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This paper considers the robust estimation fusion problem for distributed multisensor systems with uncertain correlations of local
estimation errors. For an uncertain class characterized by the Kullback-Leibler (KL) divergence from the actual model to nominal
model of local estimation error covariance, the robust estimation fusion problem is formulated to find a linear minimum variance
unbiased estimator for the least favorablemodel. It is proved that the optimal fuser under nominal correlationmodel is robust while
the estimation error has a relative entropy uncertainty.

1. Introduction

During the past decades, multisensor systems have received
much attention in many applications, such as signal pro-
cessing, communication, target tracking, and remote sensing
[1–7]. In distributed estimation fusion frame, each sensor
observes some local information of the physical environment,
estimates the state or parameter of system in terms of some
optimization criterion, and then transmits it to fusion center.
The fusion center fuses the data from local sensors and
obtains a better estimate. Generally, distributed fusion may
have a less computational burden, lower communication
rates, and higher survivability and be more flexible and
reliable than centralized fusion which processes directly
observation data from local sensors.

There is much work on developing distributed estimation
fusion algorithms. In [8, 9], a distributed Kalman filtering
fusion formula was presented which has the same estimation
performance as centralized Kalman filtering fusion. For the
general systems with known auto- and cross-correlations of
estimation errors from local sensors, in [6, 10–12], the optimal
linear estimation fusion formulas were proposed in the sense
of linear minimum variance (LMV). In practice, the cross-
correlations of estimation errors among the sensors may be
completely or partially unknown. Some fusion methods have
been developed for the systems with various uncertain corre-
lations.The simple convex combination approach ignores the

cross-correlations. The covariance intersection (CI) method
linearly combines the local estimates and considers a con-
servative estimate of the estimation error covariance matrix
(see [13–16]). An information-theoretic justification for CI
was presented in [16] to minimize the Chernoff information.
A robust estimation fuser was developed in [17] by finding
the Chebyshev center, that is, center of the minimum radius
ball enclosing the intersection of ellipsoid sets. For a class
of estimation error covariance matrices with norm-bounded
uncertainties, a robust fusion model to minimize the worst-
case mean square error (MSE) was proposed in [18]. In
[19, 20], a generalized convex combination method was
discussed. Recently, by employing randommatrix to describe
the uncertainty of cross-correlation, a chance-constrained
programming approach was presented in [21]. In [22], a
robust estimation problem was addressed for a linear model
in which the unknown parameter vector is norm-bounded
and noise covariance matrix is uncertain with a special
structure. It was to get a linear estimator which minimizes
the worst-case MSE over all vectors and noise covariance
matrices in a specified uncertain region.

This paper considers the robust estimation fusion
approach for distributed multisensor systems with uncertain
correlations among local estimation errors. Assuming the
true joint probability density of local estimators belonging to
a neighborhood of the nominal model, the robust estimation
fusion can be modeled as a minimax problem that minimizes
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the variance for the least favorable model in an uncertain
class. In this paper, the neighborhood is specified by the
Kullback-Leibler (KL) divergence. It is worth noting that the
use of KL divergence is rather natural as a metric for model
mismatch in the statistics and information societies. From an
information geometric viewpoint, it was argued in [23] that
the KL divergence is a natural geometric “distance” between
systems.

The remainder of the paper is organized as follows. In
Section 2, we formulate the robust distributed estimation
fusion as a min-max optimization problem. Then, we con-
vert it equivalently into a min-min optimization problem
by Lagrangian duality method in Section 3. Moreover, in
Section 4, we give the analytical solution of original min-
max problem and conclude that the linearminimumvariance
unbiased estimation (LMVUE) fusion is robust for the least
favorable statistical model. Section 5 gives a conclusion.

