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We revisit the derivation of a nonlocal problem modelling temperature distribution due to power generation using thermoelectric
effect.The problem has nonlocal coefficients in reaction and convection terms rather than diffusion term, whichmakes the problem
more interesting. In this paper, we prove that the nonlocal problem has a unique decreasing solution when electric current induced
by the thermoelectric effect is small enough.

1. Introduction

Consider a boundary value problem

𝑦
󸀠󸀠
+ 𝜆
2
𝜌 (𝑦) − 𝜆

𝑑𝛼

𝑑𝑦
𝑦𝑦
󸀠
= 0, for 0 ≤ 𝑥 ≤ 𝑙,

𝑦 (0) = 𝑦
𝐻
, 𝑦 (𝑙) = 𝑦

𝐶
, 𝑦
𝐻
> 𝑦
𝐶
> 0.

(1)

Here 𝑦 = 𝑦(𝑥), 𝛼 = 𝛼(𝑦), and the prime 󸀠 indicates deriva-
tive with respect to 𝑥. When 𝜆 is constant, (1) is a usual
nonlinear convection-reaction-diffusion equation. However,
in this paper, 𝜆 is a nonlocal coefficient given by

𝜆 =

∫
𝑦𝐻

𝑦𝐶

𝛼 (𝑦) 𝑑𝑦

(∫
𝑙

0
𝜌 (𝑦 (𝑥)) 𝑑𝑥 + 𝛾)

(2)

for some positive constant 𝛾. Note that 𝜆 is nonlocal due to
the integral ∫𝑙

0
𝜌(𝑦(𝑥))𝑑𝑥 which depends on the solution 𝑦.

There are extensive literatures on nonlocal problems, but
the nonlocality can be different for each problem. Usually it
refers to nonlocal diffusion such as the fractional Laplacian
(see, e.g., [1–5]), but some problems contain a nonlocal diffu-
sivity, which is in the coefficient of the usual Laplacian term
[6–9]. Also there is a problem having a nonlocal boundary
condition [10]. However our problem (1)-(2) has a nonlocal

convection-reaction term, which is another type of nonlocal-
ity. Even more interestingly, the presence of 𝜆2 indicates that
nonlocality is nonlinear.

Problem (1)-(2) models temperature distribution under
thermoelectric effect, which refers to direct conversion
between electricity and thermal energy [11–14].When there is
temperature difference, it induces voltage and electric current
because charge carriersmove anddiffuse fromhot side to cold
side (which is called Seebeck effect). On the other hand, the
charge carriers also carry kinetic energy so that there is a flow
of kinetic energy or thermal current when there is electric
current (which is called Peltier effect).

The thermoelectric effect is applicable to electric power
generation and solid state cooling [12, 14]. For example,
with an advantage of small size and long time stability in
extreme condition, it has been applied for power generation
in spacecraft, as a form of a radioisotope thermoelectric
generator (RTG). Also it can increase the system efficiency
of vehicles by harvesting the waste heat. Our problem (1)-
(2) models the power generation; the temperature difference
between boundary points induces electric current, and the
heat generated by the electric current alters the temperature
distribution. The nonlocal coefficient 𝜆 in (2) represents the
induced electric current.

For the application of thermoelectric technology, under-
standing of thermal properties is essential. There have been
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many studies using numerical (see, e.g., [15, 16]) and analyt-
ical [12, 13, 17, 18] approaches to calculate the temperature
distribution and energy conversion efficiency or to find
new thermoelectric parameters. However, to the best of our
knowledge, few have paid attention to the mathematical
analysis of the nonlocal PDE (1)-(2).

In this paper, we revisit themodelling of (1)-(2) and prove
its well-posedness for some particular cases. Furthermore,
we prove that the solution has no interior maximum; that is,
the temperature distribution is monotonic when the electric
current density is small enough. For a wide class of PDEs
along the heat equation, themonotonicity of solutions (which
is physically obvious) can be explained by the maximum
principle. But in our problem, the maximum principle does
not hold and, surprisingly, our result shows that there can
be an interior maximum temperature when the physical
property of thermoelectricmaterial is very good; for example,
the thermoelectric figure of merit is very large.

2. Modelling

The thermoelectric effect has been well known among physi-
cists [11]. But the derivation of problem (1)-(2) is not easily
accessible in the literature, so we revisit the derivation in this
section.

