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The inhomogeneous Helmholtz equation within the local fractional derivative operator conditions is investigated in this paper.The
local fractional variational iteration method is applied to obtain the nondifferentiable solutions and the graphs of the illustrative
examples are also shown.

1. Introduction

Helmholtz equation has played an important role in the
partial differential equations arising in mathematical physics
[1, 2]. In computing the solution of Helmholtz equation,
some analytical and numerical methods were presented. For
example, Ihlenburg and Babuška used the finite element
method to deal with theHelmholtz equation [3].Momani and
Abuasad suggested the variational iteration method to solve
the Helmholtz equation [4]. Rafei and Ganji reported the
homotopy perturbation method to report the solution to the
Helmholtz equation [5]. Bayliss et al. considered the iterative
method to discuss the Helmholtz equation [6]. Benamou
and Desprès reported the domain decomposition method
for solving the Helmholtz equation [7]. Linton presented
Green’s function method for the Helmholtz equation [8].
Singer and Turkel proposed the finite difference method to
solve the Helmholtz equation [9]. Otto and Larsson applied
the second-order method to discuss the Helmholtz equation
[10].

Recently, the fractional calculus [11, 12] was devel-
oped and applied to present some models in the fields,
such as the fractional-order digital control systems [13],

the fractional-order viscoelasticity [14], the fractional-order
quantummechanics [15], and fractional-order dynamics [16].
More recently, Samuel and Thomas report the fractional
Helmholtz equations [17] and some methods for solving the
fractional differential equations were reported in [18–23].
However, we are faced with the problem that there must be
some calculus to deal with the nondifferentiable solution for
Helmholtz equation, which was structured within the local
fractional derivative [24–34]. In this paper, we consider the
local fractional inhomogeneous Helmholtz equation in two-
dimensional case [31, 32]:

𝜕
2𝛼
𝑀(𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑀(𝑥, 𝑦)

𝜕𝑦2𝛼
+ 𝜔
2𝛼
𝑀(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) , (1)

where 𝑓(𝑥, 𝑦) is a local fractional continuous function and
the local fractional partial derivative is defined as follows [24]:

𝜕
𝛼
𝑓 (𝑥, 𝑦)

𝜕𝑥𝛼

𝑥=𝑥0

= lim
𝑥→𝑥0

Δ
𝛼
(𝑓 (𝑥, 𝑦) − 𝑓 (𝑥

0
, 𝑦))

(𝑥 − 𝑥
0
)
𝛼

, (2)
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with
Δ
𝛼
(𝑓 (𝑥, 𝑦) − 𝑓 (𝑥

0
, 𝑦))

≅ Γ (1 + 𝛼) Δ (𝑓 (𝑥, 𝑦) − 𝑓 (𝑥
0
, 𝑦)) .

(3)

The local fractional inhomogeneous Helmholtz equation in
three-dimensional case was suggested as follows [29, 30]:

𝜕
2𝛼
𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑦2𝛼
+

𝜕
2𝛼
𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑧2𝛼

+ 𝜔
2𝛼
𝑀(𝑥, 𝑦, 𝑧) = 𝑓 (𝑥, 𝑦, 𝑧) ,

(4)

where 𝑓(𝑥, 𝑦, 𝑧) is a local fractional continuous func-
tion. Here, we use the local fractional variational iteration
method [30–34] to solve the local fractional inhomogeneous
Helmholtz equation in two-dimensional case. The structure
of this paper is as follows. In Section 2, we analyze the
local fractional variational iteration method. In Section 3, we
present some illustrative examples. Finally, the conclusion is
given in Section 4.

2. Analysis of the Local Fractional Variational
Iteration Method

Here, we give the analysis of the local fractional variational
iteration method as follows. We first consider the local
fractional linear partial differential equation:

𝐿
𝛼
𝑢 + 𝑅
𝛼
𝑢 = 𝑔 (𝑡) , (5)

where𝐿
𝛼
denotes linear local fractional derivative operator of

order 2𝛼, 𝑅
𝛼
denotes a lower-order local fractional derivative

operator, and 𝑔(𝑡) is the nondifferentiable source term.
Let the local fractional operator be defined as [24, 30–34]

𝑎
𝐼
(𝛼)

𝑏
𝑓 (𝑥) =

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

(6)

with the partitions of the interval [𝑎, 𝑏], Δ𝑡
𝑗
= 𝑡
𝑗+1

− 𝑡
𝑗
, Δ𝑡 =

max{Δ𝑡
1
, Δ𝑡
2
, Δ𝑡
𝑗
, . . .}, and 𝑗 = 0, . . . , 𝑁 − 1, 𝑡

0
= 𝑎, 𝑡

𝑁
= 𝑏.

