
Research Article
A Double-Parameter GPMHSS Method for a Class of Complex
Symmetric Linear Systems from Helmholtz Equation

Cui-Xia Li and Shi-Liang Wu

School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, China

Correspondence should be addressed to Shi-Liang Wu; wushiliang1999@126.com

Received 11 November 2013; Accepted 5 February 2014; Published 7 April 2014

Academic Editor: Masoud Hajarian

Copyright © 2014 C.-X. Li and S.-L. Wu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Based on the preconditioned MHSS (PMHSS) and generalized PMHSS (GPMHSS) methods, a double-parameter GPMHSS
(DGPMHSS) method for solving a class of complex symmetric linear systems from Helmholtz equation is presented. A parameter
region of the convergence for DGPMHSS method is provided. From practical point of view, we have analyzed and implemented
inexact DGPMHSS (IDGPMHSS) iteration, which employs Krylov subspace methods as its inner processes. Numerical examples
are reported to confirm the efficiency of the proposed methods.

1. Introduction

Let us consider the following formof theHelmholtz equation:

−Δ𝑢 + 𝜎

1
𝑢 + 𝑖𝜎

2
𝑢 = 𝑓, (1)

where 𝜎

1
, 𝜎

2
are real coefficient functions and 𝑢 satisfies

Dirichlet boundary conditions in𝐷 = [0, 1] × [0, 1].
Using the finite difference method to discretize the

Helmholtz equation (1) with both 𝜎

1
and 𝜎

2
strictly positive

leads to the following system of linear equations:

𝐴𝑥 = 𝑏, 𝐴 ∈ C
𝑛×𝑛

, 𝑥, 𝑏 ∈ C
𝑛
, (2)

where 𝐴 = 𝑊 + 𝑖𝑇 ∈ C𝑛×𝑛 and 𝑖 =

√

−1 with real symmetric
matrices 𝑊,𝑇 ∈ R𝑛×𝑛 satisfying −𝑊 ⪯ 𝑇 ≺ 𝑊 under certain
conditions. Throughout the paper, for ∀𝐵, 𝐶 ∈ R𝑛×𝑛, 𝐵 ≺ 𝐶

means that 𝐵 − 𝐶 is symmetric negative definite and 𝐵 ⪯ 𝐶

means that 𝐵 − 𝐶 is symmetric negative semidefinite.
Systems such as (2) are important and arise in a variety of

scientific and engineering applications, including structural
dynamics [1–3], diffuse optical tomography [4], FFT-based
solution of certain time-dependent PDEs [5], lattice quantum
chromodynamics [6], molecular dynamics and fluid dynam-
ics [7], quantum chemistry, and eddy current problem [8,
9]. One can see [10, 11] for more examples and additional
references.

Based on the specific structure of the coefficientmatrix𝐴,
one can verify that the Hermitian and skew-Hermitian parts
of the complex symmetric matrix 𝐴, respectively, are

𝐻 =

1

2

(𝐴 + 𝐴

∗
) = 𝑊, 𝑆 =

1

2

(𝐴 − 𝐴

∗
) = 𝑖𝑇.

(3)

Obviously, the above Hermitian and skew-Hermitian split-
ting (HSS) of the coefficient matrix 𝐴 is in line with the
real and imaginary parts splitting of the coefficient matrix 𝐴.
Based on theHSSmethod [12], Bai et al. [2] skillfully designed
the modified HSS (MHSS) method to solve the complex
symmetric linear system (2). To generalize the concept of this
method and accelerate its convergence rate, Bai et al. in [3, 13]
designed the preconditioned MHSS (PMHSS) method. It is
noted that MHSS and PMHSS methods can efficiently solve
the linear system (2) with𝑊 ≻ 0 and 𝑇 ⪰ 0.

Recently, Xu [14] proposed the following GPMHSS
method for solving the complex symmetric linear systems (2)
with −𝑊 ⪯ 𝑇 ≺ 𝑊 and it is described in the following.