2.1. Derivation in Physical Quantities. The electrical current
density J and the thermal current density J𝑄 are generated
if there is electromotive force such as electric field 𝜖 or
temperature gradient ∇𝑇. More precisely, their quantitative
relations are

J = 𝜎 (𝜖 − 𝛼∇𝑇) ,

J𝑄 = ΠJ − 𝜅∇𝑇,
(3)

where 𝜎, 𝛼, Π, 𝜅, and 𝑇 are electric conductivity, Seebeck
coefficient, Peltier coefficient, thermal conductivity, and the
absolute temperature, respectively. Here 𝜎, 𝛼, Π, and 𝜅 can
be 3 by 3 tensors, but to simplify model we assume that they
are scalar quantities. We also assume that they depend on the
temperature only:

𝜎 = 𝜎 (𝑇) ,

𝛼 = 𝛼 (𝑇) ,

Π = 𝑇𝛼 (𝑇) ,

𝜅 = 𝜅 (𝑇) ,

(4)

where the third relation, Π = 𝑇𝛼, can be justified by
Onsager’s relation [11, 19]. If the electrical current density is
nonvanishing, therewill be an electrical power dissipation 𝜖⋅J,
acting as a heat source. Hence by the energy conservation law,
local energy density 𝑢 satisfies

𝜕𝑢

𝜕𝑡
+ ∇ ⋅ J𝑄 = 𝜖 ⋅ J. (5)

Furthermore, the time derivative of the local energy density
is written as 𝜕𝑢/𝜕𝑡 = 𝐶(𝜕𝑇/𝜕𝑡), where 𝐶 is the heat capacity
of a thermoelectric material and𝑇 is the temperature therein.

We have derived so far

𝐶
𝜕𝑇

𝜕𝑡
= −∇ ⋅ J𝑄 + 𝜖 ⋅ J,

𝜖 = 𝜌J + 𝛼∇𝑇,

J𝑄 = 𝛼J − 𝜅∇𝑇,

(6)

where 𝜌 = 1/𝜎 is resistivity. Hence, combining them,

𝐶
𝜕𝑇

𝜕𝑡
= −∇ ⋅ (𝛼𝑇J − 𝜅∇𝑇) + (𝜌J + 𝛼∇𝑇) ⋅ J

= 𝜌 |J|2 − 𝑇𝑑𝛼
𝑑𝑇

(∇𝑇 ⋅ J) − 𝛼𝑇 (∇ ⋅ J)

+ ∇ ⋅ (𝜅∇𝑇) .

(7)

Because charge carrier is not generated in the material, ∇⋅ J =
0 and

𝐶
𝜕𝑇

𝜕𝑡
= 𝜌 |J|2 − 𝑇𝑑𝛼

𝑑𝑇
(∇𝑇 ⋅ J) + ∇ ⋅ (𝜅∇𝑇) . (8)

Now we need boundary conditions. Here we consider
power generation by a thermoelectric material, which is
operated by imposing hot-side temperature 𝑇

𝐻
and cold-side

temperature 𝑇
𝐶
at the boundary:

𝑇 (𝑥 = 0) = 𝑇
𝐻
,

𝑇 (𝑥 = 𝐿) = 𝑇
𝐶
,

(9)

where 𝐿 is the length of the thermoelectric material.
Finally, to determine the electric current density J, we

integrate the second equation in (6) to obtain

∫𝜌J ⋅ 𝑑r = ∫ (𝜖 − 𝛼∇𝑇) ⋅ 𝑑r. (10)

Since J = 𝐽 is assumed to be a constant scalar, the left-hand
side is 𝐽 ∫ 𝜌𝑑𝑥 and the right-hand side is −Δ𝜓−∫𝛼𝑑𝑇, where
Δ𝜓 is a voltage drop.When the resistance outside thematerial
is fixed as 𝑅ext, the voltage drop is equal to 𝐽𝐴𝑅ext. Therefore
we have

𝐽∫ 𝜌 𝑑𝑥 = −𝐽𝐴𝑅ext − ∫𝛼𝑑𝑇. (11)

Note that ∫𝛼𝑑𝑇 is a constant.
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2.2. Nondimensionalization. Assuming that 𝐶 and 𝜅 are con-
stant, we nondimensionalize the equation by introducing the
following dimensionless parameters:

𝑦 =
𝑇

Δ𝑇
,

𝑥 =
𝑥

𝐴/𝐿
,

𝑡 =
𝜅

𝐶 (𝐴/𝐿)
2
𝑡,

𝜌 =
𝜌

𝑅ref𝐴/𝐿
,

𝜆 = √
(𝐴/𝐿)

