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A model for 3D laminated composite beams, that is, beams that can vibrate in space and experience longitudinal and torsional
deformations, is derived. The model is based on Timoshenko’s theory for bending and assumes that, under torsion, the cross
section rotates as a rigid body but can deform longitudinally due to warping. The warping function, which is essential for correct
torsional deformations, is computed preliminarily by the finite element method. Geometrical nonlinearity is taken into account by
consideringGreen’s strain tensor.The equation ofmotion is derived by the principle of virtual work and discretized by the𝑝-version
finite element method. The laminates are assumed to be of orthotropic materials. The influence of the angle of orientation of the
laminates on the natural frequencies and on the nonlinear modes of vibration is presented. It is shown that, due to asymmetric
laminates, there exist bending-longitudinal and bending-torsional coupling in linear analysis. Dynamic responses in time domain
are presented and couplings between transverse displacements and torsion are investigated.

1. Introduction

The use of composite materials in the engineering applica-
tions has been significantly increased in the last decades.
Composite materials can be adjusted to meet the design
requirements of structures, such as stiffness and strength, by
varying the orientations of the layers. The ability to change
the dynamical properties of structures is one of the most
important advantages of composite materials over ordinary
materials.

Laminated composite beams have a variety of appli-
cations in industry. Beam models can be used to model,
for example, helicopter blades, wind turbine blades, aircraft
wings, and so forth. Often these structures vibrate in space
due to a variety of aerodynamic forces. Furthermore, due to
asymmetric position of the laminates, bending-torsional and
bending-longitudinal coupling appears, even in linear mod-
els. Therefore, accurate models of 3D laminated composite
beams are essential for engineers and researchers.

A number of analytical and numerical methods for free
vibration problems of laminated beams have been proposed
in the literature, for example, [1–6]. Goyal and Kapania [7]
studied the response of asymmetrically laminated composite

beams including torsional and warping effects, as well as
shear deformation. Jun et al. [8] used dynamic finite element
method to investigate the natural frequencies and mode
shapes of generally laminated composite beams. Banerjee
[9, 10] derived exact expressions for the frequency equation
andmode shapes of composite Timoshenko beams. Coupling
between bending and torsional modes, shear deformation,
and rotary inertia were taken into account. Machado and
Cort́ınez [11] developed a geometrically nonlinear model
for thin-walled composite beams and investigated the post-
buckling behaviour of simply supported beams. Sapountzakis
[12, 13] used the boundary element method to compute
the warping function of composite bars. Damages of the
composite beams, such as delamination and interlayer slips,
were modelled numerically in [14, 15].

Improvements of the classical Bernoulli-Euler and Timo-
shenko beam theories have been developed in order to better
approximate the cross-sectional behaviour due to axial-
bending coupling of the different layers. Such improvements
are known as equivalent single layer (ESL) and discrete layer
theories (DLT) and, as a result, the unknowns in the equation
of motion are increased [16]. In ESL theories the number
of unknowns is independent of the number of layers, but
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Figure 1: Geometry of laminated composite beam.

they lead to poor approximation of the shear stresses. In
DLT the number of unknowns is assumed layer by layer,
which leads to sufficiently accurate results. The DLT are
more accurate than the ESL theories but are computationally
expensive. An important subclass of DSL theories are the
zigzag theories, which assume a zigzag distribution of the
longitudinal displacement, and the number of kinematic
variables is independent of the number of layers [17, 18].
The usage of zigzag theories is essential for beams with
considerably different material properties of the layers.

In this work, 3D beam model for laminated composite
beams is derived considering geometrical type of nonlinear-
ity. The model is based on Timoshenko’s theory for bending
and assumes that, under torsion, the cross section rotates
as a rigid body and deforms longitudinally due to warping
[19, 20]. The warping function is obtained preliminarily
by solving a partial differential equation with Neumann
boundary conditions. The equation of motion of the beam is
derived by the principle of virtual work and discretized by
the 𝑝-version finite element method. The model is validated
by comparing the bending natural frequencies with available
results from the literature, considering different orientations
of the laminates and different boundary conditions. Further
to validate the 3D beam model, a comparison with three-
dimensional finite elements is presented. It is shown that
accurate results can be obtained by the proposed model with
few degrees of freedom. The nonlinear part of the model
is validated by comparing the static displacement, of the
nonlinear model, with available results. Nonlinear modes of
vibration, for three different orientations of the laminates, are
compared. Finally, the dynamic steady-state responses of the
nonlinear model are presented.

2. Mathematical Model

A laminated composite beam is considered (Figure 1); the
layers are assumed to be of orthotropic materials. The
principal material axes can be oriented in an arbitrary angle
with respect to the longitudinal coordinate 𝑥. The length, the
width, and the height of the beam are denoted by 𝑙, 𝑏, and ℎ,
respectively.

2.1. Displacement Field. The displacement field is based on
Timoshenko’s theory for bending [21] and it assumes that the
cross section rotates as a rigid body in its own plane and

deforms longitudinally due to warping [22]. This displace-
ment field is suitable for capturing the bending-bending-
torsional coupling due to geometrical nonlinearity [19] or due
to asymmetric cross sections [20]. Zigzag functions are not
included in the current model, because they are meaningless
when the laminates are with similar material properties,
particularlywhen the only difference between the laminates is
the angle of orientation [23, 24]. The longitudinal 𝑢(𝑥, 𝑦, 𝑧, 𝑡)
and the transverse displacements V(𝑥, 𝑦, 𝑧, 𝑡) and𝑤(𝑥, 𝑦, 𝑧, 𝑡),
which are functions of space coordinates and time, are
expressed by functions of the longitudinal coordinate 𝑥 in the
following way:

