𝑦.

Let P
ℎ
be a partition with mesh diameters ℎ of the

domain Ω consisting of disjoint convex quadrilateral ele-
ments, and the nonempty intersection of any two distinct ele-
ments is either a single common node or a common edge. In
addition, the nonempty intersection of an element with the
exterior boundary is a portion of either Γ

𝐷
or Γ

𝑁
.The family of

partitions is assumed to be locally quasi-uniform in the sense
that the ratio of the diameters of any adjacent elements is
bounded above and below uniformly over the whole family
of partitions. Define the generalized energy norm |‖V‖| by

|‖V‖|2 = (𝛼 grad
ℎ
V, grad

ℎ
V) , (3)

where the operator grad
ℎ
satisfies the condition (grad

ℎ
V)|

𝜅
=

grad(V|
𝜅
), ∀𝜅 ∈ P

ℎ
and the notation (⋅, ⋅)

𝜛
is used to denote

the 𝐿
2
-inner product over a domain 𝜛. The subscript 𝜛 is

omitted when it is a physical domain 𝜛.
The nonconforming rotated 𝑄

1
finite element space (see

[15]) is defined by

𝑋
ℎ
= {V ∈ 𝐿

2
(Ω) : V|𝜅 ∈ span (1, 𝑥, 𝑦, 𝑥2

− 𝑦
2
) ,

∀𝜅 ∈ P
ℎ
, ∫

𝛾

[V] 𝑑𝑠 = 0, ∀𝛾 ∈ 𝜕P
ℎ
\ 𝜕Ω} ,

(4)
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Table 3: The numerical results of the Steklov eigenvalues 𝜆
2
, 𝜆

3
, and 𝜆

4
.

𝑛1 × 𝑛2 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

𝜆
2,ℎ

0.88320 0.88930 0.89190 0.89295 0.89337
𝜆

3,ℎ
1.68213 1.68662 1.68805 1.68846 1.68856

𝜆
4,ℎ

3.17490 3.20336 3.21370 3.21675 3.21757
𝜆2,ℎ

− 𝜆
2

 0.01047 0.00436 0.00177 0.00071 0.00030
𝜆3,ℎ

− 𝜆
3

 0.00647 0.00198 0.00055 0.00015 0.00003
𝜆4,ℎ

− 𝜆
4

 0.04298 0.01453 0.00418 0.00114 0.00031
𝜂

2

com/
𝜆2,ℎ

− 𝜆
2

 1.57977 1.47585 1.41700 1.36649 1.29035
𝜂

2

com/
𝜆3,ℎ

− 𝜆
3

 1.56752 1.29357 1.17339 1.10827 1.04199
𝜂

2

com/
𝜆4,ℎ

− 𝜆
4

 1.81759 1.35064 1.16560 1.06969 0.97406

where [V] denotes the jump across an interface 𝛾 and 𝜕P
ℎ
the

set of element edges. The subspace𝑋
ℎ,𝐸

of𝑋
ℎ
is defined by

𝑋
ℎ,𝐸

= {V ∈ 𝑋
ℎ
: ∫

𝛾

V 𝑑𝑠 = 0, if 𝛾 ⊂ Γ
𝐷
} . (5)

Thenonconforming rotated𝑄
1
element approximation of

(2) is the following: find (𝜆
ℎ
, 𝑢

ℎ
) ∈ R × 𝑋

ℎ,𝐸
such that

𝑎
ℎ
(𝑢

ℎ
, V) = 𝜆

ℎ
𝑏 (𝑢

ℎ
, V) , ∀V ∈ 𝑋

ℎ,𝐸
, (6)

where 𝑎
ℎ
(𝑢

ℎ
, V) = ∑

𝜅∈Pℎ
∫

𝜅
𝛼

𝜅
∇𝑢

ℎ
∇V 𝑑𝑥 𝑑𝑦. Define ‖ ⋅ ‖

ℎ
=

√∑
𝜅∈Pℎ

|‖ ⋅ ‖|
2

𝜅
. Evidently, ‖ ⋅ ‖

ℎ
is the norm on𝑋

ℎ,𝐸
.

2.2. A Posteriori Error Estimate of Boundary Value Problem.
In this subsection we present the computable upper bound a
posteriori error estimate of the boundary value problem
established byAinsworth in [2, 16]. It is the key to establishing
a computable upper bound a posteriori error indicator for the
eigenvalue problem (1).

Consider the boundary value problem of finding 𝑤 such
that

−dik (𝛼 grad𝑤) = 𝑓, in Ω

n ⋅ 𝛼 grad𝑤 = 𝑔, on Γ
𝑁

𝑤 = 0, on Γ
𝐷
,

(7)

where 𝑓 ∈ 𝐿
2
(Ω), 𝑔 ∈ 𝐿

2
(Γ

𝑁
).

The variational form of (7) consists of seeking𝑤 ∈ 𝐻
1

𝐸
(Ω)

such that

(𝑎 grad𝑤, grad V) = (𝑓, V) + ∫
Γ𝑁

𝑔V 𝑑𝑠, ∀V ∈ 𝐻1

𝐸
(Ω) .

(8)

Thenonconforming rotated𝑄
1
finite element approxima-

tion of (8) is the following: find 𝑤
ℎ
∈ 𝑋

ℎ,𝐸
such that

(𝛼 grad
ℎ
𝑤

ℎ
, grad

ℎ
V) = (𝑓, V) + ∫

Γ𝑁

𝑔V 𝑑𝑠, ∀V ∈ 𝑋
ℎ,𝐸
. (9)

To establish a computable upper bound of nonconform-
ing finite element a posteriori estimate for the error 𝑒 = 𝑤−

𝑤
ℎ
in the sense of energy norm (3), we use the following

Helmholtz decomposition (see [17]) to divide the error 𝑒 into
the conforming part and the nonconforming part.