Notations R𝑛 and R𝑚×𝑛 stand for the set of all 𝑛-
dimensional real vectors and the set of all 𝑚-by-𝑛 real
matrices, respectively. For a matrix 𝐴, 𝐴𝑇, 𝐴†, and ‖𝐴‖

denote the transpose, Moore-Penrose generalized inverse,
and spectral norm of 𝐴, respectively. 𝐴 ≻ 0 means 𝐴 is
symmetric and positive definite .The symbol 𝐼 represents the
identity matrix with appropriate dimension. The expectation
of a random variable (or random vector) is denoted by E[⋅].

2. Problem Formulation

Consider an 𝑙-sensor distributed system in which 𝑥 ∈ R𝑛

is the state or parameter to be estimated, and 𝑥 (1), . . . , 𝑥 (𝑙)
are local unbiased estimates of 𝑥 available at fusion center.
The relationship between the local unbiased estimates and the
state or parameter can be formulated as follows:

𝑦 = 𝐴𝑥 + 𝜀, (1)

where

𝑦 = (

𝑥
(1)

...
𝑥
(𝑙)

) ∈ R
𝑛𝑙 (2)

is augmented local unbiased estimates and can be viewed as
the observation at fusion center, 𝐴 = [𝐼, . . . , 𝐼]

𝑇

∈ R𝑛𝑙×𝑛, and
𝜀 ∈ R𝑛𝑙 is the augmented error vectors of all local estimates.
It is clear that 𝜀 has mean zero and covariance matrix

𝑉 = (

𝑉
(11)

⋅ ⋅ ⋅ 𝑉
(1𝑙)

...
...

𝑉
(𝑙1)

⋅ ⋅ ⋅ 𝑉
(𝑙𝑙)

), (3)

where 𝑉(𝑖𝑗) = E[(𝑥 (𝑖) − 𝑥)(𝑥
(𝑗)

− 𝑥 )
𝑇

] for 𝑖, 𝑗 = 1, . . . , 𝑙.
In order to find an unbiased linear estimation fusion 𝑥 =

𝐵 +𝑊
𝑇

𝑦, where 𝐵 and𝑊 are compatible vector and matrix,
respectively, a necessary and sufficient condition is𝐵 = 0, and
𝐴
𝑇

𝑊 = 𝐼. Therefore, the fused estimate becomes 𝑥 = 𝑊
𝑇

𝑦.
When the error covariance matrix 𝑉 is accurately given,

a general linear fusion result is presented in [6, 11], which is

optimal in the sense of LMV; that is, it has the LMV among
all linear unbiased estimation fusion rules. In this case, the
LMVUE fusion is uniquely given with probability one as
follows:

𝑥 =

1

𝑙

𝐴
𝑇

(𝐼 − 𝑉(𝑃𝑉𝑃)
†

) 𝑦, (4)

where𝑃 = 𝐼−𝐴𝐴
† is an orthogonal projector (i.e., symmetric

and idempotent matrix). Moreover, if 𝑉 is nonsingular, then
the optimal estimation fusion becomes

𝑥 = (𝐴
𝑇

𝑉
−1

𝐴)

−1

𝐴
𝑇

𝑉
−1

𝑦. (5)

However, the estimation error covariance matrix cannot
be accurately obtained in practice. Denote the actual and
nominal error covariance matrices by 𝑉 and �̂�, respectively.
For measurement model (1), we assume that the noise 𝜀 has
the 𝑛𝑙-dimensional Gaussian distribution with zero mean. It
is well known that the Gaussianity assumption is reasonable
in many practical applications. The actual and nominal
probability density functions of observation 𝑦 are 𝑁(𝐴𝑥,𝑉)
and 𝑁(𝐴𝑥, �̂�), respectively, where the matrices 𝑉 and �̂� are
assumed to be invertible. Therefore, the probability density
functions of the actual and nominal models are, respectively,
given by

𝑝 (𝑦) =

1

(2𝜋)
𝑛𝑙/2

(det𝑉)1/2

⋅ exp (−(𝑦 − 𝐴𝑥)𝑇𝑉−1 (𝑦 − 𝐴𝑥) /2) ,

𝑝 (𝑦) =

1

(2𝜋)
𝑛𝑙/2

(det �̂�)
1/2

⋅ exp (−(𝑦 − 𝐴𝑥 )
𝑇

�̂�
−1

(𝑦 − 𝐴𝑥) /2) .