3
𝑅ref

𝜅Δ𝑇
𝐽,

𝛼 = √
Δ𝑇

𝜅𝑅ref𝐴/𝐿
𝛼,

(12)

where Δ𝑇 = 𝑇
𝐻
− 𝑇
𝐶
and 𝑅ref is a reference resistance. Then

the first equation in (6) becomes

𝜕𝑦

𝜕𝑡
= 𝜆
2
𝜌 − 𝜆

𝑑𝛼

𝑑𝑦
𝑦
𝜕𝑦

𝜕𝑥
+
𝜕
2
𝑦

𝜕𝑥
2
. (13)

Also the nonlocal equation (11) becomes

𝜆∫

𝐿
2
/𝐴

0

𝜌 𝑑𝑥 = −𝛾𝜆 − ∫

𝑇𝐶/Δ𝑇

𝑇𝐻/Δ𝑇

𝛼𝑑𝑦, (14)

where 𝛾 = (𝐿2/𝐴)(𝑅ext/𝑅ref). And the boundary condition (9)
becomes

𝑦 (𝑥 = 0) =
𝑇
𝐻

Δ𝑇
,

𝑦(𝑥 =
𝐿
2

𝐴
) =

𝑇
𝐶

Δ𝑇
.

(15)

In summary, omitting the bars in 𝑥, 𝑡, 𝜌, and 𝛼, we have a
nonlocal initial-boundary value problem:

𝑦
𝑡
= 𝑦
𝑥𝑥
+ 𝜆
2
𝜌 (𝑦) − 𝜆

𝑑𝛼

𝑑𝑦
𝑦𝑦
𝑥
,

𝜆 =

∫
𝑦𝐻

𝑦𝐶

𝛼 (𝑦) 𝑑𝑦

(∫
𝑙

0
𝜌 (𝑦 (𝑥)) 𝑑𝑥 + 𝛾)

,

𝑦 (0, 𝑡) = 𝑦
𝐻
, 𝑦 (𝑙, 𝑡) = 𝑦

𝐶
, ∀𝑡 > 0,

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) , for 0 ≤ 𝑥 ≤ 𝑙,

(16)

where 𝑙 := 𝐿2/𝐴, 𝑦
𝐻
:= 𝑇
𝐻
/Δ𝑇, and 𝑦

𝐶
:= 𝑇
𝐶
/Δ𝑇.

3. Well-Posedness of Stationary Problems

When there is no temporal change in the solution, (16)
reduces to the following nonlocal boundary value problem:

𝑦
󸀠󸀠
+ 𝜆
2
𝜌 (𝑦) − 𝜆

𝑑𝛼

𝑑𝑦
𝑦𝑦
󸀠
= 0,

𝜆 =

∫
𝑦𝐻

𝑦𝐶

𝛼 (𝑦) 𝑑𝑦

(∫
𝑙

0
𝜌 (𝑦 (𝑥)) 𝑑𝑥 + 𝛾)

,

𝑦 (0) = 𝑦
𝐻
, 𝑦 (𝑙) = 𝑦

𝐶
, 𝑦
𝐻
> 𝑦
𝐶
> 0.

(17)

Since the resistivity 𝜌 is positive, the reaction term 𝜆
2
𝜌,

which corresponds to the Joule heating, is also positive, so
there is a heat source in the domain. Our thermoelectric
power generation system is limited to the case when 𝛾 > 0,
meaning that there is no power source other than the ther-
moelectric material. Note that 𝜆 and 𝛼 have the same sign.
Physically, there are two types of thermoelectric materials:
one is p-type thermoelectric material with positive charge
hole carrier (𝛼 > 0) and the other is n-type thermoelectric
material with negative charge electron carrier (𝛼 < 0). To
simplify arguments, we only consider the p-type case where
𝛼 > 0; thereby the current flows from hot side to cold side
(𝜆 > 0).

Most thermoelectric materials are degenerated semicon-
ductors and therefore their resistivities are increasing with
respect to the temperature. But the Seebeck coefficient 𝛼 can
be concave if there is bipolar effect. To simplify the situation,
we assume that there is no bipolar effect and the resistivity 𝜌
and the Seebeck coefficient 𝛼 are constant or linear.