Lemma 1. Let

H = {𝑤 ∈ 𝐻
1
(Ω) : ∫

Ω

𝑤𝑑𝑥𝑑𝑦 = 0,
𝜕𝑤

𝜕𝜏
= 0, 𝑜𝑛 Γ

𝑁
} ,

(10)

where 𝜕𝑤/𝜕𝜏 denotes the tangential derivative in direction 𝜏.

Then the error 𝑒 can be decomposed as the form

𝛼 grad
ℎ
𝑒 = 𝛼 grad𝜀 + curl 𝜉, (11)

where 𝜀 ∈ 𝐻1

𝐸
(Ω) satisfies

(𝛼 grad 𝜀, grad V) = (𝛼 grad
ℎ
𝑒, grad V) , ∀V ∈ 𝐻1

𝐸
(Ω)

(12)

and 𝜉 ∈ H satisfies

(𝛼
−1curl 𝜉, curl𝑤) = (𝛼 grad

ℎ
𝑒, grad𝑤) , ∀𝑤 ∈ H, (13)

where curl denotes the operator curl𝑤 = (−𝜕
𝑦
𝑤, 𝜕

𝑥
𝑤).

Moreover, it is valid that

|‖𝑒‖|
2
= |‖𝜀‖|

2
+ (𝛼

−1curl 𝜉, curl 𝜉) . (14)

Lemma 1 shows that the error 𝑒 can be decomposed to
the conforming part |‖𝜀‖|2 and the nonconforming part
(𝛼

−1curl 𝜉, curl 𝜉).
The following Theorem 2 gives the error estimate of the

conforming part.

Theorem 2. Let 𝑟 ∈ 𝐿
2
(𝜅) and 𝐽] ∈ 𝐿

2
(𝜕𝜅) denote the interior

residual and the interelement flux jump, respectively. Then

|‖𝜀‖|
2
≤ ∑

𝜅∈Pℎ

{


𝜎

𝜅
+
1

2
curl𝜒

𝜅

𝛼
−1

,𝜅

+ Δ
𝜅
}

2

, (15)

where Δ
𝜅

= 𝐶Pℎ𝜅
‖𝑟 − 𝜋

𝜅
𝑟‖

𝛼
−1

,𝜅
+ (1/2)𝐶

𝑡
∑

𝛾⊂𝜕𝜅
ℎ

1/2

𝜅
‖𝐽

]
−

𝜋
𝛾
𝐽
]
‖

𝛼
−1

,𝛾
, 𝜋

𝛾
𝑟 ∈ 𝐿

2
(𝜅), ‖𝑓‖

𝛼
−1

,𝜅
= ‖𝛼

1/2
𝑓‖

𝜅
, ∀𝜅 ∈ P

ℎ
, while

Δ
𝜅
is a quantity of higher order or even negligible compared

with ‖𝜎
𝜅
+ (1/2)curl𝜒

𝜅
‖

𝛼
−1

,𝜅
. Both the vector-valued function

𝜎
𝜅
and the scalar-valued function 𝜒

𝜅
contain the interior resid-

ual (see [2])

𝑟|𝜅 = 𝑓 + div
ℎ
(𝛼 grad

ℎ
𝑢

ℎ
) . (16)
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Moreover, there exists a positive constant 𝑐, independent
of mesh-size, such that for each element there holds

𝑐


𝜎

𝜅
+
1

2
curl𝜒

𝜅

𝛼
−1

,𝜅

≤ |‖𝜀‖|𝜅 + Δ 𝜅
, (17)

where 𝜅 is a block including the element 𝜅 and its adjacent
elements.

Lemma 3 plays a key role for obtaining the error estimate
of the nonconforming part.

Lemma 3. Let 𝜉 ∈ H,H be defined by (10); then

(𝛼
−1curl 𝜉, curl 𝜉) = min

𝑤
∗
∈𝐻
1

𝐸
(Ω)



𝑤
∗
− 𝑤

ℎ



 . (18)

Evidently, (18) gives an upper bound of the nonconform-
ing part. It is important to note that the right hand side of (18)
is the minimum value and the interpolation postprocessing
function 𝑤∗ appears in the right hand side of (18). Reference
[18] has emphasized that an appropriate selection of𝑤∗ is the
key to obtaining an effective computable upper bound a pos-
teriori error estimate. And this requires that the function 𝑤∗

is of a simple form and computable andmakes the error of the
nonconforming part effective.

Considering these factors, [2, 16] made such selection:
𝑤

∗ is taken to be a piecewise (pullback) biquadratic function
on each element 𝜅. The interpolation nodes of the function
are the element vertices 𝑥

𝑛
, edge midpoints 𝑚

𝛾
, and element

centers 𝑥
𝜅
. The interpolation conditions are given by

𝑤
∗
(𝑥

𝑛
) =

{{{

{{{

{

0, if 𝑥
𝑛
∈ Γ

𝐷

1

P𝑛



∑

𝜅∈P𝑛

𝑤
ℎ
(𝑥

𝑛
) |

𝜅
, otherwise,

𝑤
∗
(𝑚

𝛾
) =

{

{

{

0, if 𝑚
𝛾
∈ Γ

𝐷

ℎ
−1

𝛾
∫

𝛾
𝑤

ℎ
𝑑𝑠, otherwise,

𝑤
∗
(𝑥

𝜅
) = 𝑤

ℎ
(𝑥

𝜅
) ,

(19)

where P
𝑛
⊂ P

ℎ
denotes the set of elements which share

common vertex 𝑥
𝑛
, |P

𝑛
| = card{P

𝑛
}.