We now structure the correctional local fractional func-
tional in the form

𝑢
𝑛+1

(𝑥) = 𝑢
𝑛
(𝑥) +

0
𝐼
(𝛼)

𝑥

× {𝜁 (𝑠) (𝐿
𝛼
𝑢
𝑛
(𝑠) + 𝑅

𝛼
𝑢
𝑛
(𝑠) − 𝑔 (𝑠))} .

(7)

Making the local fractional variation, we have

𝛿
𝛼
𝑢
𝑛+1

(𝑥) = 𝛿
𝛼
𝑢
𝑛
(𝑥) +

0
𝐼
(𝛼)

𝑥
𝛿
𝛼

× {𝜁 (𝑠) (𝐿
𝛼
𝑢
𝑛
(𝑠) + 𝑅

𝛼
�̃�
𝑛
(𝑠) − 𝑔 (𝑠))} = 0

(8)

such that the following stationary conditions are given as

1 − 𝜁(𝑠)
(𝛼)𝑠=𝑥

= 0, 𝜁 (𝑠)
𝑠=𝑥 = 0,

𝜁(𝑠)
(2𝛼)𝑠=𝑥

= 0.

(9)

In view of (9), we obtain the fractal Lagrange multiplier,
which is given by

𝜁 (𝑠) =
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
. (10)

From (7) and (10), we reach at the local fractional variational
iteration algorithm

𝑢
𝑛+1

(𝑥) = 𝑢
𝑛
(𝑥) +

0
𝐼
(𝛼)

𝑥

× {
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(𝐿
𝛼
𝑢
𝑛
(𝑠) + 𝑅

𝛼
𝑢
𝑛
(𝑠) − 𝑔 (𝑠))} ,

(11)

where the nondifferentiable initial value is suggested as

𝑢
0
(𝑥) = 𝑢 (0) +

𝑥
𝛼

Γ (1 + 𝛼)
𝑢
(𝛼)

(0) . (12)

Therefore, from (11), we write the solution of (7) as follows:

𝑢 = lim
𝑛→∞

𝑢
𝑛
. (13)

3. Some Illustrative Examples

In this section, we give some illustrative examples for solving
the local fractional inhomogeneous Helmholtz equation in
two-dimensional case.

We present the following local fractional inhomogeneous
Helmholtz equation:

𝜕
2𝛼
𝑀(𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑀(𝑥, 𝑦)

𝜕𝑦2𝛼
+𝑀(𝑥, 𝑦) =

𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(𝑦
𝛼
) ,

(14)

subject to the initial-boundary conditions:

𝜕
𝛼
𝑀(0, 𝑦)

𝜕𝑥𝛼
= 𝐸
𝛼
(−𝑦
𝛼
) ,

𝑀 (0, 𝑦) = 0.

(15)

Making use of (11), we structure the local fractional varia-
tional iteration algorithm as follows:

𝑀
𝑛+1

(𝑥, 𝑦)

= 𝑀
𝑛
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

(𝑠 − 𝑥)
𝛼

Γ (1 + 𝛼)

× {
𝜕
2𝛼
𝑀
𝑛
(𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑀
𝑛
(𝑥, 𝑦)

𝜕𝑦2𝛼

+𝑀
𝑛
(𝑥, 𝑦) −

𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(𝑦
𝛼
) } ,

(16)

where the initial value is presented as

𝑀
0
(𝑥, 𝑦) =

𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(−𝑦
𝛼
) , (17)

whose plot is shown in Figure 1.
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Figure 1: The graph of the initial value (17) where 𝛼 = ln 2/ ln 3.

In view of (16) and (17), we arrive at the first approxima-
tion:

𝑀
1
(𝑥, 𝑦) = 𝑀

0
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

(𝑠 − 𝑥)
𝛼

Γ (1 + 𝛼)

× {
𝜕
2𝛼
𝑀
0
(𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑀
0
(𝑥, 𝑦)

𝜕𝑦2𝛼
+𝑀
0
(𝑥, 𝑦)

−
𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(−𝑦
𝛼
) }

=
𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(−𝑦
𝛼
)

+
0
𝐼
(𝛼)

𝑥

(𝑠 − 𝑥)
𝛼

Γ (1 + 𝛼)
{

𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(−𝑦
𝛼
)}

=
𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(−𝑦
𝛼
) −

𝑥
3𝛼

Γ (1 + 3𝛼)
𝐸
𝛼
(−𝑦
𝛼
)

= (
𝑥
𝛼

Γ (1 + 𝛼)
−

𝑥
3𝛼

Γ (1 + 3𝛼)
)𝐸
𝛼
(−𝑦
𝛼
) .