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢
0
(𝑥, 𝑡) − (𝑦 − 𝑦

𝑐
) 𝜙
𝑧
(𝑥, 𝑡)

+ (𝑧 − 𝑧
𝑐
) 𝜙
𝑦
(𝑥, 𝑡) + 𝜓 (𝑦, 𝑧)

𝜕𝜃
𝑥

𝜕𝑥
(𝑥, 𝑡) ,

V (𝑥, 𝑦, 𝑧, 𝑡) = V
0 (𝑥, 𝑡) + 𝑦 cos (𝜃𝑥 (𝑥, 𝑡))

− 𝑦 − 𝑧 sin (𝜃
𝑥
(𝑥, 𝑡)) ,

𝑤 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑤
0
(𝑥, 𝑡) + 𝑦 sin (𝜃

𝑥
(𝑥, 𝑡))

+ 𝑧 cos (𝜃
𝑥 (𝑥, 𝑡)) − 𝑧,

(1)

where the subscript “0” represents the reference line, which
is the line of the twist centres of the cross section, (𝑦

𝑐
, 𝑧
𝑐
)

is the position of the centroid of the cross section, 𝜃
𝑥
is the

rotation of the cross section about the longitudinal axis 𝑥, 𝜙
𝑦

and 𝜙
𝑧
denote rotations of the cross section about 𝑦 and 𝑧

axes, respectively, and 𝜓(𝑦, 𝑧) is the warping function.
The functions on the reference line 𝑢

0
(𝑥, 𝑡), V

0
(𝑥, 𝑡),

𝑤
0
(𝑥, 𝑡), 𝜃

𝑥
(𝑥, 𝑡), 𝜙

𝑦
(𝑥, 𝑡), and𝜙

𝑧
(𝑥, 𝑡) are expressed by shape

functions and generalized coordinates in a local coordinate
system.

2.2.Warping Function. Thewarping function,which not only
defines the longitudinal deformation of the beam due to
torsion, but also defines the torsional rigidity of the beam,
is computed numerically by the finite element method. The
warping function is defined by a partial differential equation
with Neumann boundary conditions.The equation is derived
from the equilibrium equations of elasticity [22], where the
stresses due to torsion are computed from the displacement
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field (1). It is assumed that there are no external forces acting
on the lateral surface of the beam in the axial direction:

𝐶
𝑘

66

𝜕
2
𝜓

𝜕𝑦2
+ 𝐶
𝑘

55

𝜕
2
𝜓

𝜕𝑧2
= 0 in Ω

𝑘
,

(𝐶
𝑘

66
− 𝐶
𝑘−1

66
) (
𝜕𝜓

𝜕𝑦
− 𝑧) 𝑛

𝑦

+ (𝐶
𝑘

55
− 𝐶
𝑘−1

55
) (
𝜕𝜓

𝜕𝑧
+ 𝑦) 𝑛

𝑧
= 0

on Γ
𝑘
, 𝑘 = 1, . . . ,𝑀,

(2)

where Ω
𝑘
is the cross section of the 𝑘th layer and Γ

𝑘
is its

contour and 𝑀 is the number of layers. 𝐶𝑘
55

and 𝐶𝑘
66

are
the shear modulus of the material of the 𝑘th layer from the
reduced stiffness matrix. 𝑛

𝑦
and 𝑛
𝑧
are the components of the

normal vector to the boundary; it points in the outer direction
for the outer boundaries and it is considered to point in the
lower numbered layer (Figure 1) for the boundaries between
different layers. It is considered that 𝐶𝑘−1

66
= 𝐶
𝑘−1

55
= 0, for the

outer boundaries.
The boundary conditions between different layers are

derived by employing that the traction vectors on the inter-
faces, separating the layers, are equal in magnitude and
opposite in direction.

Equation (2) is written in weak form and then it is solved
by the finite element method:

∫
Ω𝑘

(𝐶
𝑘

66

𝜕𝜐
𝑗

𝜕𝑦

𝜕𝜓

𝜕𝑦
+ 𝐶
𝑘

55

𝜕𝜐
𝑗

𝜕𝑧

𝜕𝜓

𝜕𝑧
)𝑑Ω
𝑘

= ∫
Γ𝑘

𝜐
𝑗
((𝐶
𝑘

66
− 𝐶
𝑘−1

66
) 𝑧𝑛
𝑦
− (𝐶
𝑘

55
− 𝐶
𝑘−1

55
) 𝑦𝑛
𝑧
) 𝑑Γ
𝑘
,

(3)

where 𝜐
𝑗
, 𝑗 = 1, . . . , 𝑛, are the weighting functions.

2.3. Constitutive Equations. The laminates are assumed to
be of orthotropic materials. The stress-strain relations of
orthotropic material, expressed in the principal coordinates
of the material, are given by

{{{{{{{

{{{{{{{

{

𝜎
𝑥

𝜎
𝑦

𝜎
𝑧

𝜏
𝑦𝑧

𝜏
𝑥𝑧

𝜏
𝑥𝑦

}}}}}}}

}}}}}}}

}

=

[
[
[
[
[
[
[

[

𝐶
11
𝐶
12
𝐶
13

0 0 0

𝐶
12
𝐶
22
𝐶
23

0 0 0

𝐶
13
𝐶
23
𝐶
33

0 0 0

0 0 0 𝐶
44

0 0

0 0 0 0 𝐶
55

0

0 0 0 0 0 𝐶
55

]
]
]
]
]
]
]

]

{{{{{{{

{{{{{{{

{

𝜀
𝑥

𝜀
𝑦

𝜀
𝑧

𝛾
𝑦𝑧

𝛾
𝑥𝑧

𝛾
𝑥𝑦

}}}}}}}

}}}}}}}

}

. (4)