In this section, for those particular cases, we will prove
the well-posedness of the nonlocal problem (17) and give
some sufficient smallness conditions on 𝜆 to guarantee that
the solution is decreasing in space.

3.1.When 𝜌 and𝛼Are Constants. If we assume that 𝜌(𝑦) = 𝜌
0

and 𝛼(𝑦) = 𝛼
0
, the nonlocal boundary value problem (17)

becomes local and linear:

𝑦
󸀠󸀠
+ 𝜆
2
𝜌
0
= 0, 𝜆 = 𝛼

0

𝑦
𝐻
− 𝑦
𝐶

𝜌
0
𝑙 + 𝛾

,

𝑦 (0) = 𝑦
𝐻
, 𝑦 (𝑙) = 𝑦

𝐶
, 𝑦
𝐻
> 𝑦
𝐶
> 0.

(18)

If we let 𝑦
Δ
:= 𝑦
𝐻
− 𝑦
𝐶
, an exact solution is

𝑦 (𝑥) = −
𝜆
2
𝜌
0

2
𝑥
2
+ (

𝜆
2
𝜌
0
𝑙

2
−
𝑦
Δ

𝑙
) 𝑥 + 𝑦

𝐻
. (19)

Note that 𝑦
Δ
is equal to 1 if we consider the dimensional

quantities. But in order not to lose mathematical generality,
we assume that 𝑦

Δ
can be arbitrarily positive. It is easy to

verify that there is no interior maximum if and only if

𝜆
2
𝜌
0
𝑙
2
≤ 2𝑦
Δ
. (20)

To understand the physical meaning of (20), we consider
the corresponding physical quantities and obtain a condition
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between material property and thermoelectric power gener-
ation resistance:

𝛼
2

𝜌𝜅
<
2 (1 + Γ)

2

(𝑇
𝐻
− 𝑇
𝐶
)
, (21)

where Γ is the ratio of the external to the internal resistance.
Note that the left-hand side is a pure material parameter
determined by 𝛼, 𝜌, and 𝜅, but the right-hand side is a
pure device parameter determined by Γ and temperature
difference. Also note that the value in the left-hand side is the
definition of 𝑍 value in thermoelectrics. The thermoelectric
figure of merit 𝑍𝑇

𝑚
, where 𝑇

𝑚
= (𝑇
𝐻
+ 𝑇
𝐶
)/2, estimates

the system efficiency: large 𝑍𝑇
𝑚
means high efficiency [13].

Now consider a thermoelectric system operating between
𝑇
𝐻
= 500K and 𝑇

𝐶
= 300K, assuming that the system is

designed to have maximum output power; that is, Γ = 1.
Then there is no interior maximum if and only if 𝑍𝑇

𝑚
is less

than 16. Hence it is difficult to observe interior maximum in
common thermoelectric power generation systems because
the world highest thermoelectric figure of merit 𝑍𝑇 is 2.6
[20]. However, it is remarkable that there can be interior
maximum if a better thermoelectric material with high 𝑍𝑇
value is developed. Since the thermoelectric properties are
slowly varying function of𝑇, the physicalmeaning of (21) will
be almost similar for real world.

3.2. When 𝜌 Is Constant and 𝛼 Is Linear. Assume that 𝜌(𝑦) =
𝜌
0
and 𝛼(𝑦) = 𝛼

0
+𝛼
1
𝑦where 𝜌

0
, 𝛼
0
≥ 0 and 𝛼

1
> 0. Then the

nonlocal problem (17) becomes local but nonlinear:

𝑦
󸀠󸀠
+ 𝜆
2
𝜌
0
− 𝜆𝛼
1
𝑦𝑦
󸀠
= 0,

𝜆 =
𝑦
Δ

(𝜌
0
𝑙 + 𝛾)

(𝛼
0
+
𝛼
1

2
(𝑦
𝐻
+ 𝑦
𝐶
)) ,

𝑦 (0) = 𝑦
𝐻
, 𝑦 (𝐿) = 𝑦

𝐶
, 𝑦
𝐻
> 𝑦
𝐶
> 0.

(22)

To show that there is a unique solution under smallness con-
dition, we use a classical well-posedness result [21, Theorem
3.7].

Theorem 1 (well-posedness of a nonlinear boundary value
problem). Consider a nonlinear boundary value problem

𝑦
󸀠󸀠

(𝑥) + 𝑓 (𝑥, 𝑦 (𝑥) , 𝑦
󸀠

(𝑥)) = 0,

𝑦 (0) = 𝑦 (𝑙) = 0.