(18)

The second approximation is

𝑀
2
(𝑥, 𝑦) = 𝑀

1
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

(𝑠 − 𝑥)
𝛼

Γ (1 + 𝛼)

× {
𝜕
2𝛼
𝑀
1
(𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑀
1
(𝑥, 𝑦)

𝜕𝑦2𝛼
+𝑀
1
(𝑥, 𝑦)

−
𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(−𝑦
𝛼
) }

= (
𝑥
𝛼

Γ (1 + 𝛼)
−

𝑥
3𝛼

Γ (1 + 3𝛼)
)𝐸
𝛼
(−𝑦
𝛼
)

+
0
𝐼
(𝛼)

𝑥

(𝑠 − 𝑥)
𝛼

Γ (1 + 𝛼)
{−

2𝑥
3𝛼

Γ (1 + 3𝛼)
𝐸
𝛼
(−𝑦
𝛼
)}

=
𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(−𝑦
𝛼
) −

𝑥
3𝛼

Γ (1 + 3𝛼)
𝐸
𝛼
(−𝑦
𝛼
)

+
2𝑥
5𝛼

Γ (1 + 5𝛼)
𝐸
𝛼
(−𝑦
𝛼
)

= (
𝑥
𝛼

Γ (1 + 𝛼)
−

𝑥
3𝛼

Γ (1 + 3𝛼)
+

2𝑥
5𝛼

Γ (1 + 5𝛼)
)

× 𝐸
𝛼
(−𝑦
𝛼
) .

(19)

Making best of (16) and (19), the third approximation reads
as

𝑀
3
(𝑥, 𝑦) = 𝑀

2
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

(𝑠 − 𝑥)
𝛼

Γ (1 + 𝛼)

× {
𝜕
2𝛼
𝑀
2
(𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑀
2
(𝑥, 𝑦)

𝜕𝑦2𝛼
+𝑀
2
(𝑥, 𝑦)

−
𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(−𝑦
𝛼
) }

= (
𝑥
𝛼

Γ (1 + 𝛼)
−

𝑥
3𝛼

Γ (1 + 3𝛼)
+

2𝑥
5𝛼

Γ (1 + 5𝛼)
)

× 𝐸
𝛼
(−𝑦
𝛼
) + 𝐸
𝛼
(−𝑦
𝛼
)
0
𝐼
(𝛼)

𝑥

×
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(

4𝑥
5𝛼

Γ (1 + 5𝛼)
)

=
𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(−𝑦
𝛼
) −

𝑥
3𝛼

Γ (1 + 3𝛼)
𝐸
𝛼
(−𝑦
𝛼
)

+
2𝑥
5𝛼

Γ (1 + 5𝛼)
𝐸
𝛼
(−𝑦
𝛼
) −

4𝑥
7𝛼

Γ (1 + 7𝛼)
𝐸
𝛼
(−𝑦
𝛼
)

= (
𝑥
𝛼

Γ (1 + 𝛼)
−

𝑥
3𝛼

Γ (1 + 3𝛼)

+
2𝑥
5𝛼

Γ (1 + 5𝛼)
−

4𝑥
7𝛼

Γ (1 + 7𝛼)
)𝐸
𝛼
(−𝑦
𝛼
) .

(20)

From (16) and (20), we obtain the fourth approximation of
(14) given as

𝑀
4
(𝑥, 𝑦) = 𝑀

3
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

(𝑠 − 𝑥)
𝛼

Γ (1 + 𝛼)

× {
𝜕
2𝛼
𝑀
3
(𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑀
3
(𝑥, 𝑦)

𝜕𝑦2𝛼
+𝑀
3
(𝑥, 𝑦)

−
𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(−𝑦
𝛼
) }
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= (
𝑥
𝛼

Γ (1 + 𝛼)
−

𝑥
3𝛼

Γ (1 + 3𝛼)
+

2𝑥
5𝛼

Γ (1 + 5𝛼)

−
4𝑥
7𝛼

Γ (1 + 7𝛼)
)𝐸
𝛼
(−𝑦
𝛼
) + 𝐸
𝛼
(−𝑦
𝛼
)
0
𝐼
(𝛼)

𝑥

×
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
(−

8𝑥
7𝛼

Γ (1 + 7𝛼)
)