The stress-strain relations of laminate 𝑘, rotated on angle 𝛼
about the 𝑧 axis, are expressed as

{{{{{{{

{{{{{{{

{

𝜎
𝑥

𝜎
𝑦

𝜎
𝑧

𝜏
𝑦𝑧

𝜏
𝑥𝑧

𝜏
𝑥𝑦

}}}}}}}

}}}}}}}

}

𝑘

=

[
[
[
[
[
[
[
[
[
[

[

𝐶
𝑘

11
𝐶
𝑘

12
𝐶
𝑘

13
0 0 𝐶

𝑘

16

𝐶
𝑘

12
𝐶
𝑘

22
𝐶
𝑘

23
0 0 𝐶

𝑘

26

𝐶
𝑘

13
𝐶
𝑘

23
𝐶
𝑘

33
0 0 𝐶

𝑘

36

0 0 0 𝐶
𝑘

44
𝐶
𝑘

45
0

0 0 0 𝐶
𝑘

45
𝐶
𝑘

55
0

𝐶
𝑘

16
𝐶
𝑘

26
𝐶
𝑘

36
0 0 𝐶

𝑘

66

]
]
]
]
]
]
]
]
]
]

]

{{{{{{{

{{{{{{{

{

𝜀
𝑥

𝜀
𝑦

𝜀
𝑧

𝛾
𝑦𝑧

𝛾
𝑥𝑧

𝛾
𝑥𝑦

}}}}}}}

}}}}}}}

}

𝑘

, (5)

where the coefficients of the stiffness matrix of (5) are given
to be [23]:

𝐶
𝑘

11
= 𝐶
11
cos (𝛼)4 + 2𝐶

12
sin (𝛼)2cos (𝛼)2

+ 4𝐶
66
sin (𝛼)2cos (𝛼)2 + 𝐶

22
sin (𝛼)4

𝐶
𝑘

12
= (𝐶
11
+ 𝐶
22
− 4𝐶
66
) cos (𝛼)2sin (𝛼)2

+ 𝐶
12
(sin (𝛼)4 + cos (𝛼)4)

𝐶
𝑘

13
= 𝐶
13
cos (𝛼)2 + 𝐶

23
sin (𝛼)2

𝐶
𝑘

16
= (𝐶
11
− 𝐶
12
− 2𝐶
66
) cos (𝛼)3 sin (𝛼)

+ (𝐶
12
− 𝐶
22
+ 2𝐶
66
) sin (𝛼)3 cos (𝛼)

𝐶
𝑘

22
= 𝐶
11
sin (𝛼)4 + 𝐶

22
cos (𝛼)4

+ 2 (𝐶
12
+ 2𝐶
66
) sin (𝛼)2cos (𝛼)2

𝐶
𝑘

23
= 𝐶
13
sin (𝛼)2 + 𝐶

23
cos (𝛼)2

𝐶
𝑘

26
= (𝐶
11
− 𝐶
12
− 2𝐶
66
) cos (𝛼) sin (𝛼)3

+ (𝐶
12
− 𝐶
22
+ 2𝐶
66
) sin (𝛼) cos (𝛼)3

𝐶
𝑘

33
= 𝐶
33

𝐶
𝑘

36
= (𝐶
13
− 𝐶
23
) cos (𝛼) sin (𝛼)

𝐶
𝑘

44
= 𝐶
44
cos (𝛼)2 + 𝐶55sin (𝛼)

2

𝐶
𝑘

45
= (𝐶
55
− 𝐶
44
) cos (𝛼) sin (𝛼)

𝐶
𝑘

55
= 𝐶
44
sin (𝛼)2 + 𝐶

55
cos (𝛼)2

𝐶
𝑘

66
= (𝐶
11
− 2𝐶
12
+ 𝐶
22
− 2𝐶
66
) cos (𝛼)2sin (𝛼)2

+ 𝐶
66
(sin (𝛼)4 + cos (𝛼)4) .

(6)

Taking into account that the beam is slender, the following
assumption for the stresses can be introduced:

𝜎
𝑦
= 𝜎
𝑧
= 𝜏
𝑦𝑧
= 0. (7)

Considering assumption (7) and the relation (5), the reduced
stress-strain relation for beam is obtained:

{

{

{

𝜎
𝑥

𝜏
𝑥𝑧

𝜏
𝑥𝑦

}

}

}

𝑘

=
[
[

[

𝐶
𝑘

11
0 𝐶
𝑘

16

0 𝐶
𝑘

55
0

𝐶
𝑘

16
0 𝐶
𝑘

66

]
]

]

{

{

{

𝜀
𝑥

𝛾
𝑥𝑧

𝛾
𝑥𝑦

}

}

}

𝑘

. (8)

The coefficients of the reduced stiffness matrix are given in
the appendix.

2.4. Strain Expressions. Geometrically nonlinear deforma-
tion is considered and the axial and shear strains are derived
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from Green’s strain tensor [25], where the longitudinal terms
of second order are neglected:

𝜀
𝑥
=
𝜕𝑢

𝜕𝑥
+
1

2
(
𝜕V
𝜕𝑥
)

2

+
1

2
(
𝜕𝑤

𝜕𝑥
)

2

,

𝛾
𝑥𝑧
=
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
+
𝜕V
𝜕𝑥

𝜕V
𝜕𝑧
+
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑧
,

𝛾
𝑥𝑦
=
𝜕𝑢

𝜕𝑦
+
𝜕V
𝜕𝑥

+
𝜕V
𝜕𝑥

𝜕V
𝜕𝑦
+
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
.