(6)

In order to measure the “distance” between the two models,
we adopt theKLdivergence from the actualmodel to nominal
model:

𝐷(𝑉, �̂�) ≜ 2KL (𝑝 (𝑦) , 𝑝 (𝑦))

= 2∫𝑝 (𝑦) ln(
𝑝 (𝑦)

𝑝 (𝑦)

)𝑑𝑦

= tr (�̂�−1𝑉 − 𝐼) − ln det (�̂�−1𝑉) .

(7)

Although it is not a conventional distance, since it is not
symmetric and does not obey the triangle inequality, the KL
divergence satisfies 𝐷(𝑉, �̂�) ≥ 0 with equality if and only if
�̂� = 𝑉.

Let

C = {𝑉 ≻ 0 : 𝐷 (𝑉, �̂�) ≤ 𝑐} (8)

denote the set of all possible estimation error covariance
matrices such that the KL divergence from corresponding
model to actual model is less than or equal to 𝑐 ≥ 0. Note
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that C is a convex set since 𝐷(𝑉, �̂�) is a convex function of
𝑉. The minimax robust estimation fusion problem is to seek
for an optimal weighting matrix𝑊∗ to minimize the MSE in
the worst case. It can be formulated as the followingminimax
problem:

𝑊
∗

= arg min
𝑊∈W

max
𝑉∈C

E‖𝑥 − 𝑥‖
2

, (9)

whereW = {𝑊 ∈ R𝑛𝑙×𝑛 : 𝐴𝑇𝑊 = 𝐼}. From

E‖𝑥 − 𝑥‖
2

= E [(𝑊
𝑇

𝑦 − 𝑥)

𝑇

(𝑊
𝑇

𝑦 − 𝑥)]

= E [(𝑊
𝑇

𝑦 −𝑊
𝑇

𝐴𝑥)

𝑇

(𝑊
𝑇

𝑦 −𝑊
𝑇

𝐴𝑥)]

= E [(𝑦 − 𝐴𝑥)
𝑇

𝑊𝑊
𝑇

(𝑦 − 𝐴𝑥)]

= E [tr (𝑊𝑇 (𝑦 − 𝐴𝑥) (𝑦 − 𝐴𝑥)
𝑇

𝑊)]

= tr (𝑊𝑇𝑉𝑊) ,

(10)

the optimization problem (9) is equivalent to the following
optimization problem:

𝑊
∗

= arg min
𝑊∈W

max
𝑉∈C

tr (𝑊𝑇𝑉𝑊) . (11)

3. Problem Conversion

Consider the inner maximization problem in (11); that is,

max
𝑉≻0

tr (𝑊𝑇𝑉𝑊)

s.t. 𝐷 (𝑉, �̂�) ≤ 𝑐.

(12)

To find the optimal solution, we construct the Lagrangian
function

𝐿 (𝑊,𝑉, 𝜆) = tr (𝑊𝑇𝑉𝑊)

+ 𝜆 (𝑐 − tr (�̂�−1𝑉 − 𝐼) + ln det (�̂�−1𝑉)) ,
(13)

where 𝜆 ≥ 0 is the Lagrange multiplier associated with
the inequality constraint. Let 𝐺(𝑊, 𝜆) be the Lagrange dual
function sup

𝑉≻0
𝐿(𝑊,𝑉, 𝜆) while the latter is finite.

Lemma 1. For problem (12), the following strong Lagrangian
duality identity holds:

max
𝑉∈C

tr (𝑊𝑇𝑉𝑊) = min
𝜆>‖𝑊

𝑇
�̂�𝑊‖

𝐺 (𝑊, 𝜆) . (14)

Proof. The function 𝐿(𝑊,𝑉, 𝜆) is the sum of a linear func-
tion and a logarithm of determinant which is concave, so
𝐿(𝑊,𝑉, 𝜆) is a concave function of 𝑉.