It is obvious that the function 𝑤∗ defined above satisfies
𝑤

∗
∈ 𝐻

1

𝐸
(Ω) and can be used to obtain an upper bound for

the nonconforming part of the a posteriori error estimates.
Theorem 4 gives the reliability and validity of the noncon-

forming part.

Theorem 4. Let 𝑤∗
∈ 𝐻

1

𝐸
(Ω) be constructed as described

above; then

‖curl 𝜉‖𝛼
−1

,Ω
≤


𝑤ℎ
− 𝑤

∗

 . (20)

Moreover, there exists a positive constant𝐶, independent of any
mesh-size, such that



𝑤ℎ
− 𝑤

∗

𝜅
≤ 𝐶‖curl 𝜉‖𝛼

−1
,𝜅
. (21)

Combining (14), (15), and (20), we have the following
overall a posteriori error estimate:

|‖𝑒‖|
2
≤ ∑

𝜅∈Pℎ

(


𝜎

𝜅
+
1

2
curl𝜒

𝜅

𝛼
−1

,𝜅

+ Δ
𝜅
)

2

+


𝑤ℎ
− 𝑤

∗



2

.

(22)

Note that Δ
𝜅
is a quantity of higher order compared

with ‖𝜎
𝜅
+ (1/2)curl𝜒

𝜅
‖

𝛼
−1

,𝜅
, or even negligible. Let𝑤

ℎ
be the

approximate solution of (8); we define a computable upper
bound a posteriori error indicator by

𝜂
2

com = 𝜂
2

𝑐
+ 𝜂

2

nc (23)

in which 𝜂
2

𝑐
= ∑

𝜅∈Pℎ
‖𝜎

𝜅
+ (1/2)curl𝜒

𝜅
‖

2

𝛼
−1

,𝜅
denotes the a

posteriori error indicator of conforming part and 𝜂2

nc = |‖𝑤
ℎ
−

𝑤
∗
‖|

2 the a posteriori error indicator of nonconforming part.
Hence, we can use 𝜂com as the error estimate indicator of 𝑤

ℎ
.

Obviously, the error indicator 𝜂com does not include a
general constant 𝐶 and is an effective error indicator (see
Table 1). So, we are very interested in the error indicator 𝜂com
and decide to apply the indicator 𝜂com to eigenvalue problem
(1).

3. A Posteriori Error Estimate of
the Eigenvalue Problem

In this section, we apply the error indicator 𝜂com to the eigen-
value problem (1) and obtain a computable upper bound a
posteriori error indicator 𝜂2

com with 𝑓 = 𝜆
ℎ
𝑢

ℎ
in (16), where

(𝜆
ℎ
, 𝑢

ℎ
) is the 𝑘th eigenpair of (6).

In order to establish the error indicator 𝜂2

com, we need the
following results, cited from [4, 19, 20], respectively, as our
Lemmas 5, 6, and 7.

Lemma5. Let (𝜆
ℎ
, 𝑢

ℎ
) be the 𝑘th eigenpair of (6)with ‖𝑢

ℎ
‖

𝑏
=

1, let 𝜆 be the 𝑘th eigenvalue of (2), and let𝑀(𝜆) ⊂ 𝐻
1+𝑟
(Ω)

be the eigenspace corresponding to 𝜆. Then 𝜆
ℎ
→ 𝜆, and there

exists 𝑢 ∈ 𝑀(𝜆) with ‖𝑢‖
𝑏
= 1, such that

𝜆ℎ
− 𝜆

 ≤ 𝐶𝜆
2
ℎ

2𝑟
,

𝑢ℎ
− 𝑢

𝑏
≤ 𝐶ℎ

2𝑟
,

𝑢ℎ
− 𝑢

ℎ
≤ 𝐶𝜆ℎ

𝑟
,

(24)

where 𝜔 is the largest inner angle of Ω with the edges parallel
with axis. If 𝜔 > 𝜋 then 𝑟 < 𝜋/𝜔 and sufficiently close to 𝜋/𝜔,
and 𝜔 < 𝜋; then 𝑟 = 1.

Let Ω ⊂ 𝑅
2 be the bounded domain. Define operators

𝑇 : 𝐿
2
(Ω) → 𝐻

1

𝐸
(Ω) satisfies

𝑎 (𝑇𝑓, V) = 𝑏 (𝑓, V) , ∀𝑓 ∈ 𝐿
2
(Ω) , ∀V ∈ 𝐻1

𝐸
(Ω) , (25)

and 𝑇
ℎ
: 𝐿

2
(Ω) → 𝑋

ℎ,𝐸
satisfies

𝑎
ℎ
(𝑇

ℎ
𝑓, V) = 𝑏 (𝑓, V) , ∀𝑓 ∈ 𝐿

2
(Ω) , ∀V ∈ 𝑋

ℎ,𝐸
. (26)

It is easy to know that (2) and (6) have the equivalent oper-
ator forms 𝜆𝑇𝑢 = 𝑢 and 𝜆

ℎ
𝑇

ℎ
𝑢

ℎ
= 𝑢

ℎ
, respectively. Mean-

while, we have the following estimates.
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Lemma 6. Under the assumption of Lemma 5. Moreover, if
‖𝑇 − 𝑇