(9)

A square root of the shear correction 𝜆 factor is applied solely
to the bending terms of the shear strains. This formulation is
preferred here, instead of applying the shear correction factor
in Hooke’s law, because of the torsional terms which appear
in the shear strains, for which a shear correction factor is
not necessary. With this formulation, the expressions from
the virtual work of internal forces related to torsion will not
contain the shear correction factor, while the ones related
to bending will be multiplied by the shear correction factor
[19]. In the numerical results, a shear correction factor equal
to 5/6 is used. Substituting the displacement field (1) into
the expressions for the strains (9) and assuming the shear
correction factor 𝜆, the strains become

𝜀
𝑥
=
𝜕𝑢
0

𝜕𝑥
− (𝑦 − 𝑦

𝑐
)
𝜕𝜙
𝑧

𝜕𝑥
+ (𝑧 − 𝑧

𝑐
)
𝜕𝜙
𝑦

𝜕𝑥

+ 𝜓
𝜕
2
𝜃
𝑥

𝜕𝑥2
+
1

2
(
𝜕V
0

𝜕𝑥
)

2

+
1

2
𝑧
2
(
𝜕𝜃
𝑥

𝜕𝑥
)

2

+
1

2
(
𝜕𝑤
0

𝜕𝑥
)

2

+
1

2
𝑦
2
(
𝜕𝜃
𝑥

𝜕𝑥
)

2

− 𝑧
𝜕V
0

𝜕𝑥

𝜕𝜃
𝑥

𝜕𝑥
+ 𝑦

𝜕𝑤
0

𝜕𝑥

𝜕𝜃
𝑥

𝜕𝑥
,

𝛾
𝑥𝑧
= (

𝜕𝜓

𝜕𝑧
+ 𝑦)

𝜕𝜃
𝑥

𝜕𝑥
+ √𝜆

𝜕𝑤
0

𝜕𝑥
+ √𝜆𝜙

𝑦
− √𝜆

𝜕V
0

𝜕𝑥
𝜃
𝑥
,

𝛾
𝑥𝑦
= (

𝜕𝜓

𝜕𝑦
− 𝑧)

𝜕𝜃
𝑥

𝜕𝑥
+ √𝜆

𝜕V
0

𝜕𝑥
− √𝜆𝜙

𝑧
+ √𝜆

𝜕𝑤
0

𝜕𝑥
𝜃
𝑥
.

(10)

2.5. Equation of Motion. The equation of motion is derived
by the principle of virtual work and it is discretized into
a system of ordinary differential equation by the 𝑝-version
finite element method. The 𝑝-FEM has several advantages
over the ℎ-FEM; the most important is that it requires far
fewer degrees of freedom than the ℎ-FEM [26]. One element
is used for the laminated composite beam and improvement
of the accuracy is achieved by increasing the number of the
shape functions. Thus, the functions on the reference line,
𝑢
0
(𝑥, 𝑡), V

0
(𝑥, 𝑡), 𝑤

0
(𝑥, 𝑡), 𝜃

𝑥
(𝑥, 𝑡), 𝜙

𝑦
(𝑥, 𝑡), and 𝜙

𝑧
(𝑥, 𝑡), are

expressed by shape functions and generalized coordinates in
a local coordinate system:

d0 =

{{{{{{{

{{{{{{{

{

𝑢
0
(𝜉, 𝑡)

V
0
(𝜉, 𝑡)

𝑤
0
(𝜉, 𝑡)

𝜃
𝑥
(𝜉, 𝑡)

𝜙
𝑦
(𝜉, 𝑡)

𝜙
𝑧
(𝜉, 𝑡)

}}}}}}}

}}}}}}}

}

= N (𝜉) q (𝑡) , (11)

where q(𝑡) is the vector of generalized coordinates:

q (𝑡) =

{{{{{{{

{{{{{{{

{

qu (𝑡)
qk (𝑡)
qw (𝑡)
q𝜃x (𝑡)
q𝜙y (𝑡)
q𝜙z (𝑡)

}}}}}}}

}}}}}}}

}

(12)

and N(𝜉) is the matrix of shape functions:

N (𝜉) =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Nu
(𝜉)
𝑇 0 0 0 0 0

0 Nk
(𝜉)
𝑇 0 0 0 0

0 0 Nw
(𝜉)
𝑇 0 0 0

0 0 0 N𝜃x (𝜉)
𝑇 0 0

0 0 0 0 N𝜙y (𝜉)𝑇 0

0 0 0 0 0 N𝜙z (𝜉)𝑇

]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (13)

Nu
(𝜉)
𝑇, Nk

(𝜉)
𝑇, Nw

(𝜉)
𝑇, N𝜃x (𝜉)𝑇, N𝜙y (𝜉)𝑇, and N𝜙z(𝜉)𝑇 are,

in this order, the row vectors of longitudinal, transverse
along 𝑦, transverse along 𝑧, torsional, rotational about 𝑦, and
rotational about 𝑧 shape functions and 𝜉 ∈ [−1 ⋅ ⋅ ⋅ 1] is the
local coordinate, 𝜉 = 2𝑥/𝑙.

The shape functions have to satisfy the geometric bound-
ary conditions. The sets of shape functions, used in previous
works for isotropic beams, are implemented here [19, 26].

They are suitable for beams with clamped-clamped boundary
conditions. If one wants to apply simply supported or free
boundary conditions, additional shape functions, such as
Hermite cubics, have to be included.