The GPMHSS Method. Let 𝑥(0) ∈ C𝑛 be an arbitrary initial
guess. For 𝑘 = 0, 1, 2, . . .until the sequence of iterates {𝑥(𝑘)}∞

𝑘=0
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converges, compute the next iterate 𝑥

(𝑘+1) according to the
following procedure:

(𝛼𝑉 + 𝑊 − 𝑇) 𝑥

(𝑘+1/2)
= (𝛼𝑉 − 𝑖 (𝑊 + 𝑇)) 𝑥

(𝑘)
+ (1 + 𝑖) 𝑏,

(𝛼𝑉 + 𝑊 + 𝑇) 𝑥

(𝑘+1)
= (𝛼𝑉 + 𝑖 (𝑊 − 𝑇)) 𝑥

(𝑘+1/2)
+ (1 − 𝑖) 𝑏,

(4)

where 𝛼 is a given positive constant and 𝑉 ∈ R𝑛×𝑛 is a
prescribed symmetric positive definite matrix.

Theoretical analysis in [14] shows that the GPMHSS
method converges unconditionally to the unique solution of
the complex symmetric linear system (2). Numerical exper-
iments are given to show the effectiveness of the GMHSS
method.

In this paper, based on the asymmetric HSS and gen-
eralized preconditioned HSS methods in [15, 16], a natural
generalization for the GMHSS iteration scheme is that we can
design a double-parameter GMHSS (DGPMHSS) iteration
scheme for solving the complex symmetric linear systems (2)
with −𝑊 ⪯ 𝑇 ≺ 𝑊. That is to say, the DGPMHSS iterative
scheme works as follows.

The DGPMHSS Method. Let 𝑥(0) ∈ C𝑛 be an arbitrary initial
guess. For 𝑘 = 0, 1, 2, . . .until the sequence of iterates {𝑥(𝑘)}∞

𝑘=0

converges, compute the next iterate 𝑥

(𝑘+1) according to the
following procedure:

(𝛼𝑉 + 𝑊 − 𝑇) 𝑥

(𝑘+1/2)
= (𝛼𝑉 − 𝑖 (𝑊 + 𝑇)) 𝑥

(𝑘)
+ (1 + 𝑖) 𝑏,

(𝛽𝑉 + 𝑊 + 𝑇) 𝑥

(𝑘+1)
= (𝛽𝑉 + 𝑖 (𝑊 − 𝑇)) 𝑥

(𝑘+1/2)

+ (1 − 𝑖) 𝑏,

(5)

where 𝛼 is a given nonnegative constant, 𝛽 is a given positive
constant, and 𝑉 ∈ R𝑛×𝑛 is a prescribed symmetric positive
definite matrix.

Just like the GPMHSS method (4), both matrices 𝛼𝑉 +

𝑊−𝑇 and 𝛽𝑉+𝑊+𝑇 are symmetric positive definite. Hence,
the two linear subsystems in (5) can also be effectively solved
either exactly by a sparse Cholesky factorization or inexactly
by a preconditioned conjugate gradient scheme. Theoret-
ical analysis shows that the iterative sequence produced
by DGPMHSS iteration method converges to the unique
solution of the complex symmetric linear systems (2) for a
loose restriction on the choices of 𝛼 and 𝛽. The contraction
factor of the DGPMHSS iteration can be bounded by a
function, which is dependent only on the choices of 𝛼 and 𝛽,
the smallest eigenvalues ofmatrices𝑉−1(𝑊−𝑇) and𝑉

−1
(𝑊+

𝑇).
This paper is organized as follows. In Section 2, we

study the convergence properties of the DGPMHSS
method. In Section 3, we discuss the implementation
of DGPMHSS method and the corresponding inexact
DGPMHSS (IDPGMHSS) iteration method. Numerical
examples are reported to confirm the efficiency of the
proposed methods in Section 4. Finally, we end the paper
with concluding remarks in Section 5.

2. Convergence Analysis for
the DGPMHSS Method

In this section, the convergence of the DGPMHSS method is
studied.The DGPMHSS iterationmethod can be generalized
to the two-step splitting iteration framework. The following
lemma is required to study the convergence rate of the
DGPMHSS method.

Lemma 1 (see [13]). Let 𝐴 ∈ C𝑛×𝑛, 𝐴 = 𝑀

𝑖
− 𝑁

𝑖
(𝑖 = 1, 2) be

two splittings of 𝐴, and let 𝑥(0) ∈ C𝑛 be a given initial vector. If
{𝑥

(𝑘)
} is a two-step iteration sequence defined by

𝑀

1
𝑥

(𝑘+1/2)
= 𝑁

1
𝑥

(𝑘)
+ 𝑏,

𝑀

2
𝑥

(𝑘+1)
= 𝑁

2
𝑥

(𝑘+1/2)
+ 𝑏,

(6)

𝑘 = 0, 1, . . ., then

𝑥

(𝑘+1)
= 𝑀

−1

2
𝑁

2
𝑀

−1

1
𝑁

1
𝑥

(𝑘)
+ 𝑀

−1

2
(𝐼 + 𝑁

2
𝑀

−1

1
) 𝑏,

𝑘 = 0, 1, . . . .