ℎ
‖

𝑏
→ 0 (ℎ → 0) and there exists a positive constant𝐶

independent ofmesh-size ℎ and 𝑞
1
< 𝑞

2
, such that∀𝑓 ∈ 𝐿

2
(Ω),

‖𝑇𝑓 − 𝑇
ℎ
𝑓‖

ℎ
≤ 𝐶ℎ

𝑞1‖𝑓‖
𝑏
, and ‖𝑇𝑓 − 𝑇

ℎ
𝑓‖

𝑏
≤ 𝐶ℎ

𝑞2‖𝑓‖
𝑏
,

then there exists 𝑢 ∈ 𝑀(𝜆) with ‖𝑢‖
𝑏
= 1, such that ∀V ∈

𝐻
1

𝐸
(Ω) ∩ 𝑋

ℎ,𝐸

𝑢ℎ
− 𝑢

ℎ,𝐷
= 𝜆

ℎ

𝑇𝑢ℎ
− 𝑇

ℎ
𝑢

ℎ

ℎ,𝐷
+ 𝑅

1
, (27)

𝜆
ℎ
− 𝜆 = 𝜆

2

ℎ

𝑇𝑢ℎ
− 𝑇

ℎ
𝑢

ℎ



2

ℎ

+ 2𝜆
ℎ
𝑎

ℎ
(𝑇𝑢

ℎ
− 𝑇

ℎ
𝑢

ℎ
, 𝑢

ℎ
− V) + 𝑅

2
,

(28)

where𝐷 ⊂ Ω, 𝑅
1
, 𝑅

2
are infinitesimals of higher order.

Lemma 7. Let (𝜆, 𝑢) and (𝜆
ℎ
, 𝑢

ℎ
) be the solutions of problems

(2) and (6), respectively. Then ∀V ∈ 𝑋
ℎ,𝐸

𝜆 − 𝜆
ℎ
=
𝑢 − 𝑢ℎ



2

ℎ
− 𝜆

ℎ

V − 𝑢ℎ



2

𝑏

− 2𝜆
ℎ
𝑏 (𝑢 − V, 𝑢

ℎ
) + 2𝑎

ℎ
(𝑢 − V, 𝑢

ℎ
) .

(29)

Under the above preparations, we can obtain the follow-
ing error estimates for the eigenvalue and eigenfunction of
problem (1).

Theorem 8. Let (𝜆
ℎ
, 𝑢

ℎ
) be the 𝑘th nonconforming rotated𝑄

1

element eigenpair of (6) with ‖𝑢
ℎ
‖

𝑏
= 1, and let 𝜆 be the 𝑘th

eigenvalue of (2). Moreover, letΩ be a concave domain and let
the eigenfunction 𝑢 be singular. Then we have

𝑢ℎ
− 𝑢

ℎ
≤ 𝜂

𝑐𝑜𝑚
+ 𝑅

1
, (30)

𝜆 − 𝜆ℎ

 =
𝑢ℎ

− 𝑢


2

ℎ
+ 𝑜 (ℎ

2𝑟
) ; (31)

Thus,
𝜆 − 𝜆ℎ

 ≤ 𝜂
2

𝑐𝑜𝑚
+ 𝑜 (ℎ

2𝑟
) + 𝑅

2
, (32)

where 𝑅
2
= 𝑅

2

1
+ 2𝑅

1
𝜂

𝑐𝑜𝑚
is infinitesimal of higher order com-

pared with 𝜂2

𝑐𝑜𝑚
.

Proof. Taking 𝑓 = 𝜆
ℎ
𝑢

ℎ
, 𝑔 = 0 in (8), then 𝑤 = 𝜆

ℎ
𝑇𝑢

ℎ
and

𝑤
ℎ
= 𝜆

ℎ
𝑇

ℎ
𝑢

ℎ
= 𝑢

ℎ
. By (22), we have

𝜆ℎ
𝑇𝑢

ℎ
− 𝜆

ℎ
𝑇

ℎ
𝑢

ℎ

ℎ
≤ 𝜂com. (33)

Combining (33) and (27) (taking𝐷 = Ω), we get
𝑢ℎ

− 𝑢
ℎ
= 𝜆

ℎ

𝑇𝑢ℎ
− 𝑇

ℎ
𝑢

ℎ

ℎ
+ 𝑅

1
≤ 𝜂com + 𝑅

1
, (34)

which shows that (30) holds.
In order to prove (31) and (32), we define interpolation

operator 𝐼
ℎ
: 𝐻

1

𝐸
(Ω) → 𝑋

ℎ,𝐸
by

∫

𝛾

𝐼
ℎ
𝑢 𝑑𝑠 = ∫

𝛾

𝑢 𝑑𝑠, ∀𝛾 ∈ 𝜕𝜅, ∀𝜅 ∈ P
ℎ
, ∀𝑢 ∈ 𝐻

1

𝐸
(Ω) .

(35)

Let V = 𝐼
ℎ
𝑢 in Lemma 7; the fourth term on the right-hand

side of (29) vanishes (see [21, 22]).

Considering the third termof (29), from the interpolation
error estimate, we have

−2𝜆ℎ
𝑏 (𝑢 − 𝐼

ℎ
𝑢, 𝑢

ℎ
)
 ≤ 𝐶ℎ

1+𝑟
‖𝑢‖1+𝑟

, (36)

and that, according to Lemma 5, we know that the second and
the third terms are infinitesimals of higher order comparing
with the first term. Hence, the error 𝜆−𝜆

ℎ
completely hinges

on the first term on the right-hand side of (29); that is, (31)
holds. Combining (30) and (31), we obtain (32).