The equation of motion is derived by the principle of
virtual work:

𝛿𝑊V + 𝛿𝑊in + 𝛿𝑊E = 0, (14)
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where 𝑊V, 𝑊in, and 𝑊E are the virtual work of internal,
inertia, and external forces due to a virtual displacement 𝛿d:

𝛿d =
{

{

{

𝛿𝑢

𝛿V
𝛿𝑤

}

}

}

(15)

and d is the vector of displacement components. The varia-
tions of the work of internal, inertia, and external forces are
defined as

𝛿𝑊V = −∫
𝑉

𝛿𝜀
𝑇
𝜎𝑑𝑉,

𝛿𝑊in = −∫
𝑉

𝜌𝛿d𝑇d̈ 𝑑𝑉,

𝛿𝑊E = ∫
𝑉

𝛿d
0

𝑇F
0
𝑑𝑉,

(16)

where 𝛿𝜀 represents the virtual strains, d̈ is the acceleration
of a point of the beam, 𝜌 is the density of the beam, and F

0

represents external forces applied on the reference line.
Replacing (16) into (14) and introducing mass propor-

tional and frequency dependent damping, the following
system of second order ordinary differential equations is
obtained:

Mq̈ (𝑡) +
𝛽

𝜔
Mq̇ (𝑡) + K (q (𝑡)) q (𝑡) = F cos (𝜔𝑡) , (17)

whereM is the mass matrix obtained from the inertia forces
and K(q(𝑡)) is the stiffness matrix obtained from the internal
forces; it depends on the vector of generalized coordinates
q(𝑡), but it also has constant terms. F represents vector
of generalized external forces; a harmonic excitation with
frequency 𝜔 is applied. 𝛽 is damping factor, which can be
estimated from experiments. In the following work, 𝛽 =

0.01𝜔
2

𝑙1
is used, where 𝜔

𝑙1
is the fundamental frequency.

The equation of motion (17) is solved in time domain by
Newmark’smethod [27] and the resulting nonlinear algebraic
system is solved by Newton-Raphson’s method [27], by
using numerical computation of the Jacobian. Results of
nonlinear modes of vibration are also presented; for that
purpose the vector of generalized coordinates is expressed
in Fourier series and (17) is transformed into a system of
nonlinear algebraic equations, which is solved by the arc-
length continuation method.

3. Results and Discussion

3.1. Free Vibration. The derived model is validated by com-
paring the natural frequencies of laminated composite beam
with results available in the literature, as well as with results
obtained by three-dimensional finite element analysis. 10
shape functions are used for each displacement component;
that is, the resulting system consists of 60 degrees of freedom
(DOF). All layers are assumed to be of equal material,
oriented in different angles about the transverse axis 𝑧. The

Table 1: Natural frequencies (Hz) of clamped-clamped beam of
asymmetric cross ply [0∘/90∘/0∘/90∘].

Mode Clamped-Clamped
Present Reference [8] Reference [32] Reference [33]

1 1053.9 1054.4 1062.2 1051.8
2 2596.9 2509.2 2612.0 2505.4
3 4292.1 4281.5 4293.7 4265.1
4 6314.5 6215.8 6309.0 6150.3
5 8271.0 8239.9 8245.7 8062.5

assumed material is graphite-epoxy (AS4/3501-6), with the
following material properties:

𝐸
1
= 144.8GPa, 𝐸

2
= 9.65GPa,

𝐺
12
= 𝐺
13
= 4.14GPa, 𝐺

23
= 3.45GPa,

]
12
= ]
13
= 0.3, ]

23
= 0.5,

𝜌 = 1389 kg/m3.

(18)

First, a beam with width 𝑏 = 0.0254m, height ℎ =

0.0254m, and length 𝑙 = 0.381m, composed of four layers
with asymmetric cross ply [0∘/90∘/0∘/90∘], is considered.
The bending natural frequencies in 𝑥𝑧 plane, for different
boundary conditions, are presented and compared in Tables
1 and 2. It is noted that, for the case of asymmetric cross
ply [0∘/90∘/0∘/90∘], the transverse displacement𝑤

0
is coupled

with the longitudinal displacement 𝑢
0
even in linear analysis.

Furthermore, also due to asymmetry of the laminates, the
twist centre and the centroid do not coincide. Hence, addi-
tional coupling between the transverse displacement V

0
and

the torsion 𝜃
𝑥
exists also in linear analysis.

Three-dimensional finite element software Elmer [28] is
used to further validate the derived beammodel. The natural
frequencies, including the transverse modes in 𝑥𝑦 plane and
the torsional modes, are compared in Tables 3, 4, and 5,
for clamped-clamped beams with three different orientations
of the laminates, denoted by Case 1 [0∘/0∘/0∘/0∘], Case 2
[0∘/90∘/90∘/0∘], and Case 3 [0∘/90∘/0∘/90∘]. The width and
the height are the same, as in the previous example; 𝑏 =

0.0254m, ℎ = 0.0254m, and the length is 𝑙 = 1.0m. Fine
mesh of quadratic tetrahedrons is generated with Gmsh [29],
for the three-dimensional finite element analysis. The mesh
consists of 222 246 elements, which results in about 1 million
degrees of freedom.The resulting large-scale system is solved
on parallel processors, the libraryMUMPS [30] (multifrontal
massively parallel solver), in which a parallel direct sparse
solver is used. It was verified that, by reducing the size of the
elements, the results obtained by Elmer are converged.

The mode shapes of the first four natural frequencies, for
the beam with asymmetric cross ply [0∘/90∘/0∘/90∘], which
introduces bending-longitudinal and bending-torsional cou-
pling in linear analysis, are shown in Figure 2.The amplitudes
are normalized, for better interpretation of the mode shapes
and the differences between them.

There are no differences in the orientations of the layers
for Case 2 and Case 3; the layers are in pairs, oriented in
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Table 2: Natural frequencies (Hz) of clamped simply supported and simply supported simply supported beams of asymmetric cross ply
[0∘/90∘/0∘/90∘].