(7)

Moreover, if the spectral radius 𝜌(𝑀−1
2
𝑁

2
𝑀

−1

1
𝑁

1
) < 1, then

the iterative sequence {𝑥

(𝑘)
} converges to the unique solution

𝑥

∗
∈ C𝑛 of system (1) for all initial vectors 𝑥(0) ∈ C𝑛.

Applying this lemma to the DGPMHSS method, we get
convergence property in the following theorem.

Theorem 2. Let ̂𝑊 = 𝑅

−𝑇
(𝑊 − 𝑇)𝑅

−1
,

̂

𝑇 = 𝑅

−𝑇
(𝑊 + 𝑇)𝑅

−1,
and 𝑉 = 𝑅

𝑇
𝑅, where 𝑅 ∈ R𝑛×𝑛 is a prescribed nonsingular

matrix. Let 𝐴 = 𝑊 + 𝑖𝑇 ∈ C𝑛×𝑛 be defined in (2), 𝛼

a nonnegative constant, and 𝛽 a positive constant. Then the
iteration matrix𝑀

𝛼,𝛽
of GPMHSS method is

𝑀

𝛼,𝛽
= (𝛽𝑉 + 𝑊 + 𝑇)

−1

(𝛽𝑉 + 𝑖 (𝑊 − 𝑇))

× (𝛼𝑉 + 𝑊 − 𝑇)

−1
(𝛼𝑉 − 𝑖 (𝑊 + 𝑇)) ,

(8)

which satisfies

𝜌 (𝑀

𝛼,𝛽
) ≤ max
𝜆𝑖∈𝜆(𝑊̂)

√
𝛽

2
+ 𝜆

2

𝑖

𝛼 + 𝜆

𝑖

max
𝜇𝑖∈𝜇(𝑇̂)

√
𝛼

2
+ 𝜇

2

𝑖

𝛽 + 𝜇

𝑖

,

(9)

where 𝜆(̂𝑊) and 𝜇(

̂

𝑇), respectively, are the spectral sets of the
matrices ̂𝑊 and ̂

𝑇.
In addition, let 𝜇min and 𝜆min, respectively, be the smallest

eigenvalues of the matrices ̂𝑊 and ̂

𝑇. If

√

𝛼

2
+ 𝜇

2

min − 𝜇min ≤ 𝛽 <

√

𝛼

2
+ 2𝛼𝜆min, (10)

then the DGPMHSS iteration (5) converges to the unique
solution of the linear system (2).

Proof. Let

𝑀

1
= 𝛼𝑉 + 𝑊 − 𝑇, 𝑁

1
= 𝛼𝑉 − 𝑖 (𝑊 + 𝑇) ,

𝑀

2
= 𝛽𝑉 + 𝑊 + 𝑇, 𝑁

2
= 𝛽𝑉 + 𝑖 (𝑊 − 𝑇) .

(11)
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Obviously,𝛼𝑉+𝑊−𝑇 and𝛽𝑉+𝑊+𝑇 are nonsingular for any
nonnegative constants 𝛼 or positive constants 𝛽. So formula
(8) is valid.

The iteration matrix𝑀

𝛼,𝛽
is similar to

̂

𝑀

𝛼,𝛽
= (𝛽𝑉 + 𝑖 (𝑊 − 𝑇)) (𝛼𝑉 + 𝑊 − 𝑇)

−1

× (𝛼𝑉 − 𝑖 (𝑊 + 𝑇)) (𝛽𝑉 + 𝑊 + 𝑇)

−1

.