Remark 9. For the nonconforming rotated𝑄
1
finite element,

only when 𝜋 < 𝜔 < 2𝜋 would the estimation | − 2𝜆
ℎ
𝑏(𝑢 −

𝐼
ℎ
𝑢, 𝑢

ℎ
)| ≤ 𝐶ℎ

1+𝑟
‖𝑢‖

1+𝑟
be valid (see [19]). Therefore, it is

necessary to assume thatΩ be a concave domain.
From (32) and (30), we can obtain the computable upper

bound a posteriori error indicators 𝜂2

com and 𝜂com for the
eigenvalue 𝜆

ℎ
and the associated eigenfunction 𝑢

ℎ
, respec-

tively.

4. Extension and Application

In this section, we extend the error indicator 𝜂com to the Stek-
lov eigenvalue problem and also obtain an effective error indi-
cator 𝜂2

com with 𝑓 = 𝜆
ℎ
𝑢

ℎ
and 𝛼 = 1 in (16), where 𝜆

ℎ
and 𝑢

ℎ

are the approximations of (37).
The Steklov eigenvalue problem reads as follows:

−Δ𝑢 + 𝑢 = 0, in Ω, n ⋅ grad 𝑢 = 𝜆𝑢, on 𝜕Ω, (37)

whereΩ ⊂ 𝑅
2 is a bounded convex polygonal domain.

We have Steklov eigenvalue problem in its variational for-
mulation: find (𝜆, 𝑢) ∈ R × 𝐻

1
(Ω) with ‖𝑢‖

𝑏
= 1, so that

𝑎 (𝑢, V) = 𝜆𝑏 (𝑢, V) , ∀V ∈ 𝐻1
(Ω) , (38)

where 𝑎(𝑢, V) = ∫
Ω
∇𝑢∇V + 𝑢V 𝑑𝑥, 𝑏(𝑢, V) = ∫

𝜕Ω
𝑢V 𝑑𝑠,

‖𝑢‖
𝑏
=√𝑏(𝑢, V). Clearly 𝑎(⋅, ⋅) is a symmetric, continuous, and

𝐻
1
(Ω)-elliptic bilinear form defined on𝐻1

(Ω) × 𝐻
1
(Ω).

The nonconforming finite element approximation of (38)
is the following: find (𝜆

ℎ
, 𝑢

ℎ
) ∈ R × 𝑋

ℎ
with ‖𝑢

ℎ
‖

𝑏
= 1, such

that

𝑎
ℎ
(𝑢

ℎ
, V) = 𝜆

ℎ
𝑏 (𝑢

ℎ
, V) , ∀V ∈ 𝑋

ℎ
, (39)

where 𝑎
ℎ
(𝑢

ℎ
, V) = ∑

𝜅∈Pℎ
∫

𝜅
∇𝑢

ℎ
∇V + 𝑢

ℎ
V 𝑑𝑥. Define ‖V‖

ℎ
=

√𝑎
ℎ
(V, V). Evidently, ‖ ⋅ ‖

ℎ
is the norm on 𝑋

ℎ
and 𝑎

ℎ
(⋅, ⋅) is

uniformly𝑋
ℎ
-elliptic. In fact, 𝑎

ℎ
(V, V) = ‖V‖2

ℎ
, ∀V ∈ 𝑋

ℎ
.

To define two useful operators, we need the source prob-
lem (40) associated with (38) and the discrete problem (41).

Find 𝜑 ∈ 𝐻
1
(Ω), satisfies

𝑎 (𝜑, V) = 𝑏 (𝜌, V) , ∀V ∈ 𝐻1
(Ω) , (40)

and find 𝜑
ℎ
∈ 𝑋

ℎ
, such that

𝑎
ℎ
(𝜑

ℎ
, V) = 𝑏 (𝜌, V) , ∀V ∈ 𝑋

ℎ
. (41)
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Using the source problem (40), we define the operators𝐴
and 𝑇:

𝐴 : 𝐿
2
(𝜕Ω) → 𝐻

3/2
(Ω) ⊂ 𝐻

1
(Ω) ,

𝑎 (𝐴𝜌, V) = 𝑏 (𝜌, V) , ∀V ∈ 𝐻1
(Ω) ,

𝑇𝜌 = (𝐴𝜌)


, 𝑇 : 𝐿
2
(𝜕Ω) → 𝐻

1
(𝜕Ω) ,

(42)

where the symbol “” denotes the restriction to 𝜕Ω. Bramble
and Osborn [8] proved that (38) has the operator form 𝑇𝑢 =

(1/𝜆)𝑢.
Since 𝑎

ℎ
(⋅, ⋅) is uniformly elliptic with respect to ℎ, the

problem (41) has unique solution. We then define the oper-
ators:

𝐴
ℎ
: 𝐿

2
(𝜕Ω) → 𝑋

ℎ
,

𝑎
ℎ
(𝐴

ℎ
𝜌, V) = 𝑏 (𝜌, V) , ∀V ∈ 𝑋

ℎ
,

𝑇
ℎ
𝜌 = (𝐴

ℎ
𝜌)



, 𝑇
ℎ
: 𝐿

2
(𝜕Ω) → 𝜕𝑋

ℎ
⊂ 𝐿

2
(𝜕Ω) .

(43)

From [10], (39) has the operator form 𝑇
ℎ
𝑢



ℎ
= (1/𝜆

ℎ
)𝑢



ℎ
. 𝑇

and 𝑇
ℎ
are self-adjoint, completely continuous operators and

‖𝑇
ℎ
− 𝑇‖

𝑏
→ 0, (ℎ → 0).