=
𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(−𝑦
𝛼
) −

𝑥
3𝛼

Γ (1 + 3𝛼)
𝐸
𝛼
(−𝑦
𝛼
)

+
2𝑥
5𝛼

Γ (1 + 5𝛼)
𝐸
𝛼
(−𝑦
𝛼
) −

4𝑥
7𝛼

Γ (1 + 7𝛼)
𝐸
𝛼
(−𝑦
𝛼
)

+
8𝑥
9𝛼

Γ (1 + 9𝛼)
𝐸
𝛼
(−𝑦
𝛼
)

= (
𝑥
𝛼

Γ (1 + 𝛼)
−

𝑥
3𝛼

Γ (1 + 3𝛼)
+

2𝑥
5𝛼

Γ (1 + 5𝛼)

−
4𝑥
7𝛼

Γ (1 + 7𝛼)
+

8𝑥
9𝛼

Γ (1 + 9𝛼)
)𝐸
𝛼
(−𝑦
𝛼
) .

(21)

As similar manner, from (21), we arrive at the fifth approxi-
mate formula:

𝑀
5
(𝑥, 𝑦) = 𝑀

4
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

(𝑠 − 𝑥)
𝛼

Γ (1 + 𝛼)

× {
𝜕
2𝛼
𝑀
4
(𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑀
4
(𝑥, 𝑦)

𝜕𝑦2𝛼
+𝑀
4
(𝑥, 𝑦)

−
𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(−𝑦
𝛼
) }

= (
𝑥
𝛼

Γ (1 + 𝛼)
−

𝑥
3𝛼

Γ (1 + 3𝛼)
+

2𝑥
5𝛼

Γ (1 + 5𝛼)

−
4𝑥
7𝛼

Γ (1 + 7𝛼)
+

8𝑥
9𝛼

Γ (1 + 9𝛼)
)𝐸
𝛼
(−𝑦
𝛼
)

+ 𝐸
𝛼
(−𝑦
𝛼
)
0
𝐼
(𝛼)

𝑥

(𝑠 − 𝑥)
𝛼

Γ (1 + 𝛼)
(

16𝑥
9𝛼

Γ (1 + 9𝛼)
)

=
𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(−𝑦
𝛼
) −

𝑥
3𝛼

Γ (1 + 3𝛼)
𝐸
𝛼
(−𝑦
𝛼
)

+
2𝑥
5𝛼

Γ (1 + 5𝛼)
𝐸
𝛼
(−𝑦
𝛼
) −

4𝑥
7𝛼

Γ (1 + 7𝛼)
𝐸
𝛼
(−𝑦
𝛼
)

+
8𝑥
9𝛼

Γ (1 + 9𝛼)
𝐸
𝛼
(−𝑦
𝛼
) −

16𝑥
11𝛼

Γ (1 + 11𝛼)

= (
𝑥
𝛼

Γ (1 + 𝛼)
−

𝑥
3𝛼

Γ (1 + 3𝛼)
+

2𝑥
5𝛼

Γ (1 + 5𝛼)

−
4𝑥
7𝛼

Γ (1 + 7𝛼)
+

8𝑥
9𝛼

Γ (1 + 9𝛼)
−

16𝑥
11𝛼

Γ (1 + 11𝛼)
)

× 𝐸
𝛼
(−𝑦
𝛼
) .

(22)

Hence, we have the local fractional series solution of (14):

𝑀
𝑛
(𝑥, 𝑦)

= (
𝑥
𝛼

Γ (1 + 𝛼)
−

𝑥
3𝛼

Γ (1 + 3𝛼)
+

2𝑥
5𝛼

Γ (1 + 5𝛼)

−
4𝑥
7𝛼

Γ (1 + 7𝛼)
+

8𝑥
9𝛼

Γ (1 + 9𝛼)
−

16𝑥
11𝛼

Γ (1 + 11𝛼)
+ ⋅ ⋅ ⋅ )

× 𝐸
𝛼
(−𝑦
𝛼
)

= (
1

2

𝑥
𝛼

Γ (1 + 𝛼)
+

1

2

∞

∑

𝑖=0

(−1)
𝑖 2

𝑖
𝑥
(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)
)

× 𝐸
𝛼
(−𝑦
𝛼
) .