(12)

That is,

̂

𝑀

𝛼,𝛽
= 𝑅

𝑇
(𝛽𝐼 + 𝑖𝑅

−𝑇
(𝑊 − 𝑇)𝑅

−1
)

× 𝑅𝑅

−1
(𝛼𝐼 + 𝑅

−𝑇
(𝑊 − 𝑇)𝑅

−1
)

−1

𝑅

−𝑇

× 𝑅

𝑇
(𝛼𝐼 − 𝑖𝑅

−𝑇
(𝑊 + 𝑇)𝑅

−1
)

× 𝑅𝑅

−1
(𝛽𝐼 + 𝑅

−𝑇
(𝑊 + 𝑇)𝑅

−1
)

−1

𝑅

−𝑇

= 𝑅

𝑇
(𝛽𝐼 + 𝑖𝑅

−𝑇
(𝑊 − 𝑇)𝑅

−1
)

× (𝛼𝐼 + 𝑅

−𝑇
(𝑊 − 𝑇)𝑅

−1
)

−1

× (𝛼𝐼 − 𝑖𝑅

−𝑇
(𝑊 + 𝑇)𝑅

−1
)

× (𝛽𝐼 + 𝑅

−𝑇
(𝑊 + 𝑇)𝑅

−1
)

−1

𝑅

−𝑇

= 𝑅

𝑇
(𝛽𝐼 + 𝑖

̂

𝑊) (𝛼𝐼 +

̂

𝑊)

−1

× (𝛼𝐼 − 𝑖

̂

𝑇) (𝛽𝐼 +

̂

𝑇)

−1

𝑅

−𝑇
.

(13)

Therefore, we have

𝜌 (𝑀

𝛼,𝛽
)

= 𝜌 (

̂

𝑀

𝛼,𝛽
)

= 𝜌 (𝑅

𝑇
(𝛽𝐼 + 𝑖

̂

𝑊) (𝛼𝐼 +

̂

𝑊)

−1

× (𝛼𝐼 − 𝑖

̂

𝑇) (𝛽𝐼 +

̂

𝑇)

−1

𝑅

−𝑇
)

= 𝜌 ((𝛽𝐼 + 𝑖

̂

𝑊) (𝛼𝐼 +

̂

𝑊)

−1

(𝛼𝐼 − 𝑖

̂

𝑇) (𝛽𝐼 +

̂

𝑇)

−1

)

≤

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

(𝛽𝐼 + 𝑖

̂

𝑊)(𝛼𝐼 +

̂

𝑊)

−1󵄩
󵄩

󵄩

󵄩

󵄩

󵄩2

×

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

(𝛼𝐼 − 𝑖

̂

𝑇) (𝛽𝐼 +

̂

𝑇)

−1󵄩
󵄩

󵄩

󵄩

󵄩

󵄩2

.

(14)

Since 𝑊 ∈ R𝑛×𝑛 and 𝑇 ∈ R𝑛×𝑛, respectively, are symmetric
positive definite and symmetric positive semidefinite and 𝑅

is a nonsingular matrix, ̂

𝑊 and ̂

𝑇 are symmetric positive
definite and symmetric positive semidefinite, respectively.
Therefore, there exist orthogonal matrices 𝑆

1
, 𝑆

2
∈ R𝑛×𝑛 such

that

𝑆

𝑇

1
̂

𝑊𝑆

1
= Λ

𝑊̂
, 𝑆

𝑇

2
̂

𝑇𝑆

2
= Λ

𝑇̂
,

(15)

where Λ

𝑊̂
= diag(𝜆

1
, 𝜆

2
, . . . , 𝜆

𝑛
) and Λ

𝑇̂
=

diag(𝜇
1
, 𝜇

2
, . . . , 𝜇

𝑛
) with 𝜆

𝑖
> 0(1 ≤ 𝑖 ≤ 𝑛) and

𝜇

𝑖
≥ 0(1 ≤ 𝑖 ≤ 𝑛) being the eigenvalues of the matrices ̂

𝑊

and ̂

𝑇, respectively.
Through simple calculations, we can get that

𝜌 (𝑀

𝛼,𝛽
) ≤ max
𝜆𝑖∈𝜆(𝑊̂)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝛽 + 𝑖𝜆

𝑖

𝛼 + 𝜆

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

max
𝜇𝑖∈𝜇(𝑇̂)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝛼 − 𝑖𝜇

𝑖

𝛽 + 𝜇

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

= max
𝜆𝑖∈𝜆(𝑊̂)

√
𝛽

2
+ 𝜆

2

𝑖

𝛼 + 𝜆

𝑖

max
𝜇𝑖∈𝜇(𝑇̂)

√
𝛼

2
+ 𝜇

2

𝑖

𝛽 + 𝜇

𝑖

,

(16)

which gives the upper bound for 𝜌(𝑀

𝛼,𝛽
) in (9). The next

proof is similar to that of Theorem 1 in [17]. Here it is
omitted.