If 0 ≤ 𝜆 ≤ ‖𝑊
𝑇

�̂�𝑊‖, then, noticing the invertibility of
𝑊
𝑇

�̂�𝑊 because 𝑊 is full column rank from 𝐴
𝑇

𝑊 = 𝐼, we
have the following eigenvalue decomposition:

�̂�
1/2

𝑊𝑊
𝑇

�̂�
1/2

= 𝑄
𝑇

Λ𝑄, (15)

where 𝑄 is an orthogonal matrix and

Λ = diag (𝜂
1
, . . . , 𝜂

𝑛
, 0, . . . , 0) ∈ R

𝑛𝑙×𝑛𝑙 (16)

with 𝜂
1
≥ ⋅ ⋅ ⋅ ≥ 𝜂

𝑛
> 0 and 𝜂

1
≥ 𝜆. Let

Σ = diag (𝜇, 1, . . . , 1) ∈ R
𝑛𝑙×𝑛𝑙

, 𝜇 > 0,

𝑉 = �̂�
1/2

𝑄
𝑇

Σ𝑄�̂�
1/2

≻ 0.

(17)

Then,

𝐿 (𝑊,𝑉, 𝜆) = tr ((�̂�1/2𝑊𝑊
𝑇

�̂�
1/2

− 𝜆𝐼) �̂�
−1/2

𝑉�̂�
−1/2

)

+ 𝜆 (𝑐 + tr 𝐼 + ln det (�̂�−1𝑉))

= tr ((Λ − 𝜆𝐼) Σ) + 𝜆 (𝑐 + 𝑛𝑙 + ln det (Σ))

= (𝜂
1
− 𝜆) 𝜇 +

𝑛

∑

𝑖=2

(𝜂
𝑖
− 𝜆) + 𝜆 (𝑐 + 𝑛𝑙 + ln 𝜇)

(18)

can approach +∞ while 𝜇 → +∞.
If𝜆 > ‖𝑊𝑇�̂�𝑊‖, then all eigenvalues ofmatrix𝑊𝑇�̂�𝑊 or

�̂�
1/2

𝑊𝑊
𝑇

�̂�
1/2 are smaller than 𝜆. So, 𝜆𝐼 − �̂�1/2𝑊𝑊

𝑇

�̂�
1/2

≻

0; that is, �̂�−1 − (1/𝜆)𝑊𝑊
𝑇

≻ 0. Using the formulas for
derivatives of traces and determinants of matrices (see, e.g.,
[24, pp. 178, 182]), we have

𝜕 tr (𝑊𝑇𝑉𝑊)

𝜕𝑉

= 𝑊𝑊
𝑇

,

𝜕 tr (�̂�−1𝑉)
𝜕𝑉

= �̂�
−1

,

𝜕 ln det (�̂�−1𝑉)
𝜕𝑉

= �̂�
−1

((�̂�
−1

𝑉)
𝑇

))

−1

= 𝑉
−1

.

(19)

Then,

𝜕𝐿 (𝑊,𝑉, 𝜆)

𝜕𝑉

=

𝜕 tr (𝑊𝑇𝑉𝑊)

𝜕𝑉

− 𝜆(

𝜕 tr (�̂�−1𝑉)
𝜕𝑉

−

𝜕 ln det (�̂�−1𝑉)
𝜕𝑉

)

= 𝑊𝑊
𝑇

− 𝜆 (�̂�
−1

− 𝑉
−1

) .

(20)

Taking 𝜕𝐿(𝑊,𝑉, 𝜆)/𝜕𝑉 as zero, we can obtain the positive
definite matrix maximizing 𝐿(𝑊,𝑉, 𝜆) as follows:

𝑉
∗

(𝜆) = (�̂�
−1

−

1

𝜆

𝑊𝑊
𝑇

)

−1

, (21)

and 𝐺(𝑊, 𝜆) = 𝐿(𝑊,𝑉∗(𝜆), 𝜆) < +∞.
In summary, we obtain the Lagrange dual function

sup
𝑉≻0

𝐿 (𝑊,𝑉, 𝜆) = {

𝐺 (𝑊, 𝜆) , 𝜆 >






𝑊
𝑇

�̂�𝑊






,

+∞, otherwise.
(22)
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Therefore, for the dual problem of problem (12), it is sufficient
and necessary to consider only the case of 𝜆 > ‖𝑊𝑇�̂�𝑊‖.