(23)

Suppose that 𝑓(𝑥, 𝑦, 𝑦󸀠) are continuous on

[0, 𝑙] × [−𝑀
𝑦
,𝑀
𝑦
] × [

−4𝑀
𝑦

𝑙
,
4𝑀
𝑦

𝑙
] (24)

and satisfy a Lipschitz condition

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑥, 𝑦

1
, 𝑦
󸀠

1
) − 𝑓 (𝑥, 𝑦

2
, 𝑦
󸀠

2
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝐾
1

󵄨󵄨󵄨󵄨𝑦1 − 𝑦2
󵄨󵄨󵄨󵄨 + 𝐾2

󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠

1
− 𝑦
󸀠

2

󵄨󵄨󵄨󵄨󵄨

(25)

there. Let
𝑀
0
:= max
0≤𝑥≤𝑙

󵄨󵄨󵄨󵄨𝑓 (𝑥, 0, 0)
󵄨󵄨󵄨󵄨 ,

𝑀
𝑓
:= max 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑦, 𝑦

󸀠
)
󵄨󵄨󵄨󵄨󵄨
,

𝑓𝑜𝑟
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 ≤ 𝑀𝑦,

󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠󵄨󵄨󵄨󵄨󵄨
≤
4𝑀
𝑦

𝑙
, 𝑥 ∈ [0, 𝑙] .

(26)

Then if

𝛽 :=
𝐾
1
𝑙
2

8
+
𝐾
2
𝑙

2
< 1 (27)

and either

𝑀
0
𝑙
2

8
≤ 𝑀
𝑦
(1 − 𝛽) 𝑜𝑟

𝑀
𝑓
𝑙
2

8
≤ 𝑀
𝑦
, (28)

then problem (23) has one and only one solution 𝑦(𝑥) such that
󵄨󵄨󵄨󵄨𝑦 (𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝑀𝑦,

󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨
≤
4𝑀
𝑦

𝑙
,

𝑓𝑜𝑟 𝑥 ∈ [0, l] .

(29)

The proof is based on the contraction mapping principle
applied to the Green function representation of solutions.
Using this theorem, we can show that there is a unique solu-
tion of (22).

Proposition 2 (existence of a decreasing solution). Suppose
that

1

2
|𝜆| 𝛼
1
𝑙 (
3

4
𝑦
Δ
+ 𝑦
𝐻
) < 1,

𝜆
2
𝜌
0
𝑙
2
+
1

2
|𝜆| 𝛼
1
𝑙𝑦
Δ
(𝑦
Δ
+ 4𝑦
𝐻
) ≤ 2𝑦

Δ
.

(30)

Then there is a unique solution of (22) such that
󵄨󵄨󵄨󵄨𝑦 (𝑥) − 𝑠 (𝑥)

󵄨󵄨󵄨󵄨 ≤
𝑦
Δ

4
,

󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠

(𝑥) − 𝑠
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨
≤
𝑦
Δ

𝑙
,

𝑓𝑜𝑟 𝑥 ∈ [0, l] ,

(31)

where 𝑠(𝑥) := (𝑦
𝐻
(𝑙 − 𝑥) + 𝑦

𝐶
𝑥)/𝑙. Furthermore, the solution

is decreasing in 𝑥 (hence there is no interior maximum).

Proof. Let 𝑤 be a solution of (22). Then

𝑦 (𝑥) := 𝑤 (𝑥) − 𝑠 (𝑥) (32)

satisfies (23) with 𝑓(𝑥, 𝑦, 𝑦󸀠) := 𝜆2𝜌
0
− 𝜆𝛼
1
(𝑦 + 𝑠)(𝑦

󸀠
+ 𝑠
󸀠
).

Suppose that |𝑦| ≤ 𝑀
𝑦
and |𝑦󸀠| ≤ 4𝑀

𝑦
/𝑙. Then we can

easily verify that the Lipschitz condition (25) holds for 𝐾
1
=

|𝜆|𝛼
1
(4𝑀
𝑦
+ 𝑦
Δ
)/𝑙 and𝐾

2
= |𝜆|𝛼

1
(𝑀
𝑦
+ 𝑦
𝐻
). Hence

𝛽 =
1

2
|𝜆| 𝛼
1
𝑙 (2𝑀

𝑦
+
𝑦
Δ

4
+ 𝑦
𝐻
) ,

𝑀
𝑓
= 𝜆
2
𝜌
0
+ |𝜆| 𝛼

1
(𝑀
𝑦
+ 𝑦
𝐻
) (
4𝑀
𝑦
+ 𝑦
Δ

𝑙
) .