The approach to minimize the upper bound is very
important in theoretical viewpoint. However, it is not prac-
tical since the corresponding spectral radius of the iteration
matrix𝑀

𝛼,𝛽
in (9) is not optimal. How to choose the suitable

preconditioners and parameters for practical problem is still
a great challenge.

3. The IDGPMHSS Iteration

In the DGPMHSSmethod, it is required to solve two systems
of linear equations whose coefficient matrices are 𝛼𝑉+𝑊−𝑇

and𝛽𝑉+𝑊+𝑇, respectively. However, thismay be very costly
and impractical in actual implementation. To overcome this
disadvantage and improve the computational efficiency of the
DGPMHSS iteration method, we propose to solve the two
subproblems iteratively [12, 18], which leads to IDGPMHSS
iteration scheme. Its convergence can be shown in a similar
way to that of the IHSS iterationmethod, usingTheorem3.1 of
[12]. Since 𝛼𝑉+𝑊−𝑇 and 𝛽𝑉+𝑊+𝑇 are symmetric positive
definite, some Krylov subspace methods (such as CG) can
be employed to gain its solution easily. Of course, if good
preconditioners for matrices 𝛼𝑉+𝑊−𝑇 and 𝛽𝑉+𝑊+𝑇 are
available, we can use the preconditioned conjugate gradient
(PCG) method instead of CG for the two inner systems that
yields a better performance of IDGPMHSS method. If either
𝛼𝑉 +𝑊 − 𝑇 or 𝛽𝑉 +𝑊 + 𝑇 (or both) is Toeplitz, we can use
fast algorithms for solution of the corresponding subsystems
[19].

4. Numerical Examples

In this section, we give some numerical examples to demon-
strate the performance of the DGPMHSS and IDGPMHSS
methods for solving the linear system (2). Numerical compar-
isons with the GPMHSS method are also presented to show
the advantage of the DGPMHSS method.

In our implementation, the initial guess is chosen to be
𝑥

(0)
= 0 and the stopping criteria for outer iterations is

󵄩

󵄩

󵄩

󵄩

󵄩

𝑏 − 𝐴𝑥

(𝑘)󵄩
󵄩

󵄩

󵄩

󵄩2

‖𝑏‖2

≤ 10

−6
.

(17)

The preconditioner 𝑉 used in GPMHSS method is chosen to
be𝑉 = 𝑊−𝑇. For the sake of comparing, the corresponding
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Table 1: The experimentally optimal parameters and the corre-
sponding spectral radii for the iteration matrices of GPMHSS and
DGPMHSS with 𝑉 = 𝑊 − 𝑇 and𝑚 = 8.

𝜎

2

10 50 80 100
GPMHSS

𝛼

∗

𝐺
1.1 1.5 2.2 2

𝜌(𝑀

𝛼
∗

𝐺

) 0.5009 0.5222 0.5667 0.6274

DGPMHSS
𝛼

∗

𝐷
1.1 1.5 2.2 2

𝛽

∗

𝐷
1 0.9 0.8 0.8

𝜌(𝑀

𝛼
∗

𝐷
,𝛽
∗

𝐷

) 0.5001 0.4986 0.5012 0.4901

preconditioner𝑉 used in DGPMHSSmethod is chosen to be
𝑉 = 𝑊−𝑇. Since the numerical results in [2, 3] show that the
PMHSS iteration method outperforms the MHSS and HSS
iteration methods when they are employed as precondition-
ers for the GMRES method or its restarted variants [20], we
just examine the efficiency of DGPMHSS iterationmethod as
a solver for solving complex symmetric linear system (2) by
comparing the iteration numbers (denoted as IT) and CPU
times (in seconds, denoted as CPU(s)) of DGPMHSSmethod
with GPMHSS method.