Since the primal problem (12) involves the maximization
of a linear function tr(𝑊𝑇𝑉𝑊) over a bounded convex set
C, the optimal objective value is finite. In addition, there
exists 𝑉 = �̂� ≻ 0 with 𝐷(𝑉, �̂�) = 0 < 𝑐. Therefore, the
Slater conditions are satisfied. FromProposition 6.4.3 in [25],
strong Lagrangian duality holds.

From Lemma 1, the original min-max problem (9) or
(11) is converted equivalently into the following min-min
problem:

min
𝑊∈W

min
𝜆>‖𝑊

𝑇
�̂�𝑊‖

𝐺 (𝑊, 𝜆) . (23)

Furthermore, from (21), we have

𝑊𝑊
𝑇

= 𝜆 (�̂�
−1

− (𝑉
∗

(𝜆))
−1

) ,

�̂�
−1

𝑉
∗

(𝜆) = (𝐼 −

1

𝜆

𝑊𝑊
𝑇

�̂�)

−1

.

(24)

Then,

𝐺 (𝑊, 𝜆) = tr (𝑊𝑇𝑉∗ (𝜆)𝑊)

+ 𝜆 (𝑐 − tr (�̂�−1𝑉∗ (𝜆) − 𝐼))

+ 𝜆 ln det (�̂�−1𝑉∗ (𝜆))

= 𝜆𝑐 + 𝜆 ln det (�̂�−1𝑉∗ (𝜆))

= 𝜆𝑐 − 𝜆 ln det(𝐼 − 1

𝜆

𝑊
𝑇

�̂�𝑊) .

(25)

4. Solution of the Robust
Optimization Problem

The objective function 𝐺(𝑊, 𝜆) of problem (23) is convex in
(𝑊, 𝜆) since 𝐿(𝑊,𝑉, 𝜆) is convex in (𝑊, 𝜆) and 𝐺(𝑊, 𝜆) is
obtained by maximizing 𝐿(𝑊,𝑉, 𝜆) over 𝑉 (see [25, Propo-
sition 1.2.4c]). In addition, the set

D = {(𝑊, 𝜆) : 𝐴
𝑇

𝑊 = 𝐼,






𝑊
𝑇

�̂�𝑊






< 𝜆} (26)

is convex because it is the intersection of a linear constraint
and a semidefinite programming (SDP) constraint. Conse-
quently, the problem (23) is a convex optimization problem.
Next, we pursue the analytical solution of problem (23).

Lemma 2. If 𝑀 ≻ 0 and 𝑄 is an orthogonal projector with
compatible dimensions, then

(𝑄𝑀𝑄)
†

(𝑄𝑀𝑄) = 𝑄, (27)

(𝐼 − (𝑄𝑀𝑄)
†

𝑀) (𝐼 − 𝑄) = 𝐼 − (𝑄𝑀𝑄)
†

𝑀. (28)

Proof. Using the properties of Moore-Penrose generalized
inverse (see, e.g., [26]), we have

𝑄(𝑄𝑀𝑄)
†

= (𝑄𝑀𝑄)
†

𝑄 = (𝑄𝑀𝑄)
†

. (29)

Therefore, (𝑄𝑀𝑄)
†

(𝑄𝑀𝑄) and 𝑄 − (𝑄𝑀𝑄)
†

(𝑄𝑀𝑄) are
orthogonal projectors. From the properties of orthogonal
projector, we have

rank (𝑄 − (𝑄𝑀𝑄)
†

(𝑄𝑀𝑄))

= tr (𝑄 − (𝑄𝑀𝑄)
†

(𝑄𝑀𝑄))

= tr (𝑄) − tr ((𝑄𝑀𝑄)
†

(𝑄𝑀𝑄))

= rank (𝑄) − rank ((𝑄𝑀𝑄)
†

(𝑄𝑀𝑄))

= rank (𝑄) − rank (𝑄𝑀𝑄) = 0.