(23)

From (13), we get the exact solution of (14) given as

𝑀 = lim
𝑛→∞

𝑀
𝑛
(𝑥, 𝑦)

= lim
𝑛→∞

(
1

2

𝑥
𝛼

Γ (1 + 𝛼)
+

1

2

∞

∑

𝑖=0

(−1)
𝑖 2

𝑖
𝑥
(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)
)

× 𝐸
𝛼
(−𝑦
𝛼
)

= [
1

2

𝑥
𝛼

Γ (1 + 𝛼)
+

1

2
sin
𝛼
(2𝑥
𝛼
)] 𝐸
𝛼
(−𝑦
𝛼
)

(24)

and its plot is illustrated in Figure 2.

Example 1. We suggest the following local fractional inhomo-
geneous Helmholtz equation:

𝜕
2𝛼
𝑀(𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑀(𝑥, 𝑦)

𝜕𝑦2𝛼
+𝑀(𝑥, 𝑦)

=
𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)
,

(25)

and the initial-boundary conditions read as

𝜕
𝛼
𝑀(0, 𝑦)

𝜕𝑥𝛼
=

𝑦
𝛼

Γ (1 + 𝛼)
,

𝑀 (0, 𝑦) = 0.

(26)
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Figure 2: The graph of exact solution of (14) where 𝛼 = ln 2/ ln 3.

From (11), we set up the local fractional variational iteration
algorithm as follows:

𝑀
𝑛+1

(𝑥, 𝑦)

= 𝑀
𝑛
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

(𝑠 − 𝑥)
𝛼

Γ (1 + 𝛼)

× {
𝜕
2𝛼
𝑀
𝑛
(𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑀
𝑛
(𝑥, 𝑦)

𝜕𝑦2𝛼

+𝑀
𝑛
(𝑥, 𝑦) −

𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)
} ,

(27)

where the initial value is suggested as

𝑀
0
(𝑥, 𝑦) =

𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)
. (28)

Appling (27) and (28) gives the first approximate solution:

𝑀
1
(𝑥, 𝑦)

= 𝑀
0
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

(𝑠 − 𝑥)
𝛼

Γ (1 + 𝛼)

× {
𝜕
2𝛼
𝑀
0
(𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑀
0
(𝑥, 𝑦)

𝜕𝑦2𝛼
+𝑀
0
(𝑥, 𝑦)

−
𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)
}

=
𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)
.

(29)

Using (27) and (29), we obtain the second approximate term,
which is expressed as follows:

𝑀
2
(𝑥, 𝑦)

= 𝑀
1
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

(𝑠 − 𝑥)
𝛼

Γ (1 + 𝛼)

× {
𝜕
2𝛼
𝑀
1
(𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑀
1
(𝑥, 𝑦)

𝜕𝑦2𝛼
+𝑀
1
(𝑥, 𝑦)

−
𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)
}

=
𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)
.

(30)

In view of (27) and (30), we obtain the third approximation,
which reads as follows:

𝑀
3
(𝑥, 𝑦)

= 𝑀
2
(𝑥, 𝑦) +

0
𝐼
(𝛼)

𝑥

(𝑠 − 𝑥)
𝛼

Γ (1 + 𝛼)

× {
𝜕
2𝛼
𝑀
2
(𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑀
2
(𝑥, 𝑦)

𝜕𝑦2𝛼
+𝑀
2
(𝑥, 𝑦)

−
𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)
}

=
𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)
.

(31)

Therefore, we arrive at the approximate term

𝑀
𝑛
(𝑥, 𝑦) =

𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)
, (32)

which leads to the exact solution of (25) given as

𝑀(𝑥, 𝑦)

= lim
𝑛→∞

𝑀
𝑛
(𝑥, 𝑦)

= lim
𝑛→∞

𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)

=
𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)

(33)

and its plot is illustrated in Figure 3.

4. Conclusions

In this work, the boundary value problems for the inhomoge-
neous Helmholtz equation within local fractional derivative
operator were discussed by using the local fractional vari-
ational iteration method. Their nondifferentiable solutions
are obtained and the graphs of the solutions with fractal
dimension 𝛼 = ln 2/ ln 3 are also given.



6 Mathematical Problems in Engineering
M
(
x
,
y
)

1.5

1

0.5

0
1

0.5

0

y

0
0.2

0.4
0.6

0.8

1

x

Figure 3: The plot of exact solution of (25) where 𝛼 = ln 2/ ln 3.

Conflict of Interests

The authors declare that they have no competing interests in
this paper.

Acknowledgment

This work was supported by the Zhejiang Provincial Natural
Science Foundation (LY13A010007).

References

[1] A. Sommerfeld, Partial Differential Equations in Physics, Aca-
demic Press, New York, NY, USA, 1949.

[2] K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical
Methods for Physics and Engineering, Cambridge University
Press, Cambridge, UK, 2006.
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