Example 3 (see [5, 21–23]). Consider the following form of
the Helmholtz equation:

−Δ𝑢 + 𝜎

1
𝑢 + 𝑖𝜎

2
𝑢 = 𝑓, (18)

where 𝜎

1
, 𝜎

2
are real coefficient functions and 𝑢 satisfies

Dirichlet boundary conditions in 𝐷 = [0, 1] × [0, 1]. The
above equation describes the propagation of damped time
harmonic waves. We take 𝐻 to be the five-point centered
differencematrix approximating the negative Laplacian oper-
ator on a uniform mesh with mesh size ℎ = 1/(𝑚 + 1).
The matrix 𝐻 ∈ R𝑛×𝑛 possesses the tensor-product form
𝐻 = 𝐵

𝑚
⊗𝐼+𝐼⊗𝐵

𝑚
with𝐵

𝑚
= ℎ

−2
⋅tridiag(−1, 2, −1) ∈ R𝑚×𝑚.

Hence, 𝐻 is an 𝑛 × 𝑛 block-tridiagonal matrix, with 𝑛 = 𝑚

2.
This leads to the complex symmetric linear system (2) of the
form

[(𝐻 + 𝜎

1
𝐼) + 𝑖𝜎

2
𝐼] 𝑥 = 𝑏. (19)

In addition, we set 𝜎
1
= 100 and the right-hand side vector 𝑏

to be 𝑏 = (1+ 𝑖)𝐴1, with 1 being the vector of all entries equal
to 1. As before, we normalize the system by multiplying both
sides by ℎ

2.

As is known, the spectral radius of the iteration matrix
may be decisive for the convergence of the iteration method.
The spectral radius corresponding to the iteration method
is necessary to consider. The comparisons of the spectral
radius of the two different iteration matrices derived by
GPMHSS and DGPMHSS methods with different mesh size
are performed in Tables 1, 2, 3, and 4. In Tables 1–4, we used
the optimal values of the parameters 𝛼 and 𝛽, denoted by 𝛼

∗

𝐺

Table 2: The experimentally optimal parameters and the corre-
sponding spectral radii for the iteration matrices of GPMHSS and
DGPMHSS with 𝑉 = 𝑊 − 𝑇 and𝑚 = 16.

𝜎

2

10 50 80 100
GPMHSS

𝛼

∗

𝐺
1.1 1.5 2.2 1.8

𝜌(𝑀

𝛼
∗

𝐺

) 0.5010 0.5230 0.5697 0.6337

DGPMHSS
𝛼

∗

𝐷
1.1 1.5 2.2 1.8

𝛽

∗

𝐷
1 1 0.9 0.9

𝜌(𝑀

𝛼
∗

𝐷
,𝛽
∗

𝐷

) 0.5004 0.5063 0.5235 0.5097

Table 3: The experimentally optimal parameters and the corre-
sponding spectral radii for the iteration matrices of GPMHSS and
DGPMHSS with 𝑉 = 𝑊 − 𝑇 and𝑚 = 24.

𝜎

2

10 50 80 100
GPMHSS

𝛼

∗

𝐺
1.1 1.5 2.2 1.6

𝜌(𝑀

𝛼
∗

𝐺

) 0.5011 0.5234 0.5708 0.6360

DGPMHSS
𝛼

∗

𝐷
1.1 1.5 2.2 1.8

𝛽

∗

𝐷
1 1 1 1

𝜌(𝑀

𝛼
∗

𝐷
,𝛽
∗

𝐷

) 0.5005 0.5081 0.5289 0.5091

Table 4: The experimentally optimal parameters and the corre-
sponding spectral radii for the iteration matrices of GPMHSS and
DGPMHSS with 𝑉 = 𝑊 − 𝑇 and𝑚 = 32.

𝜎

2

10 50 80 100
GPMHSS

𝛼

∗

𝐺
1.1 1.5 2.2 1.7

𝜌(𝑀

𝛼
∗

𝐺

) 0.5011 0.5235 0.5714 0.6372

DGPMHSS
𝛼

∗

𝐷
1.1 1.5 2.2 1.8

𝛽

∗

𝐷
1 1 1 1

𝜌(𝑀

𝛼
∗

𝐷
,𝛽
∗

𝐷

) 0.5005 0.5089 0.5310 0.5139

for GPMHSS method, and 𝛼

∗

𝐷
, 𝛽∗
𝐷
for DGPMHSS method.

These parameters are obtained experimentally with the least
spectral radius for the iteration matrices of the two methods.

From Tables 1–4, one can see that with the mesh size
creasing, the trend of the experimentally optimal parameter
of the GPMHSS and DGPMHSS methods is relatively stable.
In Tables 1–4, we observe that the optimal spectral radius of
DGPMHSSmethod is still smaller than those of theGPMHSS
method, which implies that the DGPMHSS method may
outperform the GPMHSS method. To this end, we need
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Table 5: RES, CPU(s), and IT for PMHSS and GPMHSS with 𝑉 =

𝑊 − 𝑇 and𝑚 = 8.