Mode Clamped Simply Supported Simply Supported Simply Supported
Present Reference [8] Reference [32] Present Reference [8] Reference [33]

1 793.3 784.9 818.5 557.9 558.9 557.8
2 2244.2 2223.9 2271.1 1904.7 1907.7 1892.6
3 4062.8 4038.6 4077.9 3782.6 3787.2 3730.9
4 6060.0 6031.5 6071.0 5819.4 5824.8 5669.5
5 8131.6 8104.8 8132.9 7974.9 7980.5 7672.0

Table 3: Natural frequencies (rad/s) of clamped-clamped laminated
composite beam with symmetric cross ply [0∘/0∘/0∘/0∘], validation
with Elmer.

Mode Case 1 [0∘/0∘/0∘/0∘]
Beam
60 DOF

Elmer
1 million DOF

Mode
shape Difference %

1 1589.83 1589.05 𝑤
0

0.049
2 1589.83 1589.06 V

0
0.049

3 4198.73 4136.98 𝑤
0

1.493
4 4198.73 4137.00 V

0
1.492

5 5057.49 4999.45 𝜃
𝑥

1.161
6 7618.51 7596.04 𝑤

0
0.296

7 7618.51 7596.11 V
0

0.295
8 10102.52 10001.40 𝜃

𝑥
1.011

9 11833.45 11698.23 𝑤
0

1.156
10 11833.45 11698.39 V

0
1.155

Table 4: Natural frequencies (rad/s) of clamped-clamped laminated
composite beam with symmetric cross ply [0∘/90∘/90∘/0∘], valida-
tion with Elmer.

Mode Case 2 [0∘/90∘/90∘/0∘]
Beam
60 DOF

Elmer
1 million DOF

Mode
shape Difference %

1 1188.70 1184.76 V
0

0.333
2 1496.90 1496.34 𝑤

0
0.037

3 3196.79 3146.51 V
0

1.598
4 3958.58 3900.35 𝑤

0
1.493

5 4876.05 4821.07 𝜃
𝑥

1.141
6 5979.48 5898.63 V

0
1.371

7 7198.00 7169.94 𝑤
0

0.391
8 9498.68 9269.03 V

0
2.478

9 9740.08 9644.57 𝜃
𝑥

0.990
10 11197.12 11053.57 𝑤

0
1.299

the same directions. The difference comes from the vertical
order of the layers. The first bending frequency in 𝑥𝑧 plane
is 1496.34 rad/s for Case 2, and for Case 3 it is significantly
smaller—1096.80 rad/s. The associated mode shapes of both
cases are purely in 𝑥𝑧 plane. The bending-longitudinal cou-
pling, which appears due to asymmetric cross ply in Case 3,
is the reason for the significant change of the fundamental

Table 5: Natural frequencies (rad/s) of clamped-clamped laminated
composite beam with asymmetric cross ply [0∘/90∘/0∘/90∘], valida-
tion with Elmer.

Mode Case 3 [0∘/90∘/0∘/90∘]
Beam
60 DOF

Elmer
1 million DOF

Mode
shape Difference %

1 1102.01 1096.80 (𝑤
0
, 𝑢
0
) 0.476

2 1188.69 1186.15 (V
0
, 𝜃
𝑥
) 0.215

3 2967.67 2912.99 (𝑤
0
, 𝑢
0
) 1.877

4 3196.75 3153.58 (V
0
, 𝜃
𝑥
) 1.369

5 4932.52 4874.94 𝜃
𝑥

1.181
6 5564.63 5461.35 (𝑤

0
, 𝑢
0
) 1.891

7 5979.39 5919.25 (V
0
, 𝜃
𝑥
) 1.016

8 8856.42 8583.29 (𝑤
0
, 𝑢
0
) 3.182

9 9498.00 9313.68 (V
0
, 𝜃
𝑥
) 1.979

10 9851.14 9751.74 𝜃
𝑥

1.019

frequency of bending in 𝑥𝑧 plane. On the other hand, the
first frequency of bending in 𝑥𝑦 plane couples with torsion
for layers of Case 3, but in both cases the frequencies remain
close: 1184.76 rad/s for Case 2 and 1186.15 rad/s for Case 3.

3.2. Static Deformations. In the previous section only the
linear part of the model was validated. Here, the nonlinear
model is validated by comparing the static displacements
of composite beams with results from the literature [31].
The beam is with dimensions as follows: ℎ = 0.2794m,
𝑏 = 0.2794m, and 𝑙 = 6.35m, with the following material
properties:

𝐸
1
= 241.5GPa, 𝐸

2
= 𝐸
3
= 18.89GPa,

𝐺
12
= 𝐺
13
= 5.18GPa, 𝐺

23
= 3.45GPa,

]
12
= ]
13
= 0.24, ]

23
= 0.25,

𝜌 = 2015 kg/m3.

(19)

Two different beams are considered, with symmetrical and
with nonsymmetrical layers about the middle line. The first
beam is with three layers at orientation [90∘/0∘/90∘], with
thicknesses 0.25 h, 0.5 h, and 0.25 h.The second beam is with
two layers at orientation [90∘/0∘], with thicknesses 0.5 h and
0.5 h.Thebeam is assumed to be clamped-clampedwith static
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Figure 2: First four mode shapes (with normalized amplitudes) of laminated asymmetric cross ply [0∘/90∘/90∘/0∘] with clamped-clamped
boundary conditions, 𝑙 = 1.0m. (a) First mode; —𝑤

0
, - - - -𝑢

0
, (b) second mode: —V

0
, - - - -𝜃

𝑥
, (c) third mode: —𝑤

0
, - - - -𝑢

0
, and (d) fourth

mode: —V
0
, - - - -𝜃

𝑥
.

force: F(𝑥) = A cos(𝜋𝑥/𝑙), 𝑥 = −𝑙/2 ⋅ ⋅ ⋅ 𝑙/2. The results of
transverse displacement 𝑤

0
, for different amplitudes of the

static force, are presented in Tables 6 and 7. The results are
in agreement with the ones from [31].