(30)

Equation (27) thus holds, and then (28) is direct.

Theorem 3. The optimal weighting matrix of the robust fusion
problem (9) or (11) is given by

𝑊
∗

= �̂�
−1

𝐴(𝐴
𝑇

�̂�
−1

𝐴)

−1

. (31)

Proof. The derivative of𝐺(𝑊, 𝜆) given by (25) with respect to
𝜆 is

𝜕𝐺 (𝑊, 𝜆)

𝜕𝜆

= 𝑐 − ln det (𝐼 − 1

𝜆

𝑊
𝑇

�̂�𝑊)

− 𝜆 ⋅

𝜕

𝜕𝜆

ln det (𝐼 − 1

𝜆

𝑊
𝑇

�̂�𝑊)

= 𝑐 − ln det (𝐼 − 1

𝜆

𝑊
𝑇

�̂�𝑊)

− tr((𝐼 − 1

𝜆

𝑊
𝑇

�̂�𝑊)

−1
1

𝜆

𝑊
𝑇

�̂�𝑊) .

(32)

Let 𝜂
1
≥ ⋅ ⋅ ⋅ ≥ 𝜂

𝑛
be the eigenvalues of𝑊𝑇�̂�𝑊. It is easy to

show that

𝜕𝐺 (𝑊, 𝜆)

𝜕𝜆

= 0 (33)

is equivalent to

𝑐 −

𝑛

∑

𝑖=1

(

𝜂
𝑖

𝜆 − 𝜂
𝑖

+ ln(1 −
𝜂
𝑖

𝜆

)) = 0. (34)

The above equation has only one solution 𝜆
∗

> 𝜂
1

=

‖𝑊
𝑇

�̂�𝑊‖ for any nonzero matrix𝑊 since

ℎ (𝑥) =

𝑛

∑

𝑖=1

(

𝜂
𝑖

𝑥 − 𝜂
𝑖

+ ln(1 −
𝜂
𝑖

𝑥

)) (35)

is a monotonically decreasing continuous function in
(𝜂
1
, +∞) and

lim
𝑥→𝜂

+

1

ℎ (𝑥) = +∞, lim
𝑥→+∞

ℎ (𝑥) = 0. (36)
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From 𝐴
𝑇

𝑊 = 𝐼 and the result on derivatives of deter-
minants of matrices (see, e.g., [24, p. 182]), the derivative of
function 𝐺(𝑊, 𝜆) with respect to𝑊 is

𝜕𝐺 (𝑊, 𝜆)

𝜕𝑊

= −𝜆

𝜕

𝜕𝑊

ln det (𝑊𝑇 (𝐴𝐴𝑇 − 1

𝜆

�̂�)𝑊)

= −2𝜆 (𝐴𝐴
𝑇

−

1

𝜆

�̂�)𝑊(𝑊
𝑇

(𝐴𝐴
𝑇

−

1

𝜆

�̂�)𝑊)

−1

= −2𝜆 (𝐴 −

1

𝜆

�̂�𝑊)(𝐼 −

1

𝜆

𝑊
𝑇

�̂�𝑊)

−1

.