𝜎

2

10 50 80 100
GPMHSS

RES 9.818𝑒 − 7 9.8917𝑒 − 7 9.1469𝑒 − 7 6.306𝑒 − 7

CPU(s) 0.015 0.016 0.016 0.016
IT 20 21 24 30

DGPMHSS
RES 9.0916𝑒 − 7 7.0211𝑒 − 7 4.9072𝑒 − 7 6.5183𝑒 − 7

CPU(s) 0.015 0.015 0.015 0.013
IT 20 19 18 17

Table 6: RES, CPU(s), and IT for PMHSS and GPMHSS with 𝑉 =

𝑊 − 𝑇 and𝑚 = 16.

𝜎

2

10 50 80 100
GPMHSS

RES 9.8506𝑒 − 7 9.4015𝑒 − 7 8.9127𝑒 − 7 9.4832𝑒 − 7

CPU(s) 0.031 0.046 0.046 0.063
IT 20 21 24 29

DGPMHSS
RES 9.3425𝑒 − 7 7.2018𝑒 − 7 7.4847𝑒 − 7 8.9905𝑒 − 7

CPU(s) 0.031 0.032 0.031 0.031
IT 20 20 20 19

Table 7: RES, CPU(s), and IT for PMHSS and GPMHSS with 𝑉 =

𝑊 − 𝑇 and𝑚 = 24.

𝜎

2

10 50 80 100
GPMHSS

RES 9.8907𝑒 − 7 9.6059𝑒 − 7 9.7633𝑒 − 7 7.5427𝑒 − 7

CPU(s) 0.094 0.094 0.11 0.125
IT 20 21 24 29

DGPMHSS
RES 9.5055𝑒 − 7 9.5856𝑒 − 7 7.8461𝑒 − 7 7.6081𝑒 − 7

CPU(s) 0.078 0.078 0.094 0.094
IT 20 20 21 20

to examine the efficiency of the GPMHSS and DGPMHSS
methods for solving the systems of linear equations 𝐴𝑥 = 𝑏,
where 𝐴 is described.

In Tables 5, 6, 7, and 8, we list the numbers of itera-
tion steps and the computational times for GPMHSS and
DGPMHSS iteration methods using the optimal parameters
in Tables 1–4. In Tables 5–8, “RES” denotes the relative
residual error.

From Tables 5–8, we see that the DGPMHSS method
is the best among the two methods in terms of number of
iteration steps and computational time. For theGPMHSS and
DGPMHSSmethods, the CPU’s time grows with the problem
size whereas the presented results in Tables 5–8 show that in
all cases the DGPMHSS method is superior to the GPMHSS

Table 8: RES, CPU(s), and IT for PMHSS and GPMHSS with 𝑉 =

𝑊 − 𝑇 and𝑚 = 32.

𝜎

2

10 50 80 100
GPMHSS

RES 9.9181𝑒 − 7 9.8976𝑒 − 7 6.0829𝑒 − 7 9.1273𝑒 − 7

CPU(s) 0.172 0.172 0.203 0.235
IT 20 21 25 28

DGPMHSS
RES 9.5956𝑒 − 7 5.5697𝑒 − 7 5.6167𝑒 − 7 5.5736𝑒 − 7

CPU(s) 0.156 0.156 0.187 0.172
IT 20 20 22 21

method. That is to say, under certain conditions, compared
with the GPMHSS method, the DGPMHSS method may be
given the priority for solving the complex symmetric linear
system (𝑊 + 𝑖𝑇)𝑥 = 𝑏 with −𝑊 ⪯ 𝑇 ≺ 𝑊.

As already noted, in the two-half steps of the DGPMHSS
iteration, there is a need to solve two systems of linear
equations, whose coefficientmatrices are𝛼𝑉+𝑊−𝑇 and𝛽𝑉+

𝑊 + 𝑇, respectively. This can be very costly and impractical
in actual implementation. We use the IDGPMHSS method
to solve the systems of linear equations (2) in the actual
implementation.That is, it is necessary to solve two systems of
linear equations with 𝛼𝑉+𝑊−𝑇 and 𝛽𝑉+𝑊+𝑇 by using the
IDGPMHSS iteration. It is easy to know that 𝛼𝑉+𝑊−𝑇 and
𝛽𝑉 + 𝑊 + 𝑇 are symmetric and positive definite. So, solving
the above two subsystems, the CG method can be employed.