3.3. Warping Function. Thewarping function, which is com-
puted numerically by solving (2), is presented in Figure 3
for two different orientations of the layers, in order to
demonstrate the differences in the longitudinal deformation

due to warping. The torsional rigidity also changes with the
orientation of the layers. It is defined to be

𝐺𝐼
𝑡
=

𝑀

∑

𝑘=1

∫
Ω𝑘

(𝐶
𝑘

55
(
𝜕𝜓

𝜕𝑧
+ 𝑦)

2

+ 𝐶
𝑘

66
(
𝜕𝜓

𝜕𝑦
− 𝑧)

2

)𝑑Ω
𝑘
.

(20)

The torsional rigidity of the cross section of Case 1
(Figure 3(a)) is obtained to be 242.24Nm2, while the
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Table 6: Static deformations of the transverse displacement 𝑤
0
, layers [90∘/0∘/90∘].

Force (106 N) 1.5 2 2.5 3.5 4.5 8 10 15
Current model −0.0628 −0.0792 −0.0935 −0.1176 −0.1374 −0.1883 −0.2101 −0.2533
Reference [31] −0.0625 −0.0788 −0.0932 −0.1173 −0.1372 −0.1882 −0.2102 −0.2535
Difference % 0.44 0.44 0.34 0.25 0.18 0.05 0.03 0.09

Table 7: Static deformations of the transverse displacement 𝑤
0
, layers [90∘/0∘].

Force (106 N) 5 7 10 12 13 14 15 17
Current model −0.1339 −0.1641 −0.1993 −0.2187 −0.2275 −0.2358 −0.2436 −0.2583
Reference [31] −0.1341 −0.1645 −0.1999 −0.2193 −0.2281 −0.2365 −0.2444 −0.2591
Difference % 0.17 0.23 0.29 0.28 0.28 0.28 0.31 0.30

(a) (b)

Figure 3: Warping deformation for beam with rectangular cross section. (a) Layers orientation [0∘/0∘/0∘/0∘] and (b) layers orientation
[0∘/90∘/90∘/0∘].

torsional rigidity of the second cross section, which is
Case 2 (Figure 3(b)), is 225.17Nm2. These differences of the
torsional rigidity are due to different shear moduli of the
layers, which are result of the angle orientation and due to
the warping distribution. The differences of the torsional
rigidities result in different torsional natural frequencies. For
the beam of Case 1, the fundamental torsional frequency
is 5057.49 rad/s and for the beam of Case 2 4876.05 rad/s
(Tables 3 and 4).

The numerical solution of the warping function, together
with numerical computation of the cross-sectional proper-
ties, will allow one to model composite beams with arbitrary
cross sections.

3.4. Nonlinear Free Vibration. The main branches of the
nonlinear free vibrations are presented in this section for the
three cases of laminate orientations, discussed in Section 3.1.
The beam is with the same dimensions as in Section 3.1, 𝑏 =
0.0254m, ℎ = 0.0254m, and 𝑙 = 1.0m, and the orienta-
tions of the laminates are denoted by Case 1: [0∘/0∘/0∘/0∘],
Case 2: [0∘/90∘/90∘/0∘], and Case 3: [0∘/90∘/0∘/90∘]. The

same orthotropic material graphite-epoxy (AS4/3501-6) is
assumed.

For the nonlinear free vibration analysis, damping and
external force are not considered, the vector of generalized
coordinates is expressed in Fourier series, and the harmonic
balance method is applied. Harmonics up to third order
are considered, so the vector of generalized coordinates is
expressed as

q (𝑡) =1
2
q
0
+

3

∑

𝑘=1

q
𝑖
cos (𝑖𝜔𝑡) . (21)

As a result, a system of algebraic nonlinear equations is
obtained, with unknowns, the coefficients of the harmonics,
q
𝑖
, 𝑖 = 0, . . . , 3, and the frequency of vibration, 𝜔. This

system is solved in the frequency domain by the arc-length
continuation method.

The first bending linear modes and the corresponding
linear frequencies, of each transverse displacement, V

0
and

𝑤
0
, are used to start the continuation procedure. It is noted

that these linear modes correspond to the first two natural
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Figure 4: Main branches of first bending modes of free vibration of composite beams.𝑊
1
: amplitude of the first harmonic of the transverse

displacement 𝑤
0
, 𝑉
1
: amplitude of the first harmonic of the transverse displacement V

0
, red: Case 1, black: Case 2, and blue: Case 3.

frequencies, presented in Tables 3–5. The main branches of
the three cases are presented in Figure 4. In addition to
the comparison of the natural frequencies, given in Tables
3–5, Figure 4 shows the influence of the orientation and
the position of the layers on the nonlinear normal modes.
On Figure 4(b) the main branches of Cases 2 and 3 almost
coincide.This is a consequence from the linear frequencies of
the first bending mode of transverse displacement V

0
, which

are close in both cases (Tables 4 and 5).The nonlinear normal
modes also remain close. In Case 3, where the layers are
asymmetrical, the torsion is different from zero. Hence, the
mode shapes are different, even though the amplitudes of
the transverse displacement are close and the linear natural
frequencies are almost equal. The shapes of vibration, for
frequency 𝜔 = 2000 rad/s, are presented in Figure 5.