For the Steklov eigenvalue problem, we need the follow-
ing error estimates (see [10]) and expansion (see [21]) which
will be used in our subsequent analysis.

Lemma 10. Let (𝜆
ℎ
, 𝑢

ℎ
) be the 𝑘th nonconforming rotated 𝑄

1

element eigenpair of (39) with ‖𝑢
ℎ
‖

𝑏
= 1, and let 𝜆 be the 𝑘th

eigenvalue of (38). Then 𝜆
ℎ
→ 𝜆, and there exists 𝑢 ∈ 𝑀(𝜆)

with ‖𝑢‖
𝑏
= 1, such that

𝜆ℎ
− 𝜆

 ≤ 𝐶ℎ
2
, (44)

𝑢ℎ
− 𝑢

𝑏
+
𝐴ℎ

𝑢 − 𝐴𝑢
𝑏
≤ 𝐶ℎ

3/2
, (45)

𝑢ℎ
− 𝑢

ℎ
+ 𝜆

𝐴ℎ
𝑢 − 𝐴𝑢

ℎ
≤ 𝐶ℎ, (46)

where𝑀(𝜆) is the space spanned by eigenvector corresponding
𝜆.

Lemma 11. Let (𝜆, 𝑢) ∈ R×𝐻1
(Ω) be an eigenpair of (37) and

let (𝜆
ℎ
, 𝑢

ℎ
) ∈ R × 𝑋

ℎ
be an eigenpair of (39). Then ∀V ∈ 𝑋

ℎ

𝜆 − 𝜆
ℎ
=
𝑢 − 𝑢ℎ



2

ℎ
− 𝜆

ℎ

V − 𝑢ℎ



2

𝑏

+ 𝜆
ℎ
(‖V‖2

𝑏
− ‖𝑢‖

2

𝑏
) + 2𝑎

ℎ
(𝑢 − V, 𝑢

ℎ
) .

(47)

According to the above consequences, we have the follow-
ing theorem which can be proved with the approach in [4].

Theorem 12. Under the assumption of Lemma 10. Then there
exists 𝑢 ∈ 𝑀(𝜆) with ‖𝑢‖

𝑏
= 1, such that

𝑢ℎ
− 𝑢

ℎ
= 𝜆

ℎ

𝐴ℎ
𝑢

ℎ
− 𝐴𝑢

ℎ

ℎ
+ 𝑅, (48)

where |𝑅| ≤ 𝐶ℎ
3/2.

Proof. From the definitions of 𝐴 and 𝐴
ℎ
, we obtain

𝑢
ℎ
− 𝑢 = 𝜆

ℎ
𝐴

ℎ
𝑢

ℎ
− 𝜆𝐴𝑢

= 𝜆
ℎ
𝐴

ℎ
𝑢

ℎ
− 𝜆

ℎ
𝐴𝑢

ℎ
+ 𝜆

ℎ
𝐴𝑢

ℎ

− 𝜆
ℎ
𝐴𝑢 + 𝜆

ℎ
𝐴𝑢 − 𝜆𝐴𝑢

= 𝜆
ℎ
(𝐴

ℎ
− 𝐴) 𝑢

ℎ
+ 𝜆

ℎ
𝐴 (𝑢

ℎ
− 𝑢) + (𝜆

ℎ
− 𝜆)𝐴𝑢.

(49)

Let𝑅 = ‖𝑢
ℎ
− 𝑢‖

ℎ
−𝜆

ℎ
‖𝐴

𝑢
𝑢

ℎ
− 𝐴𝑢

ℎ
‖

ℎ
, combining the triangle

inequality, (49), (44), and (45), we deduce

|𝑅| =


𝑢ℎ
− 𝑢

ℎ
− 𝜆

ℎ

𝐴𝑢
𝑢

ℎ
− 𝐴𝑢

ℎ

ℎ



≤
𝑢ℎ

− 𝑢 − 𝜆
ℎ
(𝐴

ℎ
− 𝐴)𝑢

ℎ

ℎ

≤ 𝐶 (
𝜆ℎ

− 𝜆
 + 𝜆ℎ

𝑢ℎ
− 𝑢

𝑏
) ≤ 𝐶ℎ

3/2
.

(50)

That is, (48) is obtained.

Based on (48), we have the following computable upper
bound a posteriori error estimate of the eigenfunction of (39).

Theorem 13. Under the assumption of Lemma 10. Then exists
𝑢 ∈ 𝑀(𝜆) with ‖𝑢‖

𝑏
= 1, such that

𝑢ℎ
− 𝑢

ℎ
≤ 𝜂

𝑐𝑜𝑚
+ 𝑜 (ℎ

3/2
) + 𝑜 (

𝑢ℎ
− 𝑤

−1
) . (51)

Proof. Consider the auxiliary problem

−Δ𝑤 = −𝑢
ℎ
, in Ω, n ⋅ grad𝑤 = 𝜆

ℎ
𝑢

ℎ
, on 𝜕Ω;

(52)

under the condition of ∫
Ω
𝑤𝑑𝑥 = 0, the auxiliary problem

exists a unique solution only up to additive constant. Let 𝑤
be the exact solution and let 𝑤

ℎ
be the approximate solution

of (52) and (𝜆
ℎ
, 𝑢

ℎ
) be a rotated 𝑄

1
element eigenpair of

(39) obviously, 𝑤
ℎ
= 𝑢

ℎ
. Taking 𝑓 = −𝑢

ℎ
, 𝛼 = 1, and

𝑔 = 𝜆
ℎ
𝑢

ℎ
in (7), from the a posteriori error estimate (22) and

the definition of 𝜂com, we have
𝑤ℎ

− 𝑤
ℎ
≤ 𝜂com. (53)