(37)

The solution of the matrix equation 𝐴
𝑇

𝑊 = 𝐼 given by
equality constraint in the optimization problem (23) can be
expressed as

𝑊 =

1

𝑙

𝐴 + 𝑃𝑍, (38)

where𝑃 = 𝐼−𝐴𝐴
† and𝑍 ∈ R𝑛𝑙×𝑛 is anymatrix. Next, we seek

the matrix 𝑍 to optimize the weighting matrix𝑊. Redenote
the objective function𝐺(𝑊, 𝜆) given by (25) as𝐺(𝑍, 𝜆). From
𝑃𝐴 = 0, the derivative of 𝐺(𝑍, 𝜆) with respect to 𝑍 is

𝜕𝐺 (𝑍, 𝜆)

𝜕𝑍

= 𝑃

𝜕𝐺 (𝑊, 𝜆)

𝜕𝑊

= 2𝑃�̂�𝑊(𝐼 −

1

𝜆

𝑊
𝑇

�̂�𝑊)

−1

.

(39)

Thus, from the invertibility of 𝐼 − 1

𝜆

𝑊
𝑇

�̂�𝑊,

𝜕𝐺 (𝑍, 𝜆)

𝜕𝑍

= 0 (40)

if and only if

𝑃�̂� (

1

𝑙

𝐴 + 𝑃𝑍) = 0. (41)

That is,

𝑃�̂�𝑃𝑍 = −

1

𝑙

𝑃�̂�𝐴. (42)

Because �̂� is invertible, from (27), the solution of matrix
equation (42) is

𝑍
∗

= −

1

𝑙

(𝑃�̂�𝑃)

†

𝑃�̂�𝐴 + (𝐼 − 𝑃) 𝜉, (43)

where 𝜉 ∈ R𝑛𝑙×𝑛 is any matrix. Substituting 𝑍∗ into (38) and
using 𝑃(𝐼 − 𝑃) = 0, we have

𝑊
∗

=

1

𝑙

(𝐼 − (𝑃�̂�𝑃)

†

�̂�)𝐴. (44)

From the convexity of problem (23) andProposition 4.7.1

in [25], the pair (𝑊∗, 𝜆∗) ∈ D is the global minimum of (23).
Moreover, from the definition of 𝑃 and (28), we can obtain

1

𝑙

(𝐼 − (𝑃�̂�𝑃)

†

�̂�)𝐴𝐴
𝑇

�̂�
−1

𝐴

= (𝐼 − (𝑃�̂�𝑃)

†

�̂�) (𝐼 − 𝑃) �̂�
−1

𝐴

= (𝐼 − 𝑃 − (𝑃�̂�𝑃)

†

�̂� + (𝑃�̂�𝑃)

†

�̂�𝑃) �̂�
−1

𝐴

= (𝐼 − (𝑃�̂�𝑃)

†

�̂�) �̂�
−1

𝐴

= �̂�
−1

𝐴 − (𝑃�̂�𝑃)

†

𝑃𝐴 = �̂�
−1

𝐴.

(45)

As a result , by the invertibility of 𝐴𝑇�̂�−1𝐴, we have

1

𝑙

(𝐼 − (𝑃�̂�𝑃)

†

�̂�)𝐴 = �̂�
−1

𝐴(𝐴
𝑇

�̂�
−1

𝐴)

−1

. (46)

The proof of this theorem is completed.

Remark 4. The optimal weighting matrix 𝑊
∗ given in

Theorem 3 does not depend on the parameter 𝑐. However,
it is worth noting that the optimum value of the objective
function is increasing as 𝑐 increases. In fact, the optimal
Lagrange multiplier 𝜆∗ depends on 𝑐.

From Theorem 3, although the least favorable distribu-
tion given by covariance 𝑉∗ is not the nominal distribution,
the robust estimation fusion formula (𝑊∗)𝑇𝑦 is the same as
the fusion formulas given by (4) and (5) which are derived
from the nominal distribution. It concludes that the usual
LMVUE fusion for a Gaussian nominal model is robust.

5. Conclusion

A minimax optimization problem is formulated to find the
robust estimation fusion for multisensor systems with uncer-
tain correlations of local estimation errors characterized by
the relative entropy. By rigorous mathematical deduction, it
has been proved that the usual LMVUE fusion for a Gaussian
nominalmodel is robust nomatter how far the KL divergence
is from the actualmodel to nominalmodel. It is an interesting
and significant discovery.
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