(33)
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If we choose 𝑀
𝑦
:= 𝑦
Δ
/4, then, by the assumption, 𝛽 < 1

and𝑀
𝑓
𝑙
2
/8 ≤ 𝑀

𝑦
. Hence the first conclusion follows from

Theorem 1.
From the conclusion on the bound of 𝑦󸀠 in Theorem 1,

𝑦
Δ

𝑙
≥
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

(𝑥) − 𝑠
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

(𝑥) +
𝑦
Δ

𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (34)

Therefore 𝑤󸀠(𝑥) ≤ 0 and the solution is decreasing.

Note that when 𝛼
1
= 0, the conditions in Proposition 2

are reduced to the exact condition (20) in the previous
section.

3.3. When 𝜌 Is Linear and 𝛼 Is Constant. If we assume that
𝜌(𝑦) = 𝜌

1
𝑦 and 𝛼(𝑦) = 𝛼

0
, where 𝜌

1
, 𝛼
0
≥ 0, the nonlocal

boundary value problem (17) becomes linear:

𝑦
󸀠󸀠
+ 𝜆
2
𝜌
1
𝑦 = 0,

𝜆(𝜌
1
∫

𝑙

0

𝑦 (𝑥) 𝑑𝑥 + 𝛾) = 𝛼
0
𝑦
Δ
,

𝑦 (0) = 𝑦
𝐻
, 𝑦 (𝑙) = 𝑦

𝐶
, 𝑦
𝐻
> 𝑦
𝐶
> 0.

(35)

With a given nonnegative 𝜆, the boundary value problem
without the nonlocal condition on 𝜆 has an exact solution if
𝜇 := 𝜆√𝜌1 < 𝜋/𝑙:

𝑦 (𝑥; 𝜆) =
𝑦
𝐶
− 𝑦
𝐻
cos 𝜇𝑙

sin 𝜇𝑙
sin 𝜇𝑥 + 𝑦

𝐻
cos 𝜇𝑥. (36)

Integrating the solution yields

∫

𝑙

0

𝑦 (𝑥; 𝜆) 𝑑𝑥 =
𝑦
𝐶
− 𝑦
𝐻
cos 𝜇𝑙

𝜇 sin 𝜇𝑙
(1 − cos 𝜇𝑙)

+ 𝑦
𝐻

sin 𝜇𝑙
𝜇

.

(37)

Due to sin 𝜇𝑙 in the denominator of the first term, the integral
diverges to ∞ as 𝜇 ↑ 𝜋/𝑙. Furthermore, by comparison
principle, the solution𝑦(𝑥; 𝜆) increases strictly as 𝜇 increases.
Therefore, ∫𝑙

0
𝑦(𝑥; 𝜆)𝑑𝑥 is strictly increasing to ∞ as 𝜆 ↑

𝜋/(√𝜌1𝑙).
So the left-hand side of the second equation in (35) strictly

increases from 0 to ∞ as 𝜆 increases from 0 to 𝜋/(√𝜌1𝑙).
Therefore there is one and only one 𝜆 satisfying the second
equation, which proves the unique existence.

Since 𝑦󸀠󸀠 = −𝜆2𝜌
1
𝑦 ≤ 0, the solution is decreasing if and

only if 𝑦󸀠(0) ≤ 0. From the exact solution, this condition is
equivalent to

𝑦
𝐶

𝑦
𝐻

≤ cos (𝜆√𝜌1𝑙) . (38)

We summarize the result.

Proposition 3. There is a solution of (35). If 𝜆2𝜌
1
𝑙
2
< 𝜋
2, the

solution is unique. Furthermore, if (38) holds, the solution is
decreasing in 𝑥.

3.4. When 𝜌 and 𝛼 Are Linear. Assume that 𝜌(𝑦) = 𝜌
1
𝑦 and

𝛼(𝑦) = 𝛼
0
+ 𝛼
1
𝑦, where 𝜌

1
, 𝛼
0
≥ 0 and 𝛼

1
> 0. Then problem

(17) becomes

𝑦
󸀠󸀠
+ 𝜆
2
𝜌
1
𝑦 − 𝜆𝛼

1
𝑦𝑦
󸀠
= 0,

𝜆(𝜌
1
∫

𝑙

0

𝑦 (𝑥) 𝑑𝑥 + 𝛾) = 𝑦
Δ
(𝛼
0
+
𝛼
1

2
(𝑦
𝐻
+ 𝑦
𝐶
)) ,

𝑦 (0) = 𝑦
𝐻
, 𝑦 (𝑙) = 𝑦

𝐶
, 𝑦
𝐻
> 𝑦
𝐶
> 0.