For the source problem (40) and (41), taking 𝜌 = 𝜆
ℎ
𝑢

ℎ
,

then 𝜑 = 𝜆
ℎ
𝐴𝑢

ℎ
, 𝜑

ℎ
= 𝜆

ℎ
𝐴

ℎ
𝑢

ℎ
= 𝑢

ℎ
. We deduce

𝑎 (𝜑 − 𝑤, V) = 𝑎 (𝜑 − 𝑢
ℎ
+ 𝑢

ℎ
− 𝑤, V)

= 𝑎 (𝜑, V) − ∫
Ω

∇𝑢
ℎ
∇V − ∫

Ω

𝑢
ℎ
V

+ ∫

Ω

∇ (𝑢
ℎ
− 𝑤)∇V + (𝑢

ℎ
− 𝑤, V)

= 𝑎 (𝜑, V) − ∫
Ω

𝑢
ℎ
V + ∫

Ω

Δ𝑤V

− ∫

𝜕Ω

(n ⋅ grad𝑤) V + (𝑢
ℎ
− 𝑤, V)

= 𝑎 (𝜑, V) − 𝑏 (𝜌, V) + (𝑢
ℎ
− 𝑤, V)

= (𝑢
ℎ
− 𝑤, V) .

(54)

Let𝐻−1
(Ω) denote the dual space of𝐻1

(Ω) with norm


𝑓
−1

= sup
V∈𝐻
1
(Ω)

(𝑓, V)
‖V‖1

, ∀𝑓 ∈ 𝐻
−1
(Ω) . (55)

Setting V = 𝜑 − 𝑤, it follows that

𝜑 − 𝑤


2

1
≤ sup

V∈𝐻
1
(Ω)

(𝑢
ℎ
− 𝑤, V)
‖V‖1

‖V‖1
=
𝑢ℎ

− 𝑤
−1

𝜑 − 𝑤
1
;

(56)
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thus,

𝜑 − 𝑤
1
≤
𝑢ℎ

− 𝑤
−1

. (57)

Further,
𝜑 − 𝑢ℎ

ℎ
=
𝜑 − 𝑤 + 𝑤 − 𝑢

ℎ

ℎ

=
𝑢ℎ

− 𝑤
ℎ
+ 𝑜 (

𝑢ℎ
− 𝑤

−1
) .

(58)

From (53) and (58), we find
𝜆ℎ

𝐴𝑢
𝑢
− 𝜆

ℎ
𝐴

ℎ
𝑢

ℎ

ℎ
=
𝜑 − 𝜑ℎ

ℎ
=
𝜑 − 𝑢ℎ

ℎ

=
𝑤ℎ

− 𝑤
ℎ
+ 𝑜 (

𝑢ℎ
− 𝑤

−1
)

≤ 𝜂com + 𝑜 (
𝑢ℎ

− 𝑤
−1

) .

(59)

Substituting (59) into (48), we obtain (51).

In Theorem 13, 𝑜(ℎ3/2
) and 𝑜(‖𝑢

ℎ
− 𝑤‖

−1
) are generally

infinitesimals of higher order comparing with 𝜂com. There-
fore, we can use 𝜂com as a computable upper bound a poste-
riori error indicator for the eigenfunction 𝑢

ℎ
of (39).

The next corollary gives a relation between the error in
the eigenvalue and eigenfunction approximations.

Corollary 14. Under the assumption of Lemma 10, we have

𝜆 − 𝜆
ℎ
≤ 𝜂

2

𝑐𝑜𝑚
+ 2∫

Ω

(𝑢 − 𝐼
ℎ
𝑢) 𝑢

ℎ
+ 𝑂 (ℎ

5/2
) + 𝑅, (60)

where 𝑅 is infinitesimal of higher order comparing with 𝜂2

𝑐𝑜𝑚
.
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Proof. We define interpolation operator 𝐼
ℎ
: 𝐻

1
(Ω) → 𝑋

ℎ
,

such that

∫

𝛾

𝐼
ℎ
𝑢 𝑑𝑠 = ∫

𝛾

𝑢 𝑑𝑠, ∀𝛾 ⊂ 𝜕𝜅, ∀𝜅 ∈ P
ℎ
, ∀𝑢 ∈ 𝐻

1
(Ω) .

(61)

Taking V = 𝐼
ℎ
𝑢 in Lemma 11, for the fourth term and the third

term on the right-hand side of (47), we have (see [10], pp:
2397–2398)

𝑎
ℎ
(𝑢 − 𝐼

ℎ
𝑢, 𝑢

ℎ
) = ∫

Ω

(𝑢 − 𝐼
ℎ
𝑢) 𝑢

ℎ
𝑑𝑥,



𝐼ℎ𝑢


2

𝑏
− ‖𝑢‖

2

𝑏


≤ 𝐶ℎ

5/2
.

(62)

For the second term on the right-hand side of (47), by (45),
we get


−𝜆

ℎ

𝐼ℎ𝑢 − 𝑢ℎ



2

𝑏


≤ 𝐶ℎ

3
. (63)

Thus,

𝜆 − 𝜆
ℎ
=
𝑢 − 𝑢ℎ



2

ℎ
+ 2∫

Ω

(𝑢 − 𝐼
ℎ
𝑢) 𝑢

ℎ
+ 𝑂 (ℎ

5/2
) . (64)

Combining (51) and (64), we obtain (60).