Further to present the influence of the orientation and the
position of the layers on the nonlinearmodes of vibration, the
nondimensional amplitudes of vibration of the three cases are
compared.The results are presented in Table 8. It can be seen
that, for the same nondimensional frequency of vibration, the
amplitudes of the first harmonics are different.

3.5. Dynamic Response. The dynamics responses of lami-
nated beams due to harmonic excitations are investigated
in this section, with particular attention to the influence
of the orientation of the laminates on the amplitudes of
vibration. Considering the above investigation on the natural
frequencies, beam with dimensions 𝑏 = 0.0254m, ℎ =

0.0254m, and 𝑙 = 1.0m is considered and composed of
four layers of graphite-epoxy (AS4/3501-6), with orientations
defined as in Cases 1 to 3.

In order to excite all displacements, a combined harmonic
force is applied, in the middle of the beam, in both transverse
directions plus a moment. The excitation frequency is 1200
rad/s; it is close to the fundamental natural frequency of
beam with orientation of layers defined as Case 2. The
excitation frequency is also close to the first and second
natural frequencies of beam with layers orientation from
Case 3. The transverse forces are chosen to be with equal
amplitudes, 𝐹

𝑦
= 𝐹
𝑧
= 10000 cos(1200𝑡), and the moment

is𝑀
𝑥
= 10 cos(1200𝑡).

The transient and the steady-state time responses, of
both transverse displacements and torsion, are presented
in Figures 6, 7, and 8. The phase plot of the torsion is
also given in Figure 8. Even though the external transverse
forces are equal in amplitudes, the transverse responses
become different just by changing the orientation of the
layers. Furthermore, the position of the laminates, in the
cases of equally oriented laminates such as Cases 2 and 3,
is also important. The amplitude of transverse displacement
𝑤
0
becomes bigger when orientation of Case 3 is used in

comparison to Case 2.The torsional response also undergoes
changes, due to the orientation of the laminates.The torsional
response changes not only its amplitude of vibration, but also
the harmonics involved in the periodic steady response, as
can be seen from Figure 8. The appearance of the constant
term in Fourier expansion, as well as higher harmonics, is
obvious for the torsional response from Case 2.

Finally, to point out the influence of the geometrically
nonlinear terms, on the dynamic response of the laminated
beam, results obtained with and without geometrical non-
linearity are compared in Figure 9. Generally, a model with
geometrical nonlinear terms results into smaller amplitudes
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Figure 5: Shapes of vibration of (a) transverse displacement V
0
and (b) torsion 𝜃

𝑥
, for frequency of vibration𝜔 = 2000 rad/s, from bifurcation

diagram shown on Figure 4(b). Black: Case 2 and blue: Case 3 (torsion exists only for Case 3). 𝑉
1
: shape of first harmonic function of V

0
, 𝑉
3
:

shape of third harmonic of V
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𝑥
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.

of the displacements than the linear model. Nevertheless,
the absolute amplitude of the torsional response for Case 2
remains similar for the linear and the nonlinear models
(Figure 9(b)).

4. Conclusion

A model for 3D laminated composite beams was presented.
The equation ofmotionwas derived by the principle of virtual
work and the 𝑝-FEM. The model assumes Timoshenko’s
theory for bending and considers that under torsion the cross
section rotates as a rigid body and deforms longitudinally due
to warping.The warping function was included in the model;
it was obtained preliminarily by the finite element method.
The inclusion of the warping function is essential, for correct
torsional and bending-torsional modes, because it influences
the torsional rigidity of the beam.

The beammodel was validated with available results from
the literature and, with equivalent beam structure, discretized
by three-dimensional finite elements. It was shown that the
beammodel, discretized by the𝑝-FEM, gives results in agree-
ment with the large-scale model but with far fewer degrees
of freedom. The couplings between different displacement
components, in the case of asymmetrical laminates, were
pointed out.

Nonlinear free vibrations of composite beams were com-
pared for different orientations and positions of the layers. It
was shown that changes of the orientation or the positions
of the layers can lead to significant changes in the nonlinear
modes of vibration.

Finally, the dynamic steady-state responses of the nonlin-
ear model were presented. It was shown that the amplitudes

Table 8: Comparison of the nondimensional amplitudes of the first
harmonics (𝑊

1
/ℎ) of the transverse displacement 𝑤

0
, presented in

the bifurcation diagrams, Figure 3(a).

𝜔/𝜔
𝑙

Case 1 Case 2 Case 3
1.1 0.607 0.783 0.569
1.2 0.883 1.137 0.827
1.3 1.110 1.430 1.039
1.4 1.314 1.693 1.231
1.5 1.506 1.940 1.409
1.6 1.690 2.177 1.580
1.7 1.867 2.405 1.746
1.8 2.039 2.627 1.908
1.9 2.205 2.841 2.066
2 2.364 3.046 2.220

of vibration change not only with the orientation of the
laminates, but also with the vertical order of the laminates.
The torsional response undergoes changes in its Fourier
expansion.

Appendix

The coefficients of the reduced stiffness matrix are given here.
The stress-strain relation, given in (8), is rewritten:

{

{

{

𝜎
𝑥

𝜏
𝑥𝑧

𝜏
𝑥𝑦

}

}

}

𝑘

=
[
[

[

𝐶
𝑘

11
0 𝐶
𝑘

16

0 𝐶
𝑘

55
0

𝐶
𝑘

16
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𝑘

66

]
]

]

{

{

{

𝜀
𝑥

𝛾
𝑥𝑧

𝛾
𝑥𝑦

}

}

}

𝑘

. (A.1)

The coefficients are computed from Hooke’s law (5) by
assuming that the direct stresses𝜎

𝑦
and𝜎
𝑧
and the shear stress
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