In our computations, the inner CG iteration is terminated
if the current residual of the inner iterations satisfies

󵄩

󵄩

󵄩

󵄩

󵄩

𝑝

(𝑗)󵄩
󵄩

󵄩

󵄩

󵄩2

󵄩

󵄩

󵄩

󵄩

𝑟

(𝑘)󵄩
󵄩

󵄩

󵄩2

≤ 0.1𝜏

(𝑘)
,

󵄩

󵄩

󵄩

󵄩

󵄩

𝑞

(𝑗)󵄩
󵄩

󵄩

󵄩

󵄩2

󵄩

󵄩

󵄩

󵄩

𝑟

(𝑘)󵄩
󵄩

󵄩

󵄩2

≤ 0.1𝜏

(𝑘)
,

(20)

where 𝑝

(𝑗) and 𝑞

(𝑗) are, respectively, the residuals of the 𝑗th
inner CG for 𝛼𝑉+𝑊−𝑇 and 𝛽𝑉+𝑊+𝑇. 𝑟(𝑘) is the 𝑘th outer
IDGPMHSS iteration; 𝜏 is a tolerance.

Some results are listed in Tables 9 and 10 for 𝑚 = 24

and 32, which are the numbers of outer IDGPMHSS iteration
(it.s), the average numbers (avg1) of inner CG iteration for
𝛼𝑉 +𝑊 − 𝑇 and the average numbers (avg2) of CG iteration
for 𝛽𝑉 + 𝑊 + 𝑇.

In our numerical computations, it is easy to find the
fact that the choice of 𝜏 is important to the convergence
rate of the IDGPMHSS method. According to Tables 9
and 10, the iteration numbers of the IDGPMHSS method
generally increase when 𝜏 decreases.Meanwhile, the iteration
numbers of the IDGPMHSSmethod generally increase when
𝜎

2
increases.

5. Conclusion

In this paper, we have generalized the GPMHSS method to
the DGPMHSS method for a class of complex symmetric
linear systems (𝑊 + 𝑖𝑇)𝑥 = 𝑏 with real symmetric matrices
𝑊,𝑇 ∈ R𝑛×𝑛 satisfying −𝑊 ⪯ 𝑇 ≺ 𝑊 under certain con-
ditions. Theoretical analysis shows that for any initial guess
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Table 9: Convergence results for the IDGPMHSS iteration with𝑚 = 24.

(𝛼

∗

𝐺
, 𝛽

∗

𝐺
) 𝜎

2

𝜏 = 0.95 𝜏 = 0.9 𝜏 = 0.85

it.s avg1 avg2 it.s avg1 avg2 it.s avg1 avg2
(1.1, 1) 10 51 20.9 18.2 68 26.1 23.7 84 30.4 28.3
(1.5, 1) 50 54 23.5 18.3 70 28.0 23.9 86 33.0 28.4
(2.2, 1) 80 57 25.0 20.1 72 30.0 25.3 88 34.2 30.0
(1.8, 1) 100 58 27.5 18.9 74 31.9 24.3 89 36.1 28.7

Table 10: Convergence results for the IDGPMHSS iteration with𝑚 = 32.

(𝛼

∗

𝐺
, 𝛽

∗

𝐺
)(𝛼

∗

𝐺
, 𝛽

∗

𝐺
) 𝜎

2

𝜏 = 0.95 𝜏 = 0.9 𝜏 = 0.85

it.s avg1 avg2 it.s avg1 avg2 it.s avg1 avg2
(1.1, 1) 10 66 27.1 23.6 90 34.2 31.1 111 40.0 37.2
(1.5, 1) 50 70 30.6 23.7 93 37.5 31.3 114 43.4 37.4
(2.2, 1) 80 75 35.0 24.2 97 41.1 31.8 118 47.0 37.8
(1.8, 1) 100 77 36.1 25.3 98 42.2 32.4 119 48.0 38.3

the DGPMHSS method converges to the unique solution of
the linear system for a wide range of the parameters. Then,
an inexact version has been presented and implemented
for saving the computational cost. Numerical experiments
show that DGPMHSS method and IDGPMHSS method are
efficient and competitive.
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