(39)

With a given small nonnegative 𝜆, we can show that there is
a unique, decreasing solution of the boundary value problem
without the second equation. Then the decrease of the solu-
tion guarantees that a 𝜆 satisfying the second equation is
unique.

Theorem 4 (existence of a decreasing solution). Let

Λ
𝛽
:= {𝜆 :

1

8
𝜆
2
𝜌
1
𝑙
2
+
1

2
𝜆𝛼
1
𝑙 (
3

4
𝑦
Δ
+ 𝑦
𝐻
) < 1} ,

Λ
𝑓
:= {𝜆 :

1

4
𝜆
2
𝜌
1
𝑙
2
(𝑦
Δ
+ 4𝑦
𝐻
)

+
1

2
𝜆𝛼
1
𝑙𝑦
Δ
(𝑦
Δ
+ 4𝑦
𝐻
) ≤ 2𝑦

Δ
} ,

(40)

and 𝜆∗ := supΛ
𝛽
∩ Λ
𝑓
. If

𝜆
∗
(
𝜌
1

2
𝑦
Δ
𝑙 + 𝜆) > 𝑦

Δ
(𝛼
0
+
𝛼
1

2
(𝑦
𝐻
+ 𝑦C)) , (41)

there is a unique solution of (39) with a 𝜆 < 𝜆∗. Furthermore,
the solution is decreasing in 𝑥 and satisfies

󵄨󵄨󵄨󵄨𝑦 (𝑥) − 𝑠 (𝑥)
󵄨󵄨󵄨󵄨 ≤

𝑦
Δ

4
,

󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠

(𝑥) − 𝑠
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨
≤
𝑦
Δ

𝑙
,

𝑓𝑜𝑟 𝑥 ∈ [0, l] ,

(42)

where 𝑠(𝑥) := (𝑦
𝐻
(𝑙 − 𝑥) + 𝑦

𝐶
𝑥)/𝑙.

Proof. First we disregard the second equation in (39) and
prove that there is a unique, decreasing solution with a given
nonnegative 𝜆 < 𝜆∗. The proof is almost the same as the one
of Proposition 2. Let 𝑤 be a solution of (39), disregarding the
second equation.Then 𝑦(𝑥) := 𝑤(𝑥) − 𝑠(𝑥) satisfies (23) with
𝑓(𝑥, 𝑦, 𝑦

󸀠
) := 𝜆

2
𝜌
1
(𝑦 + 𝑠) − 𝜆𝛼

1
(𝑦 + 𝑠)(𝑦

󸀠
+ 𝑠
󸀠
). Suppose that

|𝑦| ≤ 𝑀
𝑦
and |𝑦󸀠| ≤ 4𝑀

𝑦
/𝑙. Then we can verify that the

Lipschitz condition (25) holds for 𝐾
1
= 𝜆
2
𝜌
1
+ 𝜆𝛼
1
(4𝑀
𝑦
+

𝑦
Δ
)/𝑙 and𝐾

2
= 𝜆𝛼
1
(𝑀
𝑦
+ 𝑦
𝐻
). Hence

𝛽 =
1

8
𝜆
2
𝜌
1
𝑙
2
+
1

2
𝜆𝛼
1
𝑙 (2𝑀

𝑦
+
1

4
𝑦
Δ
+ 𝑦
𝐻
) ,

𝑀
𝑓
= 𝜆
2
𝜌
1
(𝑀
𝑦
+ 𝑦
𝐻
)

+ 𝜆𝛼
1
(𝑀
𝑦
+ 𝑦
𝐻
) (
4𝑀
𝑦
+ 𝑦
Δ

𝑙
) .