Remark 15. Under certain conditions, we can prove that
2 ∫

Ω
(𝑢 − 𝐼

ℎ
𝑢)𝑢

ℎ
is a infinitesimal of higher order than

‖𝑢 − 𝑢
ℎ
‖

2

ℎ
. From Lemma 11 of Yang et al. [10], we have | ∫

Ω
(𝑢−

𝐼
ℎ
𝑢)𝑢

ℎ
| ≤ 𝐶ℎ

2 and ‖𝑢 − 𝑢
ℎ
‖

ℎ
≤ 𝐶ℎ provided that 𝑢 ∈ 𝐻2

(Ω).
Similarly, if 𝑢 ∈ 𝐻

1+𝑟
(0 < 𝑟 < 1), Ω is a concave domain

and the eigenfunction 𝑢
ℎ
is singular. Then, | ∫

Ω
(𝑢 − 𝐼

ℎ
𝑢)𝑢

ℎ
|

may reach𝑂(ℎ1+𝑟
) convergence rate and ‖𝑢 − 𝑢

ℎ
‖

ℎ
may reach

𝑂(ℎ
𝑟
). So, the error 𝜆 − 𝜆

ℎ
hinges on ‖𝑢 − 𝑢

ℎ
‖

2

ℎ
. By (60) and

(64), we can obtain a computable upper a posteriori error
indicator 𝜂2

com for the eigenvalue 𝜆
ℎ
. The numerical results

(see Table 3) show that this hypothesis is appropriate.

5. Numerical Examples

This section will report some computational results for the
computable upper bound a posteriori error indicators 𝜂com
and 𝜂2

com. For the sake of simplicity, we take 𝛼 = 1, and the
partition P

ℎ
is uniform square meshes in problems (1) and

(7).
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Figure 4: The error for test functions 1, 2, and 3.

We now verify that the error indicator 𝜂com is effective
for the boundary value problem (7) by the following three
different types of test functions.The corresponding boundary
conditions are shown in Figures 1, 2, and 3. The numerical
results are listed in Table 1.

Example 1. Consider the equation −Δ𝑤 = 𝑓 on the square
domain Ω = [0, 1]

2 and the L-shaped domain Ω = [0, 1]
2
\

[0.5, 1]
2, respectively.

Test function 1: 𝑤
1
= 𝑥(1 − 𝑥)𝑦(1 − 𝑦), corresponding

𝑓 = 2𝑥(1 − 𝑥) + 2𝑦(1 − 𝑦).
Test function 2:𝑤

2
= sin((𝜋/2)𝑥)(𝑒𝑦

−1−𝑒𝑦), correspond-
ing 𝑓 = sin((𝜋/2)𝑥)[−(𝜋2

/4)(𝑒
𝑦
− 1 − 𝑒𝑦) + 𝑒

𝑦
].

Test function 3: 𝑤
3
= (𝑥 − 0.5)(𝑦 − 0.5)𝑥(𝑥 − 1)𝑦(𝑦 − 1),

corresponding 𝑓 = (3/2)(2𝑥 − 1)(2𝑦 − 1)(−𝑥
2
+ 𝑥 − 𝑦

2
+ 𝑦),

where 𝑤
𝑖,ℎ
(𝑖 = 1, 2, 3) denotes the nonconforming rotate

𝑄
1
element approximations. From Table 1 we find out the

ratio 𝜂com/‖𝑤𝑖
− 𝑤

𝑖,ℎ
‖

ℎ
converges that to 1 rapidly, when the

number 𝑛1 × 𝑛2 of the elements increases gradually. Namely,
the a posteriori error indicator 𝜂com is effective (see Figure 4).

Next we will compute the validity of the error indicator
𝜂

2

com of the eigenvalue problem (1). The numerical results are
listed in Table 2.

Example 2. Consider the eigenvalue problem −Δ𝑢 = 𝜆𝑢 on
the L-shaped domain Ω = [0, 1]

2
\ [0.5, 1]

2 (see Figure 3).
Here we take 𝜆

1
≈ 4 ∗ 9.63972, 𝜆

2
≈ 4 ∗ 15.19725, and 𝜆

3
≈

4 ∗ 19.73921, respectively. 𝜆
𝑖,ℎ

denotes the 𝑖th approximate
eigenvalue.

In Table 2, we can see that the indicators 𝜂2

com for the
first eigenvalue and second eigenvalue are effective and reli-
able, respectively. But the indicator 𝜂2

com for the third eigen-
value is distortion, obviously, for which reason is that the
eigenfunction is smooth corresponding to the eigenvalue 𝜆

3
.

So, in Theorem 8, the assumptions, in which Ω is a concave
domain and the eigenfunction is singular, are necessary.

According to the explanation in Remark 15, we com-
pute the validity of the error indicator 𝜂2

com of the Steklov

eigenvalue problem on the L-shaped domain Ω = [0, 1]
2
\

[0.5, 1]
2 (see Figure 3).

Example 3. Consider the problems (37), where 𝜆
2
, 𝜆

3
, and 𝜆

4

were taken at themidpoint value of the interval [0.893602779,
0.893736398], [1.688598128, 1.688606742], and [3.21786760,
3.217900202], respectively. Taking into account the possibility
that𝑀(𝜆

1
) ⊂ 𝐻

2
(Ω), 𝜆

1
can be omitted.

We can see that the ratio 𝜂2

com/|𝜆𝑖,ℎ
− 𝜆

𝑖
|(𝑖 = 2, 3, 4) con-

verges to 1 from Table 3, which proves that our supposition is
rational in Remark 15.
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