(43)
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If we choose𝑀
𝑦
:= 𝑦
Δ
/4, then, because 𝜆 ∈ Λ

𝛽
∩ Λ
𝑓
, 𝛽 <

1 and 𝑀
𝑓
𝑙
2
/8 ≤ 𝑀

𝑦
. Hence well-posedness follows from

Theorem 1. Also from the conclusion on the bound of 𝑦󸀠 in
Theorem 1,

𝑦
Δ

𝑙
≥
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

(𝑥) +
𝑦
Δ

𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, (44)

which implies that 𝑤󸀠(𝑥) ≤ 0 and the solution is decreasing.
Now it suffices to prove there is a unique 𝜆 < 𝜆

∗ with
which the second equation in (39) holds. Because∫𝑙

0
𝑦(𝑥)𝑑𝑥 ≥

(1/2)𝑦
Δ
𝑙, as 𝜆 ↑ 𝜆∗, the left-hand side of the second equation

in (39) is bounded below by 𝜆∗((𝜌
1
/2)𝑦
Δ
𝑙 + 𝛾). Hence, by

the assumption (41), there is a 𝜆 < 𝜆∗ satisfying the second
equation. Uniqueness of such 𝜆 can be proven by comparison
principle. Let 𝑦

1
, 𝑦
2
be solutions of (39) with 𝜆 = 𝜆

1
, 𝜆
2
,

respectively. If 𝜆
1
≤ 𝜆
2
≤ 𝜆
∗, the solutions 𝑦

1
and 𝑦

2
are

decreasing in 𝑥. Define L[𝑦] := −𝑦
󸀠󸀠
− 𝜆
2

1
𝜌
1
𝑦 + 𝜆

1
𝛼
1
𝑦𝑦
󸀠.

ThenL[𝑦
1
] ≡ 0 and

L [𝑦
2
] = (𝜆

2

2
− 𝜆
2

1
) 𝜌
1
𝑦
2
− (𝜆
2
− 𝜆
1
) 𝛼
1
𝑦
2
𝑦
󸀠

2
≥ 0. (45)

Hence 𝑦
2
≥ 𝑦
1
. But due to the second equation in (39),

𝜆
2
(𝜌
1
∫

𝑙

0

𝑦
2
(𝑥) 𝑑𝑥 + 𝛾) = 𝜆

1
(𝜌
1
∫

𝑙

0

𝑦
1
(𝑥) 𝑑𝑥 + 𝛾)

≤ 𝜆
1
(𝜌
1
∫

𝑙

0

𝑦
2
(𝑥) 𝑑𝑥 + 𝛾)

(46)

which implies 𝜆
2
≤ 𝜆
1
. Therefore 𝜆

1
= 𝜆
2
, which proves the

uniqueness of 𝜆.

Remark 5. When 𝛼
1
= 0, the condition 𝜆 ∈ Λ

𝛽
inTheorem 4

reduces to𝜆2𝜌
1
𝑙
2
< 8, which is a stronger assumption than the

condition 𝜆2𝜌
1
𝑙
2
< 𝜋
2 in Proposition 3. Also the condition

𝜆 ∈ Λ
𝑓
reduces to

𝑦
𝐶
+ 𝑦
Δ
/4

𝑦
𝐻
+ 𝑦
Δ
/4
≤ 1 −

1

2
𝜆
2
𝜌𝑙
2
, (47)

which is a stronger assumption than condition (38) because

𝑦
𝐶

𝑦
𝐻

≤
𝑦
𝐶
+ 𝑦
Δ
/4

𝑦
𝐻
+ 𝑦
Δ
/4
≤ 1 −

1

2
𝜆
2
𝜌𝑙
2
≤ cos (𝜆√𝜌1𝑙) . (48)

Remark 6. In the previous section, we observed that
∫
𝑙

0
𝑦(𝑥; 𝜆)𝑑𝑥 diverges to ∞ as 𝜆 increases. This observation

suggests that the same can happen to (39). If then, condition
(41) is not necessary to guarantee the existence of a solution.
Hence the divergent behavior of the integral needs further
investigation.

4. Conclusions

When the resistivity 𝜌 and the Seebeck coefficient 𝛼 are
constant or linear, we have found some sufficient smallness

conditions on the electric current 𝜆 which ensures that the
nonlocal problem (17) has a unique decreasing solution. Also
if the condition does not hold, a solution can have interior
maximum, which is physically surprising. The fact can draw
attention of engineers designing a thermoelectric system.

When both 𝜌 and 𝛼 are linear, we needed an ad hoc
condition to guarantee the existence of a solution, but it seems
not necessary. Eliminating the ad hoc condition and proving
the existence and uniqueness for arbitrary 𝜆 will be a further
interest.
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